

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

Antagonism of 4-substituted 1,4-dihydropyridine-3,5-dicarboxylates toward voltage-dependent L-type Ca^{2+} channels $Ca_V 1.3$ and $Ca_V 1.2$

Che-Chien Chang^a, Song Cao^{a,d}, Soosung Kang^a, Li Kai^b, Xinyong Tian^b, Prativa Pandey^a, Sara Fernandez Dunne^c, Chi-Hao Luan^c, D. James Surmeier^{b,*}, Richard B. Silverman^{a,*}

^a Department of Chemistry, Department of Biochemistry, Molecular Biology, and Cell Biology, Center for Molecular Innovation and Drug Discovery,

and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208-3113, USA

^b Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA

^c High-Throughput Analysis Laboratory, Northwestern University, Evanston, IL 60208-3500, USA

^d Visiting Scholar from the School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China

ARTICLE INFO

Article history: Received 10 February 2010 Revised 15 March 2010 Accepted 16 March 2010 Available online 19 March 2010

Keywords: Dihydropyridines Ca_v1.2 Ca⁺² channel Ca_v1.3 Ca⁺² channel Antagonism Dopamine neurons Parkinson's disease Selective antagonists FLIPR (Fluorometric imaging plate reader)

ABSTRACT

L-type Ca^{2+} channels in mammalian brain neurons have either a $Ca_V 1.2$ or $Ca_V 1.3$ pore-forming subunit. Recently, it was shown that $Ca_V 1.3$ Ca^{2+} channels underlie autonomous pacemaking in adult dopaminergic neurons in the *substantia nigra pars compacta*, and this reliance renders them sensitive to toxins used to create animal models of Parkinson's disease. Antagonism of these channels with the dihydropyridine antihypertensive drug isradipine diminishes the reliance on Ca^{2+} and the sensitivity of these neurons to toxins, pointing to a potential neuroprotective strategy. However, for neuroprotection without an antihypertensive side effect, selective $Ca_V 1.3$ channel antagonists are required. In an attempt to identify potent and selective antagonists of $Ca_V 1.3$ channels, 124 dihydropyridines (4-substituted-1,4-dihydropyridine-3,5-dicarboxylic diesters) were synthesized. The antagonism of heterologously expressed $Ca_V 1.2$ and $Ca_V 1.3$ channels was then tested using electrophysiological approaches and the FLIPR Calcium 4 assay. Despite the large diversity in substitution on the dihydropyridine scaffold, the most $Ca_V 1.3$ selectivity was only about twofold. These results support a highly similar dihydropyridine binding site at both $Ca_V 1.3$ channels and suggests that other classes of compounds need to be identified for $Ca_V 1.3$ selectivity.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Voltage-gated Ca²⁺ channels (Ca_V) are important to a wide range of cellular functions including patterning of repetitive activity, neurotransmitter release, and gene expression.¹ Based on their pore-forming subunit, they are classified into three broad groups: Ca_V1, Ca_V2, and Ca_V3.² Members of each group play distinct roles in cellular functions.² Because of their diverse and important roles in cellular activity, Ca_V channels are important drug targets. The most commonly targeted channels are members of the Ca_V1 class because of their roles in the cardiovascular system.^{3,4} Dihydropyridines are among the most therapeutically useful Ca_V1 Ca²⁺ channel antagonists;⁵ these compounds reduce Ca²⁺ influx through Ca_V1.2 channels in vascular smooth muscle, diminishing muscle tone and blood pressure.⁶ Nifedipine, nimodipine, and isradipine (Fig. 1) are widely prescribed 1,4-dihydropyridine antihypertensive drugs that antagonize $Ca_V 1.2$ L-type Ca^{2+} channels.^{4,7}

Adult dopaminergic (DA) neurons of the substantia nigra pars compacta (SNc) rely on L-type voltage-gated Ca²⁺ channels with a Ca_v1.3 pore for maintenance of rhythmic pacemaking.⁸ This reliance on Ca_V1.3 Ca²⁺ channels increases with age and renders SNc DA neurons vulnerable to stressors thought to contribute to Parkinson's disease. Antagonism of Ca_V1.3 Ca²⁺ channels in adult SNc DA neurons by the antihypertensive drug isradipine (Fig. 1), a nonselective Ca_V1.2/Ca_V1.3 Ca²⁺ channel blocker, induces reversion of these adult neurons to a juvenile form of pacemaking that does not rely on Ca²⁺ flux, resulting in protection in mouse models of Parkinson's disease.⁸ Hence, antagonism of Ca_v1.3 Ca²⁺ channels is a potentially neuroprotective strategy in the presymptomatic or early stages of Parkinson's disease. The problem with using antihypertensive drugs for Parkinson's disease, however, is that the optimal dose can produce hypotension. Even if this does not occur, it is known that during the course of Parkinson's disease hypotension is common;⁹ administration of an antihypertensive drug would exacerbate this condition. What is needed is a drug that is selective for the Ca_v1.3 calcium channel to avoid undesirable cardiovascular

^{*} Corresponding authors. Tel.: +1 847 491 5653; fax: +1 847 491 7713 (R.B.S.); tel.: +1 312 503 4904; fax: +1 312 503 4400 (D.J.S.).

E-mail addresses: j-surmeier@northwestern.edu (D.J. Surmeier), Agman@chem. northwestern.edu (R.B. Silverman).

^{0968-0896/\$ -} see front matter \circledast 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2010.03.038

Figure 1. Structures of three Ca_V1.2 Ca²⁺ channel blockers.

effects produced by antagonism of the Ca_V1.2 calcium channel. However, Ca_V1.2 and Ca_V1.3 calcium channels are very similar, which makes it very difficult to identify compounds that show Ca_V1.3 selectivity.¹⁰

Although 1,4-dihydropyridines, such as isradipine, are potent antagonists of Ca_V1.2 channels, they are less effective antagonists of Ca_V1.3 channels underlying pacemaking in SNc DA neurons.^{3,11,12} None of the Ca_V1 antagonists in clinical use preferentially antagonize Ca_V1.3 channels.^{5,10–12} For example, the concentration for half-maximal antagonism (IC₅₀) by nimodipine for Ca_V1.3 channels is 20-fold higher than that for Ca_V1.2 channels.¹¹ Here, we describe the synthesis of a series of structurally diverse 4-substituted 1,4-dihydropyridines and their evaluation as antagonists for Ca_V1.2 and Ca_V1.3 Ca²⁺ channels in an attempt to identify compounds with increased potency and selectivity for Ca_V1.3 Ca²⁺ channels. Nifedipine (**1** in Table 1) was chosen as the lead compound because of its simplicity as an active dihydropyridine in these assays, and six of its parts were modified with structurally diverse substituents.

2. Results

2.1. Chemistry

Structural modifications were made at the R^1-R^5 positions of the skeletal structure, as shown in Figure 2; one additional compound was made that contained an *N*-methyl group at the nitrogen in the dihydropyridine ring. Modifications were initially made at the 4-position of 1,4-dihydropyridine ring. Many of the variations at R^1 were made to sample a relatively large chemical space, leaving the other substituents constant.

