

S0031-9422(96)00138-0

# A PTEROCARPAN FROM ERYTHRINA ORIENTALIS

HITOSHI TANAKA, TOSHIHIRO TANAKA\* and HIDEO ETOH†

Faculty of Pharmacy, Meijo University, Yagoto, Tempaku-ku, Nagoya 468, Japan; \*Gifu Pharmaceutical University, 6-1 Mitahora-higashi 5 chome, Gifu 502, Japan; †Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Shizuoka 422, Japan

(Received 2 January 1996)

Key Word Index—Erythrina orientalis; Leguminosae; isoflavones; pterocarpan; hydroxycristacarpone; 11b-hydroxydienone.

Abstract—A new pterocarpan, hydroxycristacarpone, was isolated from the wood of *Erythrina orientalis* and the structure was established as a 11b-hydroxydienone. Three known compounds, the pterocarpan, crystacarpin and the isoflavones osajin and wighteone, were also characterized.

### INTRODUCTION

There have been a few reports on the chemical components and the pharmacological investigation of *Erythrina orientalis* [1, 2]. Many alkaloids have been isolated from seeds and leaves. We now report on the isolation and the structure of a new pterocarpan, hydroxycristacarpone (1), along with a known pterocarpan (cristacarpin (2) [3, 4]) and two known isoflavone's (osajin (3) [5] and wighteone (4) [6]).

# RESULTS AND DISCUSSION

Compound 1, colourless prisms, C21H22O6, exhibited the presence of a conjugated carbonyl group  $(1660 \text{ cm}^{-1})$  in the IR spectrum. The mass spectrum of 1 showed a parent ion at m/z 370, 16 m.u. higher than that of 2. In the <sup>1</sup>H NMR spectrum of 1, signals of a prenyl group ( $\delta$  1.54, 1.63, 3.05, 3.18 and 5.00), a methoxyl group ( $\delta$  3.80), an oxymethylene group ( $\delta$  4.42 and 5.03), two aromatic protons ( $\delta$  6.58 and 7.21) and three olefinic protons ( $\delta$  5.265, 6.05 and 6.85) were observed (Table 1). A comparison of the <sup>1</sup>H NMR spectrum of 1 with that of 2 showed that substituents of ring D in 1 appeared at relatively the same positions as in 2 except for a little change in protons at 1'. Protons at 6 and 11a appeared at  $\delta$  4.42, 5.03 and 4.84, respectively. The signals of three olefinic protons exhibited a dienone system characteristic of a p-quinol structure in ring A. The <sup>13</sup>C NMR assignments also suggested the presence of these structural moieties. The carbons of ring A, C-1, 2, 3, 4 and 4a, were shifted downfield compared with their shift positions in 2, whereas C-11b appeared upfield compared with its shift position in 2.

Treatment of 1 with zinc dust in acetic acid provided 2 (6a S and 11a S) with known stereochemistry, which

exhibited a negative optical rotation. Hence, 1 was concluded to have the 6a S:11a R absolute configuration. The stereochemistry of the hydroxyl group at 11b was determined by the phase-sensitive NOESY spectrum and NOE difference experiments. In the <sup>1</sup>H NMR spectra, two hydroxyl protons were observed at  $\delta$  5.260 and 5.68 which were assigned to 6a and 11b positions, respectively (Fig. 1). The hydroxyl proton at  $\delta$  5.68 (OH-11b) showed NOE relations with an olefinic proton at  $\delta$  6.85 (H-1) and a methine proton at  $\delta$  4.84 (H-11a) (Fig. 2). This indicated that the hydroxyl group at 11b and the methine proton at 11a had a *cis* relation. Consequently, the hydroxyl group at 11b was assigned the S absolute configuration and the structure of