Starting from various aldehydes, β -keto esters, and 3-aminocrotonates or NH₄OAc, the target compounds, dialkyl (4-aryl or 4-alkyl)-2,6-dialkyl-1,4-dihydropyridine-3,5-dicarboxylates (**1–55**; see Table 1 for structures), were synthesized based on procedures previously described.^{13,14} With only a few exceptions, the target compounds were synthesized by treatment of the aldehyde and β -keto ester with excess 3-aminocrotonates or NH₄OAc in one-pot reactions at 80 °C for 1–10 h. Attempts to obtain the trifluoromethyl-containing 1,4-dihydropyridines (R⁴ = R⁵ = CF₃) under the above-mentioned experimental conditions, however, were unsuccessful because of the failure of their intermediates to undergo dehydration. Therefore, the protocol was adjusted by the addition of a few drops of sulfuric acid, which dehydrated the intermediates and produced the final compounds (**53** and **54**).¹⁵ Compound **55** was synthesized by alkylation of **12** with methyl iodide.¹⁶

To get more structural diversity at other positions of the 1,4dihydropyridines, fourteen analogues (**56–69**; see Table 2 for structures) were prepared using modified Hantzsch conditions or chemical transformations from compound **65**, as shown in Figure 3. Modifications were made mostly at the 2-position of the 1,4dihydropyridine ring. Starting from compound **65**,¹⁷ acid hydrolysis afforded an aldehyde, which was then converted to conjugated systems by Wittig reactions (compound **67–69**). Reduction of the aldehyde generated compound **61**. Acetyl and benzoyl protection of **61** generated **63** and **64**, respectively. Chlorination of **61** provided **62**, and further alkylation gave **66**. Lactonization of **61** afforded **117**. All chemical transformations were based on previously reported literature precedents.¹⁷

It has been reported that the two ester groups should be differentiated to obtain better interactions with the binding domains of calcium channels.¹⁸ One ester group should be smaller and be able to fit into the active site; the other ester group should be large enough to interact with the lipophilic domain. Therefore, forty compounds (**70–109**; see Table 3 for structures) were prepared with two different ester groups (Fig. 4). The key intermediate **70** was synthesized from compound **72**, by deprotection of the allyl group.¹⁹ Compound **70** was then coupled with various alcohols, by parallel synthesis, on the basis of literature precedence.²⁰

Moreover, to gain more information about the influence of structural diversity on potency and selectivity, nine analogues (110-118; see Table 4 for structures) also were synthesized. In particular, three difluorophenyl 1,4-dihydropyridines (110-112) were prepared under Hantzsch conditions for comparison with the nitrophenyl 1,4-dihydropyridine as a bioisostere. Two 4,4-disubstituted 1,4-dihydropyridines (115-116) were prepared to investigate the conformational effects of the 1,4-dihydropyridine ring base.²¹ One 4-phenyl-4-pyrane diester (**118**)²² was synthesized to determine the importance of the dihydropyridine NH toward potency. Compounds 119-120 were made to see the effect of a 4-(2-naphthy) group and **120** contained a ketone in place of one of the esters. The last four compounds (121-124) were pairs of two enantiomers to determine if a stereochemical difference was sufficient to differentiate the two calcium channels. Therefore, we have modified all positions of the 1,4-dihydropyridines to obtain a structure-activity relationship for 4-substituted 1,4-dihydropyridines 3,5-dicarboxylates toward antagonism of Ca_v1.3 and Ca_v1.2 channels.

2.2. Biological results

Compounds **1–55**, which have a variety of substituents on the 1,4-dihydropyridine ring, were evaluated by a whole-cell patchclamp recording assay with Ca_v1.2 and Ca_v1.3 Ca²⁺ channels (see Table 1). Results are presented as percent inhibition determined at specified concentrations, and the ratio of inhibition of Ca_v1.3 to Ca_v1.2 also is given. Compounds **56–124** were evaluated for activity with Ca_v1.3 to Ca_v1.2 Ca²⁺ channels using a FLIPR system and a Calcium 4 assay kit (see Tables 2–4). The IC₅₀ values for each compound were determined by dose–response curves with 11 concentration points. The selectivity of antagonism of Ca_v1.3 relative to Ca_v1.2 was determined by calculating the inverse of the ratios of IC₅₀ values with Ca_v1.2 to those with Ca_v1.3. This was done because of the inverse relationship of IC₅₀ and potency. Therefore, ratios greater than 1.0 indicate preferential antagonism of Ca_v1.3.

3. Discussion

With nifedipine (1) as the lead compound, changes were made to the 4-substituent (R^1), to each of the ester groups (R^2 and R^3), to

Table 1

Antagonism of $Ca_v 1.2$ and $Ca_v 1.3$ Ca^{2+} channels by compounds **1–55** and the $Ca_v 1.3/Ca_v 1.2$ ratio of antagonism

No.	R ¹	R ²	R ³	\mathbb{R}^4	R ⁵	Concd (nM)	Antag Ca _v 1.3 ^a (%)	Antag Ca _v 1.2 ^b (%)	Selectivity 1.3/1.2 ^c
1	$2-NO_2-C_6H_4$	CH₃	CH₃	CH₃	CH₃	100	46 ± 16	69 ± 16	0.67
2	$3-NO_2-C_6H_4$	CH₃	CH₃	CH ₃	CH ₃	100	34 ± 7	62 ± 5	0.55
3	$4-NO_2-C_6H_4$	CH ₂	CH ₂	CH ₂	CH ₂	1000	20 ± 5	35 ± 8	0.57
4	$2-NO_2-C_6H_4$	C ₂ H ₅	CH3	CH3	CH3	10	26 ± 19	41 ± 7	0.63
5	$3-NO_2-C_6H_4$	C ₂ H ₅	CH₃	CH ₃	CH ₃	100	65 ± 3	78 ± 8	0.83
6	$4-NO_2-C_6H_4$	C ₂ H ₅	CH₃	CH ₃	CH ₃	1000	35 ± 9	48 ± 14	0.73
7	$3 - NO_2 - C_6 H_4$	<i>i</i> -Propyl	CH ₃	CH ₃	CH ₃	200	89 ± 11	96 ± 1	0.93
8	$3 - NO_2 - C_6 H_4$	<i>i</i> -Butyl	CH ₃	CH ₃	CH ₃	200	90 ± 4	94 ± 1	0.96
9	$3 - NO_2 - C_6 H_4$	t-Butyl	CH ₃	CH ₃	CH ₃	200	85 ± 10	91 ± 1	0.93
10	C ₆ H ₅	C ₂ H ₅	C ₂ H ₅	CH ₃	CH ₃	100	41 ± 8	48 ± 8	0.85
11	$4-NO_2-C_6H_4$	C_2H_5	C_2H_5	CH ₃	CH ₃	1000	40 ± 6	48 ± 12	0.83
12	$3-NO_2-C_6H_4$	C_2H_5	C_2H_5	CH ₃	CH ₃	10	43 ± 10	32 ± 8	1.34
13	3-F-C ₆ H ₄	C_2H_5	C_2H_5	CH ₃	CH ₃	100	48 ± 21	64 ± 22	0.75
14	$3-Cl-C_6H_4$	C_2H_5	C_2H_5	CH ₃	CH ₃	100	59 ± 16	58 ± 11	1.02
15	$3-Br-C_6H_4$	C_2H_5	C_2H_5	CH_3	CH_3	100	80 ± 8	82 ± 10	0.98
16	$2-I-C_6H_4$	C_2H_5	C_2H_5	CH_3	CH_3	200	95 ± 1	96 ± 4	0.99
17	$3-CF_3-C_6H_4$	C_2H_5	C_2H_5	CH ₃	CH ₃	200	84 ± 3	85 ± 4	0.99
18	3-CH ₃ OC ₆ H ₄	C_2H_5	C_2H_5	CH_3	CH_3	200	44 ± 8	69 ± 7	0.64
19	$4-(4'-Br-C_6H_3-CH_2O)-C_6H_4$	C_2H_5	C_2H_5	CH_3	CH_3	1000	28 ± 3	38 ± 15	0.74
20	$3-NO_2-4-Cl-C_6H_3$	C_2H_5	C_2H_5	CH_3	CH_3	200	66 ± 15	86 ± 9	0.77
21	$3-NO_2-6-Cl-C_6H_3$	C_2H_5	C_2H_5	CH_3	CH_3	200	89 ± 6	97 ± 1	0.92
22	3,5-Di-Br–C ₆ H ₃	C_2H_5	C_2H_5	CH_3	CH_3	200	72 ± 14	74 ± 8	0.98
23	3,5-Di-CF ₃ -C ₆ H ₃	C_2H_5	C_2H_5	CH_3	CH_3	200	38 ± 6	38 ± 17	1.00
24	2-Styryl	C_2H_5	C_2H_5	CH_3	CH_3	1000	31 ± 5	30 ± 3	1.03
25	$2 - C_6 H_5 - C_6 H_4$	C_2H_5	C_2H_5	CH_3	CH_3	200	65 ± 11	73 ± 12	0.89
26	3-Pyridyl	C_2H_5	C_2H_5	CH ₃	CH ₃	200	14 ± 4	25 ± 4	0.56
27	4-Pyridyl	C_2H_5	C_2H_5	CH ₃	CH ₃	200	15 ± 2	27 ± 2	0.56
28	2-Furyl	C ₂ H ₅	C ₂ H ₅	CH ₃	CH ₃	200	48 ± 2	72 ± 4	0.67
29	3-Furyl	C_2H_5	C_2H_5	CH ₃	CH ₃	200	32 ± 4	56±6	0.57
30	2-Thienyl	C ₂ H ₅	C ₂ H ₅	CH ₃	CH ₃	200	5/±9	65 ± 4	0.87
31 22	3-Inlenyi 5 Nitro 2 fumul	C ₂ H ₅	C ₂ H ₅	CH ₃	CH ₃	200	50 ± 5	54 ± 4	0.93
22	5-Millo-2-Iulyi 5 Dhanul 2 thionul	$C_2 \Pi_5$	C ₂ Π ₅			200	41 ± 10 42 ± 10	45 ± 10 41 ± 0	1.02
24	5 (2' Thiopyl) 2 thiopyl	C U	C L			1000	42 ± 10	41 ± 9	1.02
35	$5-(4^{2}-Methovy-phenyl)-isovazolyl$	C2H2	C ₂ H ₅	СН.	CH.	1000	16 + 5	35 ± 0 35 ± 7	0.47
36	2-Naphthyl	C ₂ H ₅	C ₂ H ₅	CH ₂	CH _a	200	10 ± 3 12 + 3	16+1	0.47
37	3-Benzothienvl	C ₂ H ₅	C ₂ H ₂	CH ₂	CH ₂	200	57 + 11	80 + 7	0.75
38	5-Bromo-2-indolvl	C ₂ H ₅	CoHe	CH ₂	CH ₂	500	43 + 21	42 + 3	1.03
39	2-Chloro-8-methyl-3-quinolyl	C ₂ H ₅	C ₂ H ₅	CH ₂	CH ₂	1000	9±3	12 ± 6	0.75
40	n-C ₃ H ₇	C ₂ H ₅	C ₂ H ₅	CH3	CH3	200	36 ± 18	42 ± 9	0.86
41	Cyclohexyl	C ₂ H ₅	C_2H_5	CH ₃	CH ₃	200	21 ± 8	26 ± 11	0.81
42	1-Phenyl-1-ethyl	C_2H_5	C_2H_5	CH ₃	CH ₃	1000	20 ± 3	28 ± 11	0.72
43	$3 - NO_2 - C_6 H_4$	i-Propyl	<i>i</i> -Propyl	CH ₃	CH ₃	200	66 ± 9	77 ± 14	0.86
44	$3-NO_2-C_6H_4$	i-Butyl	i-Butyl	CH ₃	CH ₃	200	59 ± 1	52 ± 28	1.14
45	$3-NO_2-C_6H_4$	t-Butyl	t-Butyl	CH ₃	CH ₃	100	22 ± 4	32 ± 13	0.69
46	$4-NO_2-C_6H_4$	t-Butyl	t-Butyl	CH_3	CH ₃	1000	21 ± 2	36 ± 8	0.58
47	$3-NO_2-C_6H_4$	C_2H_5	CH ₃	C_2H_5	CH_3	100	55 ± 11	76 ± 8	0.72
48	$4-NO_2-C_6H_4$	C_2H_5	CH_3	C_2H_5	CH_3	1000	30 ± 3	28 ± 6	1.07
49	$3-NO_2-C_6H_4$	C_2H_5	C_2H_5	C_2H_5	CH ₃	200	88 ± 3	93 ± 5	0.95
50	$3-NO_2-C_6H_4$	C_2H_5	C_2H_5	C_2H_5	C_2H_5	100	37 ± 9	52 ± 6	0.71
51	$4-NO_2-C_6H_4$	C_2H_5	C_2H_5	C_2H_5	C_2H_5	1000	60 ± 8	58 ± 13	1.03
52	$3-NO_2-C_6H_4$	C ₂ H ₅	C ₂ H ₅	n-C ₃ H ₇	n-C ₃ H ₇	100	27 ± 11	25 ± 12	1.07
53	$3-NO_2-C_6H_4$	C_2H_5	C_2H_5	CF ₃	CF ₃	200	38±9	34±6	1.11
54	$3-CF_3-C_6H_4$	C_2H_5	C_2H_5	CF ₃	CF ₃	200	6/±8	61±10	1.10
55"	$3-NU_2-C_6H_4$	C_2H_5	C_2H_5	CH_3	CH_3	1000	16 ± 10	35 ± /	0.46

The compounds are organized first by alkyl group of the ester (R^2 and R^3), then by alkyl substituents R^4 and R^5 .

^a Percent antagonism of Ca_V1.3.

^a Percent antagonism of Ca_V1.2.
 ^b Percent antagonism of Ca_V1.2.

 $^{c}\,$ Ratio of percent antagonism for Ca_V1.2/Ca_V1.3 (selectivity of antagonism of Ca_V1.3).