Table 1. <sup>1</sup>H NMR spectral data for compounds 1 and 2

| Н      | 1*                  | 2†                 |
|--------|---------------------|--------------------|
| 1      | 6.85 d (10.1)       | 7.39 d (8.4)       |
| 2      | 6.05 dd (10.1, 1.7) | 6.55 dd (8.4, 2.5) |
| 4      | 5.265 d (1.7)       | 6.38 d (2.5)       |
| 6      | 4.42 d (10.1)       | 4.00 d (11.5)      |
|        | 5.03 d (10.1)       | 4.21 d (11.5)      |
| 7      | 7.21 d (8.4)        | 7.14 d (8.2)       |
| 8      | 6.58 d (8.4)        | 6.49 d (8.2)       |
| 11a    | 4.84 s              | 5.26 s             |
| 1'     | 3.05 dd (14.1, 7.0) | 3.25 d (7.3)       |
|        | 3.18 dd (14.1, 7.5) |                    |
| 2'     | 5.00 m              | 5.19 br t (7.3)    |
| 4'     | 1.54 s              | 1.64 s             |
| 5'     | 1.63 s              | 1.73 s             |
| OMe    | 3.80 s              | 3.80 s             |
| OH-6a  | 5.260 s             | 4.96 br s‡         |
| OH-11b | 5.68 s              | 2.37 br s‡         |

\*In  $Me_2CO-d_6$  at 400 MHz.

†In CDCl<sub>3</sub> at 270 MHz.

‡Assignments may be interchanged; OH-11b in 1 is replaced by 3-OH in 2.



Fig. 1. NOEs observed in phase-sensitive NOESY of compound 1.



Fig. 2. Difference NOEs in compound 1.

hydroxycristacarpone was represented as formula 1 (6a S, 11a R and 11b S).

So far, there have been a few reports of 11b-hydroxydienones such as derivatives of phytoalexin pterocarpans (phaseollin [7], tuberosin [8], medicarpin [9] and maackiain [9]), which are produced by oxidative detoxification of microbial alteration. The phytoalexin cristacarpin is a putative precursor of hydroxycristacarpone isolated from this plant. This is the first report of the isolation of the 11b-hydroxydienone (1) from the genus *Erythrina*, and hydroxy-



cristacarpone is a rare pterocarpan which has both a prenyl group and a *p*-quinol skeleton in the structure.

#### EXPERIMENTAL

Mps: uncorr. CC was run on Merck silica gel 60 (230–400 mesh). TLC was performed on glass plates precoated with Kieselgel 60  $F_{254}$  (Merck). The spots were detected by spraying with 50%  $H_2SO_4$  and by UV light. <sup>1</sup>H NMR (270 and 400 MHz) and <sup>13</sup>C NMR (67.5 MHz) spectra were measured. Chemical shifts are in ppm ( $\delta$ ). UV spectra were recorded in MeOH.

The wood of Erythrina orientalis (5.7 kg) was extracted with MeOH and evapd to give a dark green residue. The residue was divided into n-hexane soluble, CH<sub>2</sub>Cl<sub>2</sub> soluble and EtOAc soluble frs. The CH<sub>2</sub>Cl<sub>2</sub> soluble fr. was shaken with 2% HCl and evapd to afford an oil (11.5 g) which was chromatographed on silica gel eluted with varying polarity solns of CHCl<sub>3</sub>,  $CHCl_{3}-Me_{2}CO$  (10:1.5) and  $CHCl_{3}-Me_{2}CO$  (1:1). Each fr. collected was 25 ml. Frs 97-99 were purified by repeated CC [ $C_6H_6$ -EtOAc (10:1) and *n*-hexane-Et<sub>2</sub>O (1:1)] to afford 3 (43 mg). Frs 103-110 were sepd by CC ( $C_6H_6$ -EtOAc, 10:1) to give 2 (103 mg) and a crude solid which was recrystallized from nhexane-CHCl<sub>3</sub> to give 4 (15 mg). Frs 173-180 were purified by CC (CHCl<sub>3</sub>-Me<sub>2</sub>CO, 1:1) to afford a crude solid which was recrystallized from *n*-hexane-EtOH to afford 1 (27 mg). Identification of 2-4 was made by comparison with lit. data [3-6].