^d Compound **55** is the product of alkylation of **12** with methyl iodide (N-methylation of **12**).

each of the alkyl groups at the 2- and 6-positions (\mathbb{R}^4 and \mathbb{R}^5), to the dihydropyridine nitrogen, and to the 4-position. The goal was to explore structurally diverse substituents at each position to gain insight into how to increase potency and selectivity toward $Ca_V 1.3 Ca^{2+}$ channels relative to $Ca_V 1.2$ channels. Ideally, all of the assays would have been carried out at the same concentrations, but because of the difficulty of the whole-cell patch-clamp assay procedure, multiple concentrations were not evaluated for compounds 1-55. Therefore, many of the conclusions are based on extrapolated estimates at tested concentrations. Nevertheless,

Figure 2. Hantzsch and modified conditions for the synthesis of target compounds 1-54.

Table 2 IC_{50} values and the selectivity of antagonism of Ca_V1.2 and Ca_V1.3 Ca²⁺ channels by compounds **56–69**^a

No.	R ¹	R ²	R ³	R ⁴	IC ₅₀ (nM) Ca _v 1.3	IC ₅₀ (nM) Ca _v 1.2	Selectivity 1.3/1.2	Synthesis method
56	3-NO ₂	C ₂ H ₅	C_2H_5	n-Propyl	105	18	0.17	А
57	3-NO ₂	C_2H_5	C_2H_5	n-Butyl	20	20	1.00	А
58	2-NO ₂	C_2H_5	CH_3	CH ₂ OMe	790	1760	2.23	A
59	3-NO ₂	C_2H_5	CH_3	CH ₂ OMe	96	14	0.15	A
60	3-NO ₂	CH_3	CH_3	CH ₂ OMe	350	115	0.33	Α
61	3-NO ₂	C_2H_5	C_2H_5	CH ₂ OH	45	49	1.09	В
62	3-NO ₂	C_2H_5	C_2H_5	CH ₂ Cl	53	10	0.19	В
63	3-NO ₂	C_2H_5	C_2H_5	OAc	37	10	0.27	В
64	3-NO ₂	C_2H_5	C_2H_5	oBz	170	210	1.24	В
65	3-NO ₂	C_2H_5	C_2H_5	CH(OEt) ₂	615	460	0.75	В
66	3-NO ₂	C_2H_5	C ₂ H ₅	Ph N Ph	610	630	1.03	В
67	3-NO ₂	C_2H_5	C_2H_5	CN	45	22	0.48	В
68 ^b	3-NO ₂	C_2H_5	C_2H_5	CO ₂ Me	213	313	1.47	В
69	3-NO ₂	C ₂ H ₅	C ₂ H ₅	NO2	2055	1940	0.94	В

The compounds are organized first by the position (R^1) of the nitro group on aromatic ring, and then alkyl groups in the esters $(R^2 \text{ and } R^3)$, then by alkyl substituents (R^4) at 2-position of the dihydropyridine ring.

^a FLIPR calcium 4 assay kits were used. The percentage error [standard derivation/average] of the signal of $Ca_v 1.2$ cells is 6.4% and that for $Ca_v 1.3$ cells is 4.1% in the dose-response curves.

^b A mixture of *trans/cis* (7/3) isomers. Synthesis Method A: prepared under Hantzsch or modified conditions; Synthesis Method B: prepared using the methods showed in Figure 3.

there is a consistent pattern of antagonism, suggesting that this is not a major limitation to the interpretation of the results. A high-throughput screen also was developed, and compounds **56–124** were assayed using a FLIPR from Molecular Devices, an industry-renowned instrument for monitoring ion channels.

As is apparent from compounds 1-3 (Table 1), moving the nitro group from the 2-(nifedipine) to 3- to 4-positions on the phenyl leads to a loss of potency and selectivity toward Ca_v1.3; para-substitution is strongly disfavored. The change of one methyl ester to an ethyl ester (4) led to a major increase in potency. This suggested that differentiating the two esters was the next step to pursue, which is presented in Table 3. Again, potency was a function of the placement of the nitro group on the phenyl ring (4–6). When the nitro group was at the 3-position, there was little, if any, difference in potency by varying one ester group from ethyl (5), to isopropyl (7), to isobutyl (8), or to *t*-butyl (9).

In the largest family of compounds investigated, two ethyl ester groups ($R^2 = R^3 = Et$) were held constant while other groups were

varied. The unsubstituted phenyl analogue (10) was comparable to nifedipine (1) in Ca_V1.3 potency and again, there was a large change in potency for the 3-nitro analogue (12) compared to the 4-nitro analogue (11); compound 12 was quite potent (43% inhibition of Ca_V1.3 at 10 nM concentration) and had a selectivity for Ca_V1.3 channels of 1.34 (Table 1). Replacement of the 3-nitro group with 3-halogens (13-15) and 3-trifluoromethyl (17) showed a trend in the order $Br-CF_3 > Cl > F$ in potency; the 2-I analogue (16) was slightly more potent than the 3-Br analogue. A strong electron-donating group at the 3-position (18) and especially at the 4-position (19) was detrimental to both potency and selectivity. Weaker electron-donating groups, such as vinyl (24), phenyl (25), or naphthyl (36) at the 2-position also were less potent relative to the 2-iodo analogue (16). Adding a second electron-withdrawing group (20-23) lowered the potency relative to a single electron-withdrawing group at the 3-position. Heteroaromatics (26-31) and substituted heteroaromatics (32-35, 37-39) were much less potent than the phenyl series. Propyl (40), cyclohexyl

Figure 3. Synthesis of target compounds (65–69 and 117).¹⁷

(**41**), and 1-phenylethyl (**42**) also were much less potent than the heteroaromatic and substituted heteroaromatic analogues.

Bulkiness by the ester functionality appears to be important to potency but not selectivity, as evidenced by the trend that IC_{50} for isopropyl > isobutyl > *tert*-butyl esters for the 3-nitrophenyl series (**43–45**). It suggested again that the larger alkyl group in the esters might have better interaction with the channel and gain more potency, which is generally supported by compounds in Table 3. As observed with the other esters, substitution at the *para*-position of the 4-phenyl group gave a much less potent analogue (**46**).

Changing the two methyl groups at the 2- and 6-positions of the dihydropyridine ring (\mathbb{R}^4 or \mathbb{R}^5) (**12**) to ethyl decreased the potency of the 3-NO₂ compound (**50**), but slightly increased the potency of the 4-NO₂ analogue (**11** vs **51**). When $\mathbb{R}^4 = \mathbb{R}^5 = n$ -propyl (**52**), the potency decreased further. Substitution of \mathbb{R}^4 and \mathbb{R}^5 by CF₃ (**53** and **54**), led to decreased potency as well. Steric effects at the 2- and 6-positions appear to be important to potency. Methylation of the dihydropyridine nitrogen (**55**) resulted in a large decrease of activity relative to the parent compound (**2**); the corresponding pyran (**118**) also showed low activity.

To broaden the scope of diversity, the two substituents at the 2- and 6-positions of the 1,4-dihydropyridine ring were amplified (Table 2). The compounds investigated retained one of the methyl groups and varied the other. Methoxymethyl analogues (**58–60**) showed decreased potency and selectivity. Slight modifications, such as hydroxyl (**61**), chloromethyl (**62**), and acetate (**63**), appear to retain the potency but not selectivity. Even among the analogues that contain hydrogen bond acceptors or other heteroatoms, steric hindrance (**64–66**) had the greatest impact on lowering potency. Changing to conjugated systems (**67–69**) confirmed that the larger

the substituted group, the larger the reduction in potency. Modification at this position resulted in slightly better selectivity but not potency.

Subsequent compounds were designed to investigate what ester groups would give better potency and selectivity (Table 3). Carboxylic acid substitution at R³ (**70** vs **2**) resulted in complete loss of potency. High potency (IC₅₀ = 10–15 nM) was observed by changing the R³ ester to an allyl group (**71** and **72**). A similar result was obtained in the ethyl ester series (**73** vs **5**), again supporting favorable properties with different ester groups. Slight modifications in the alkyl chain (**74–76**) still retained potency. An alkyl chain containing hydrophobic heteroatoms (**78**, **79**) appears to retain the potency (IC₅₀ = ~20 nM) and increase the selectivity, but with hydrophilic groups, as in the case of methoxyethyl (**77**) and 2-cyanoethyl (**80**), the potency and selectivity decreased. An α , β -unsaturated ester (**83**) retained potency but not the trifluoroacetamide analogue (**84**).

The 3-nitrophenyl analogue with a methyl and benzyl ester (**85**) was potent and slightly $Ca_V 1.3$ selective. Changing the benzyl ester to a formyl group and the methyl ester to ethyl ester (**86**), resulted in very poor potency for both calcium channels (micromolar), but selectivity was >2 in favor of $Ca_V 1.3$. The compound with cyclohexenyl and methyl esters (**87**) was slightly more potent, but with lower selectivity, as the benzyl ester (**85**); however, **87** is a mixture of four isomers. Nitration (**88–89**), halogenation (**90–92**), methoxylation (**93–94**) and conversion to a benz-3,4-dioxole (**95**) of the benzyl ester (**85**).

Heteroaromatic analogues, such as furfuryl (**96**) and 2-thiophenylmethyl (**97**) showed about the same potency ($IC_{50} =$

Table 3

 IC_{50} values and the selectivity of antagonism of $Ca_V 1.2$ and $Ca_V 1.3$ Ca^{2+} channels by compounds **70–109**^a

No.	R ¹	R ²	R ³	IC ₅₀ (nM) Ca _v 1.3	IC ₅₀ (nM) Ca _v 1.2	Selectivity (1.3/1.2)	Method
70	3-NO ₂	CH3	Н	930	900	0.97	В
71	2-NO ₂	CH_3	Allyl	10	8	0.80	А
72	3-NO ₂	CH ₃	Allyl	15	15	1.00	Α
73	3-NO ₂	C_2H_5	Allyl	15	25	1.67	А
74	3-NO ₂	CH_3	3.	35	31	0.88	В
75	3-NO ₂	CH_3	5.00 × 5.00	47	23	0.48	В
76	3-NO ₂	CH ₃	×~~~	21	28	1.34	В
77	3-NO ₂	C_2H_5	OMe	82	16	0.20	А
78	3-NO ₂	CH ₃	"VY CI	22	26	1.18	В
79	3-NO ₂	CH ₃	່℃F ₃	21	16	0.78	В
80	3-NO ₂	CH_3	" CN	78	26	0.33	В
81	3-NO ₂	CH ₃	ິ∿໌ ↓ NO2	111	108	0.97	В
82	3-NO ₂	C_2H_5	n-Pentyl	130	49	0.38	А
83	3-NO ₂	C_2H_5	wy O	10	10	1.00	А
84	3-NO ₂	CH ₃	H CF_3 O	550	410	0.75	В
85	3-NO ₂	CH ₃	Bn	15	25	1.67	А
86	3-NO ₂	C_2H_5	CHO	13,900	33,300	2.40	A
87	3-NO ₂	CH ₃	2	10	10	1.00	В
88	3-NO ₂	C_2H_5	NO2	140	130	0.93	В
89	3-NO ₂	CH ₃	NO2	40	55	1.37	В
90	3-NO ₂	CH ₃	⁵ Z ₂ F	28	22	0.79	В
91	3-NO ₂	CH ₃	¹ ² F	20	7	0.38	В
92	3-NO ₂	CH ₃		34	10	0.29	В
93	3-NO ₂	CH ₃	OMe	79	51	0.65	В
94	3-NO ₂	CH ₃	₩ OMe	117	112	0.96	В

Table 3 (continued)
-----------	------------

No.	R ¹	R ²	R ³	IC ₅₀ (nM) Ca _v 1.3	IC ₅₀ (nM) Ca _v 1.2	Selectivity (1.3/1.2)	Method
95	3-NO ₂	CH ₃		22	13	0.57	В
96	3-NO ₂	CH ₃	53-2- 0	15	20	1.33	В
97	3-NO ₂	CH_3	'22 S	23	31	1.34	В
98	3-NO ₂	CH_3	12	43	72	1.66	В
99	3-NO ₂	CH ₃	Cl Cl	39	8	0.21	В
100	3-NO ₂	CH ₃	¹ 22	37	37	1.00	В
101	3-NO ₂	CH ₃	22 O	46	19	0.42	В
102	3-NO ₂	CH ₃	2	38	10	0.27	В
103	3-NO ₂	CH ₃		11	6	0.57	В
104	3-NO ₂	CH ₃	2OMe	38	17	0.43	В
105	3-NO ₂	CH_3	2200	12	9	0.74	В
106	3-NO ₂	CH ₃	×~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	11	9	0.82	В
107	3-NO ₂	CH ₃		74	69	0.94	В
108	3-NO ₂	CH3		270	100	0.37	В
109	3-NO ₂	CH ₃	12	5070	685	0.14	В

The compounds are organized first by the position (R¹) of the nitro group on the aromatic ring, and then alkyl groups in the esters (R² and R³).

^a FLIPR calcium 4 assay kits were used. The percentage error [standard derivation/average] of the signal of $Ca_v 1.2$ cells is 6.4% and that for $Ca_v 1.3$ cells is 4.1% in the dose-response curves. Method A: prepared under Hantzsch or modified conditions; Method B: prepared using the methods showed in Figure 4.

3153

Figure 4. Parallel synthesis of various alkyl groups at one of the dihydropyridine esters.

Table 4

 IC_{50} values and the selectivity of antagonism of Ca_V1.2 and Ca_V1.3 Ca²⁺ channels by compounds **110–124**^a

No.	Structures	IC ₅₀ (nM) Ca _v 1.3	IC ₅₀ (nM) Ca _v 1.2	Selectivity (1.3/1.2)	Method
110	EtO_2C H H F CO_2Et H H	10	15	1.50	A
111	EtO_2C H H H	58	20	0.34	A
112	F NC H H K K K K K K K K	1150	1610	1.40	А
113	MeO ₂ C N N H	35	8	0.23	A
114	EtO ₂ C H H	15	8	0.53	A
115	MeO ₂ C H	2310	1470	0.64	Ref. 21
116	EtO_2C CO_2Et H H CO_2Et	2140	630	0.29	Ref. 21
117	EtO ₂ C	>4000	>4000	~1	See Figure 3
118	EtO_2C CO_2Et	1925	>4000	>2	Ref. 22