*Hydroxycristacarpone* (1). Prisms from *n*-hexane– EtOH. Mp 246–248°.  $[\alpha]_{\rm D}$  –258° (MeOH, *c* 0.1). CD (MeOH; *c* 2.86 × 10<sup>-5</sup>): Δε –9.74 (303), +5.73 (277), -3.97 (247). IR  $\nu_{\rm max}^{\rm KBr}$  cm<sup>-1</sup>: 3350, 1660, 1610, 1600. UV  $\lambda_{\rm max}$  nm (log ε): 303 (4.64), 285 (4.75), 206 (5.64). MS *m/z*: 370 [M]<sup>+</sup>, 354, 353, 340, 336, 335, 314, 297, 246, 245 (100%), 232, 231, 229, 217, 213, 205, 203, 201. HRMS *m/z*: 370.1404 ([M]<sup>+</sup>, calc. for C<sub>21</sub>H<sub>22</sub>O<sub>6</sub>: 370.1415). <sup>13</sup>C NMR (Me<sub>2</sub>CO-*d*<sub>6</sub>): δ 187.1 (C-3), 169.6 (C-4a), 160.3 (C-10a or C-9), 160.1 (C-9) or C-10a), 144.4 (C-1), 131.6 (C-3'), 129.1 (C-2), 122.7 (C-2'), 122.5 (C-7), 121.5 (C-6b), 112.5 (C-10), 107.0 (C-4), 105.2 (C-8), 90.9 (C-11a), 78.2 (C-6a), 69.9 (C-6), 68.8 (C-11b), 56.3 (OMe), 25.8 (C-5'), 22.9 (C-1'), 17.8 (C-4'). <sup>1</sup>H NMR: see Table 1.

Cristacarpin (2). Oil.  $[\alpha]_{D} = -187^{\circ}$  (MeOH, c 0.1).



IR  $\nu_{\text{max}}^{\text{CHCl}_3}$  cm<sup>-1</sup>: 3580, 1615, 1600. UV  $\lambda_{\text{max}}$  nm: 209, 280, 286. MS m/z: 354 ([M]<sup>+</sup>, 100%), 339, 337, 336, 335, 326, 321, 311, 299, 298, 297, 295, 293, 283, 281, 271, 270, 269, 255, 217, 201. HRMS m/z: 354.1480 ([M]<sup>+</sup>, calc. for C<sub>21</sub>H<sub>22</sub>O<sub>5</sub>: 354.1466). <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$  159.8 (C-9), 158.5 (C-3), 156.9 (C-4a), 155.6 (C-10a), 132.4 (C-1), 131.8 (C-3'), 121.9 (C-2'), 120.7 (C-6b or C-7), 120.4 (C-7 or C-6b), 113.7 (C-10), 112.9 (C-11b), 110.2 (C-2), 103.9 (C-8 or C-4), 103.6 (C-4 or C-8), 84.2 (C-11a), 77.2 (C-6a), 69.5 (C-6), 56.0 (OMe), 25.8 (C-5'), 22.5 (C-1'), 17.7 (C-4'). <sup>1</sup>H NMR: see Table 1.

Reduction of 1. To a soln of 1 (5.7 mg) in HOAc (2 ml) was added excess powdered Zn (20 mg). The reaction mixt. was stirred at room temp. for 30 min under N<sub>2</sub> atmosphere. After filtration of the reaction mixt., the solvent was evapd to give a residue which was chromatographed on silica gel using CHCl<sub>3</sub>-Me<sub>2</sub>CO (10:1.5) to afford an oil 2 (4.9 mg) which was identical to the naturally occurring cristacarpin in all respects ( $[\alpha]_D$ , IR, UV, MS, <sup>1</sup>H NMR and chromatographic properties).

## REFERENCES

- 1. Nguyen, V. T., Pham, T. K., Hoang, T. B. Y. and Pho, D. T. (1992) *Tap Chi Duoc Hoc* 25.
- Ito, K., Furukawa, H., Haruna, M. and Lu, S.-T. (1973) Yakugaku Zasshi 93, 1671.
- Dagne, E., Gunatilaka, A. A. L., Kingston, D. G. I., Alemu, M., Hofmann, G. and Johnson, R. K. (1993) *J. Nat. Prod.* 56, 1831.
- Ingham, J. L. and Markham, K. R. (1980) *Phyto*chemistry 19, 1203.
- Mizuno, M., Matsuura, N., Iinuma, M., Tanaka, T. and Phengklai, C. (1990) *Phytochemistry* 29, 2675.
- Kinoshita, T., Ichinose, K., Takahashi, C., Ho, F.-C., Wu, J.-B. and Sankawa, U. (1990) *Chem. Pharm. Bull.* 38, 2756.
- 7. Heuvel, J. V. D., van Etten, H. D. and Serum, J. W. (1974) *Phytochemistry* 13, 1129.
- Prasad, A. V. K., Singh, A., Kapil, R. S. and Popli, S. P. (1984) *Indian J. Chem.* 23B, 1165.
- 9. Denny, T. P. and van Etten, H. D. (1982) *Phytochemistry* 21, 1023.