No.	Structures	IC ₅₀ (nM) Ca _v 1.3	IC ₅₀ (nM) Ca _v 1.2	Selectivity (1.3/1.2)	Method
119	EtO ₂ C H	2161	1306	0.60	A
120	EtO ₂ C Ac	2315	2217	0.96	A
121	$MeO_2C \xrightarrow{NO_2} CO_2CH_2CH_2CN$ $H \xrightarrow{N} H$ S-(+)- >90% ee	589	143	0.24	В
122	$MeO_2C + CO_2CH_2CH_2CN$ H R-(-)- >90% ee	399	262	0.66	В
123	EtO ₂ C H S-(+)- >90% ee	211	51	0.24	В
124	EtO ₂ C \rightarrow CO ₂ CH ₂ CH ₂ CH H \rightarrow R-(-)- >90% ee	137	50	0.37	С

^a FLIPR calcium 4 assay kits were used. The percentage error [standard derivation/average] of the signal of $Ca_v 1.2$ cells is 6.4% and that for $Ca_v 1.3$ cells is 4.1% in the doseresponse curves. Method A: prepared under Hantzsch or modified conditions. Method B: prepared by the resolution of the racemate by chiral HPLC on a Chiralpak AS column (90% hexane, 5% iPrOH, 5% EtOH, 0.8 mL/min); Method C: synthesized by the esterification of optically active 1,4-dihydropyridine monoethyl esters.²³

 \sim 20 nM) and selectivity (ratio \sim 1.3), as the benzyl analogue (**85**). Other arylalkyl-substituted esters in lieu of the benzyl ester (**98–102**, **104**) were about half to a third as potent as the benzyl ester analogue (**85**) with lower selectivity. When a branch (**103**) or an oxygen (**105**, **106**) was added to the arylalkyl chain, the potency increased to as good or better than **85**, but with lower selectivity; however, **103** also is a mixture of four isomers. Addition of a phenyl group to the benzyl ester (**107**) or to the phenylpropyl ester

(**108**) decreased potency and selectivity. The bulky analogue, dimethyl adamantane-1-methyl (**109**) showed a complete loss of potency and selectivity.

Substitution of the nitrophenyl by difluorophenyl as a potential bioisostere, produced **110**, which had comparable potency and slightly better selectivity than the 3-nitrophenyl analogue **(12)**. Movement of one of the fluorines to the 4-position **(111)** lowered both potency and selectivity. Conversion of the diethyl esters of

110 to cyano groups (**112**) dropped the potency by two orders of magnitude, but retained the slight selectivity. Methylthio analogues **113**, **114** were potent but not selective for $Ca_V 1.3$. They were precursors in the synthesis of 4,4-disubstituted analogues **115**, **116**, respectively, which exhibited both poor potency and selectivity, presumably because of a different conformation of the dihydropyridine ring.²¹ Conversion of one of the esters to a lactone (**117**) resulted in loss of potency and selectivity.

All of the compounds with two different ester groups or R_4 and R_5 groups are chiral molecules. To test whether one enantiomer was more potent and selective than the other, two compounds were resolved to greater than 90% ee (**121–124**). In both cases, the (R)-(–)-isomers were about 50% more potent and slightly more selective for Ca_V1.3 than the (S)-(+)-isomers, although neither was selective for Ca_V1.3.

4. Conclusions

Recently, a new target for potential antiparkinsonian drug therapy was reported.⁸ Antagonism of the Ca_V1.3 Ca²⁺ channel by a dihydropyridine antihypertensive drug causes a reversion of adult neurons to a juvenile form of pacemaking, resulting in protection in mouse models from Parkinson's disease. To the best of our knowledge, there are no compounds reported that antagonize $Ca_V 1.3$ greater than the closely related Ca^{2+} channel, $Ca_V 1.2$. We have synthesized a library of 124 chemically diverse 4-substituted 1,4-dihydropyridines in search of structures that are potent antagonists of Ca_V1.3 with minimal antagonism of Ca_V1.2. A summary of our SAR of dihydropyridines toward Cav1.3 is showed in Figure 5. We have only been able to prepare dihydropyridines that show a modest preference for antagonism of Ca_V1.3 over Ca_V1.2. In general, the activity of the 4-substituted 1.4-dihydropyridines was as follows: substituted phenyl > thienyl > furyl > pyridyl > naphthyl > alkyl (cyclic alkyl) with substitution on the phenyl ring at the 2-position the most potent and substitution at the 4-position the least potent. Loss of activity and selectivity was observed when the hydrogen at the dihydropyridine nitrogen was replaced by methyl (55) or the NH was replaced by O (118). Although the introduction of a fluorine or trifluoromethyl group into organic molecules frequently results in compounds that display more potent activity than the parent,^{24,25} in the present case, potency decreased when the 2- and 6-methyl groups were substituted by trifluoromethyl. Thirteen of the analogues exhibited IC₅₀ values for Ca_V1.3 of ≤ 15 nM, which is quite potent; however, of those, the largest selectivity for Ca_V1.3 was 1.67-fold (**73** and **85**). The two most Ca_V1.3 selective analogues (**58** and **86**) were only 2.2- and 2.4-fold selective and both had micromolar potencies. These results support previous results¹⁰ that the dihydropyridine binding sites of Ca_V1.3 and Ca_V1.2 channels are very similar, but not identical. Although highly potent Ca_V1.3 channel antagonists were identified, and an increase in Ca_V1.3 selectivity relative to nifedipine (100 and 0.67 nM selectivity) was accomplished, high selectivity for Ca_V1.3 with dihydropyridines was not attainable and seems unlikely. Consequently, we are currently carrying out a high-throughput screen to identify new scaffolds that act as highly selective Ca_V1.3 antagonists.

5. Experimental section

5.1. General methods

All starting reagents were purchased from Aldrich (Milwaukee, WI). Nifedipine was bought from Tocris Bioscience (Ellisville, MO). All melting points were taken on a Buchi B540 apparatus in open glass capillary tubes and are uncorrected. ¹H NMR spectra were recorded on a Varian Inova 500-MHz or Varian Mercury 400-MHz NMR spectrometer. ¹⁹F NMR (376.5 MHz) spectra were recorded on a Varian Mercury 400-MHz NMR spectrometer using CFCl₃ as the external standard. Chemical shifts are reported as values in parts per million downfield from TMS ($\delta = 0.0$) as the internal standard in CDCl₃. Electrospray mass spectra were obtained on a Micromass Quattro II spectrometer. Thin-layer chromatography was carried out on E. Merck precoated Silica Gel 60 F254 plates. E. Merck Silica Gel 60 (230-400 mesh) was used for flash column chromatography, and spots were visualized with ultraviolet (UV) light. The purity of compounds was determined by elemental analysis (EA) from Atlantic Microlab, Inc.

5.2. General procedure for the synthesis of 4-aryl (alkyl)-1,4dihydro-2,6-dialkyl-3,5-pyridinedicarboxylates (Hantzsch procedure)

A mixture of the aldehyde (3.3 mmol), β -ketoester (6.6 mmol), NH₄OAc (4.95 mmol) or a mixture of the aldehyde (3.3 mmol), β -ketoester (3.3 mmol), β -aminocrotonate (3.3 mmol) was stirred (or dissolved in 3 mL of ethanol if the aldehyde had a high melting point) at 80 °C for an appropriate time (generally 1–10 h). After completion of the reaction, as indicated by TLC, it was poured into

Figure 5. Summary of SAR of Dihydropyridines toward Ca_V1.3.

ice cold water and extracted with ethyl acetate (3×5 mL). The organic layer was washed with sodium thiosulfate, with water, dried, and concentrated in vacuo. The crude products were purified by column chromatography using silica gel (60–120 mesh) and eluted with ethyl acetate/hexane (1:3) to afford 1,4-dihydropyridines in 41–98% yields.

5.2.1. Methyl ethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (4)

Yellow solid; mp 78–81 °C; ¹H NMR (CDCl₃, 500 MHz): δ = 1.16 (t, *J* = 7.0 Hz, 3H, CH₃), 2.28 (s, 6H, 2CH₃), 3.63 (s, 3H, OCH₃), 4.01–4.14 (m, 2H, OCH₂), 5.72 (s, 1H, CH), 5.79 (s, 1H, NH), 7.24–7.71 (m, 4H, C₆H₄); Anal. Calcd for C₁₈H₂₀N₂O₆ (360.13): C, 59.99; H, 5.59; N, 7.77. Found: C, 60.11; H, 5.40; N, 7.77.

5.2.2. Diethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (12)

Yellow solid; mp 158–160 °C; ¹H NMR (CDCl₃, 400 MHz): δ = 1.22 (t, *J* = 7.2 Hz, 6H, 2CH₃), 2.37 (s, 6H, 2CH₃), 4.03–4.13 (m, 4H, 2OCH₂), 5.09 (s, 1H, CH), 5.74 (s, 1H, NH), 7.36–8.13 (m, 4H, C₆H₄); ¹³C NMR (CDCl₃, 125 MHz): δ = 14.5, 19.8, 40.2, 60.1, 103.5, 121.6, 123.2, 128.8, 134.8, 145.0, 148.1, 150.2, 167.4; HRMS (ES): *m/z* calcd for C₁₉H₂₁N₂O₆ (M–H⁺): 373.1400, found 373.1396; Anal. Calcd for C₁₉H₂₂N₂O₆ (374.14): C, 60.95; H, 5.92; N, 7.48. Found: C, 60.98; H, 5.98; N, 7.36.

5.2.3. Diethyl 2-methyl-6-*n*-propyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (56)

Yellow solid; mp 97–98 °C; ¹H NMR (CDCl₃, 500 MHz): δ 1.00 (t, J = 7.0 Hz, 3H, CH₃), 1.20–1.25 (two t overlapped at 1.22 and 1.24, J = 7.0 Hz, 6H, OCH₂CH₃ × 2), 1.58–1.72 (m, 2H, CH₂), 2.36 (s, 3H, CH₃). 2.65–2.75 (m, 2H, CH₂), 4.05–4.15 (m, 4H, OCH₂CH₃ × 2), 5.11 (s, 1H, CHAr), 5.95 (br s, 1H, NH), 7.38 (t, J = 8.0 Hz, 1H, Ar-H), 7.65 (d, J = 8.0 Hz, 1H, Ar-H), 8.00 (d, J = 8.0 Hz, 1H, Ar-H), 8.14 (s, 1H, Ar-H); ¹³C NMR (CDCl₃, 125 MHz): δ 14.0, 14.2, 14.3, 19.6, 2.0, 34.6, 39.9, 60.0, 102.9, 103.1, 121.3, 123.1, 128.6, 134.5, 144.9, 148.1, 149.2, 150.0, 166.8, 167.2; HRMS (ESI): m/z calcd for C₂₁H₂₇N₂O₆ (M+H⁺): 403.1864; found: 403.1874; Anal. Calcd for C₂₁H₂₆N₂O₆ (402.17): C, 62.67; H, 6.51; N, 6.96. Found: C, 62.61; H, 6.64; N, 6.88.

5.2.4. Ethyl *n*-pentyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (82)

Yellow viscous oil; ¹H NMR (CDCl₃, 500 MHz): δ 0.84–0.90 (m, 3H, OCH₂CH₂CH₂CH₂CH₂CH₃), 1.19–1.32 (m, overlapped with t at 1.24, *J* = 8.0 Hz, 7H, CH₂ × 2 and CH₃), 1.56–1.62 (m, 2H, OCH₂CH₂CH₂CH₂CH₃), 2.36 (s, 3H, CH₃), 2.37 (s, 3H, CH₃), 3.98– 4.10 (m, 4H, OCH₂ × 2), 5.10 (s, 1H, CHAr), 6.04 (br s, 1H, NH), 7.38 (t, *J* = 8.0 Hz, 1H, Ar-H), 7.65 (d, *J* = 8.0 Hz, 1H, Ar-H), 8.01 (d, *J* = 8.0 Hz, 1H, Ar-H), 8.13 (s, 1H, Ar-H); ¹³C NMR (CDCl₃, 125 MHz): δ 14.0, 14.2, 19.6, 22.3, 28.2, 28.3, 39.9, 60.0, 64.2, 103.2, 103.3, 121.3, 123.0, 128.6, 134.5, 144.9, 145.0, 148.1, 149.9, 167.1, 167.2; HRMS (ESI): *m/z* calcd for C₂₂H₂₉N₂O₆ (M+H⁺): 417.2026; found: 417.2026; Anal. Calcd for C₂₂H₂₈N₂O₆ (416.19): C, 63.45; H, 6.78; N, 6.73. Found: C, 63.18; H, 6.75; N, 6.65.

5.2.5. Dimethyl 2,6-dimethyl-4-(2-methylthiophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (113)

Compound 113: White solid; mp 168–170 °C; ¹H NMR (CDCl₃, 500 MHz): δ 2.31 (s, 6H, CH₃ × 2), 2.49 (s, 3H, SCH₃), 3.62 (s, 6H, OCH₃ × 2), 5.46 (s, 1H, CHAr), 5.66 (br s, 1H, NH), 7.06 (t, *J* = 8.0 Hz, 1H, Ar-H), 7.10 (t, *J* = 8.0 Hz, 1H, Ar-H), 7.26 (d, *J* = 8.0 Hz, 1H, Ar-H), 7.32 (d, *J* = 8.0 Hz, 1H, Ar-H); ¹³C NMR (CDCl₃, 125 MHz): δ 18.10, 19.6 × 2, 37.1, 50.9 × 2, 104.6 × 2, 126.0, 126.8, 128.1, 129.9, 136.6, 143.7×, 147.8, 168.1 × 2; HRMS (ESI): *m/z*

calcd for $C_{18}H_{22}NO_4S$ (M+H⁺): 348.1270; found: 348.1267; Anal. Calcd for $C_{18}H_{21}NO_4S$ (347.11): C, 62.23; H, 6.09; N, 4.03. Found: C, 62.06; H, 5.95; N, 3.89.

5.3. General procedure for the synthesis of various 4-aryl (alkyl)-1,4-dihydro-2,6-dialkyl-3,5-pyridinedicarboxylates (parallel synthesis in Table 3).²⁰

To a suspension of compound **70** (200 mg) in 3 mL of dichloromethane was added acetic anhydride (171 μ L) at room temperature. The reaction mixture was stirred at room temperature for 2 h followed by addition of two drops of acetyl chloride and then 1.1 equiv of various alcohols. The reaction mixture was stirred overnight (18 h) and then purified by flash chromatography to afford the desired product.

5.3.1. Ethyl methoxyethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4dihydropyridine-3,5-dicarboxylate (77)

Yellow solid; mp 83–85 °C; ¹H NMR (CDCl₃, 500 MHz): δ 1.22 (t, J = 7.5 Hz, 3H, CH₂CH₃), 2.36 (s, 6H, CH₃ × 2), 3.35 (s, 3H, OCH₃), 3.51–3.56 (m, 2H, OCH₂), 4.04–4.12 (m, 2H, OCH₂CH₃), 4.12–4.22 (m, 2H, OCH₂), 5.11 (s, 1H, CHAr), 5.99 (br s, 1H, NH), 7.38 (t, J = 8.0 Hz, 1H, Ar-H), 7.67 (d, J = 8.0 Hz, 1H, Ar-H), 8.00 (d, J = 8.0 Hz, 1H, Ar-H), 8.13 (s, 1H, Ar-H); ¹³C NMR (CDCl₃, 125 MHz): δ 14.2, 19.5, 19.6, 39.9, 58.8, 60.0, 63.0, 70.5, 103.0, 103.4, 121.3, 123.1, 128.6, 134.7, 144.7, 145.3, 148.1, 149.9, 167.0, 167.1; HRMS (ESI): m/z calcd for C₂₀H₂₅N₂O₇ (M+H⁺): 405.1662; found: 405.1666; Anal. Calcd for C₂₀H₂₄N₂O₇ (404.15): C, 59.40; H, 5.98; N, 6.93. Found: C, 59.33; H, 6.11; N, 6.83.

5.3.2. Methyl cyanoethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4dihydropyridine-3,5-dicarboxylate (80)

Yellow solid; mp 134–137 °C; ¹H NMR (CDCl₃, 500 MHz): δ 2.38 (s, 3H, CH₃), 2.39 (s, 3H, CH₃), 2.65–2.69 (m, 2H, OCH₂CH₂CN), 3.66 (s, 3H, OCH₃), 4.21–4.31 (m, 2H, OCH₂CH₂CN), 5.10 (s, 1H, CHAr), 6.04 (br s, 1H, NH), 7.41 (t, *J* = 7.5 Hz, 1H, Ar-H), 7.68 (d, *J* = 7.5 Hz, 1H, Ar-H), 8.02 (d, *J* = 7.5 Hz, 1H, Ar-H), 8.10 (s, 1H, Ar-H); ¹³C NMR (CDCl₃, 125 MHz): δ 18.1, 19.5, 20.0, 39.6, 51.2, 58.4, 102.0, 103.6, 117.1, 121.6, 122.8, 128.9, 134.4, 144.7, 146.6, 148.4, 149.3, 166.3, 167.4; HRMS (ESI): *m/z* calcd for C₁₉H₂₀N₃O₆ (M+H⁺): 386.1352; found: 386.1354; Anal. Calcd for C₁₉H₁₉N₃O₆ (385.12): C, 59.22; H, 4.97; N, 10.90. Found: C, 59.25; H, 5.04; N, 10.73.

5.4. Method for transfection of tsA201 cells with $\mbox{Ca}_{v}1.3$ and $\mbox{Ca}_{v}1.2$

5.4.1. Constructs

Rat Cav1.3 α 1D, Ca_V β 3, and Ca_V α 2 δ -1 cDNA were gifts of Dr. D. Lipscombe, Brown University, Providence, RI. Sequence alignments and RT-PCR from brain tissue revealed a few point mutations in Ca_V1.3 α 1D, which were corrected by site-directed mutagenesis. Rabbit Ca_V1.2 α 1C cDNA was a gift of Dr. Johannes Hell, University of Iowa.

5.4.2. Transfection of tsA201 cells

tsA201 cells were maintained in D-MEM medium supplemented with 10% fetal bovine serum (Invitrogen) without antibiotics. A mixture of Ca_V1.3 α 1D or Ca_V1.2 α 1C, Ca_V β 3, and Ca_V α 2 δ -1 cDNA at a molar ratio of 1:1:1 together with 1/40 (w/w) GFP cDNA (Invitrogen) were transfected into tsA201 cells using Geneporter reagent (Genetic Therapy Systems, San Diego, CA) according to the manufacturer's protocol. Cells were trypsinized 48 h later and plated on poly-D-lysine-coated coverslips. GFP-labeled cells were recorded after attachment.

5.4.3. Stable Cav1.2 and Cav1.3 cell lines for FLIPR screens

HEK 293 cells were maintained in D-MEM medium supplemented with 10% fetal bovine serum (Invitrogen) without antibiotics. Ca_v1.2 and Ca_v1.3 cell lines were created in two steps. First, $Ca_V\beta 3$ and $Ca_V\alpha 2\delta$ -1 constructs were co-transfected into HEK 293 using the Geneporter reagent (Genetic Therapy Systems, San Diego, CA) according to the manufacturer's protocol. Forty-eight hours after transfection, 200 µg/mL zeocin and 100 µg/mL hygromycin were added to the medium to select antibiotic resistant colonies. The colonies developed were transferred to 48-well plates and subsequently tested for the expression of $Ca_V\beta 3$ and $Ca_V\alpha 2\delta - 1$ by RT-PCR and Western blotting. One of the colonies with high levels of expression of $Ca_V\beta^3$ and $Ca_V\alpha^2\delta^{-1}$ was designated as the $\alpha^2\delta^{-1}/2\delta^{-1}$ β 3 cell line and used for the following experiments. Ca_v1.2 α 1C or Ca_v1.3 α 1D constructs were transfected into the α 2 δ -1/ β 3 cell line. Geneticin (600 μ g/mL) or blasticidin (4 μ g/mL) in addition to zeocin and hygromycin were used for the selections of Cav1.2 and Ca_v1.3 colonies, respectively. Cell lines containing functional channels were selected by calcium imaging with the Fluo-4 NW Calcium Assay Kit (Invitrogen). KCl (90 mM) was used to stimulate the culture in the imaging protocol. Live images were acquired at 1-second intervals using an Olympus DSU spinning disc Confocal microscope. Expressions of Ca_V1.2 α1C or Ca_V1.3α1D were verified by RT-PCR.

5.5. Whole-cell patch-clamp recording assay

The external bath solution contained the following (in mM): 110 NaCl, 1 MgCl₂, 10 BaCl₂, 10 HEPES, 10 glucose, 20 CsCl at pH 7.4. The test compound stock solutions in DMSO (10 mM or just DMSO) were diluted with the external bath solution to the desired concentration (1000 nM to 10 nM), which was perfused into the cell while measuring the calcium currents. Calcium currents were measured from whole-cell voltage patch-clamp recordings using the Pulse 8.4 software data acquisition system (HEKA, Germany). Signals were low-pass filtered at 1 kHz, digitized (sampled) at 1 kHz, and were amplified with an Axopatch 200B patch-clamp amplifier (Axon Instruments). Calcium currents were evoked by a voltage pulse from a holding potential of -60 mV to +10 or 0 mV in the presence of tetrodotoxin (0.5 mM) at room temperature (about 22 °C). Patch pipettes were pulled from borosilicate glass and had a resistance of approximately $3-5 M\Omega$. Internal pipette solutions contained the following (in mM): 180 NMG (N-methyl-D-glucosamine), 40 HEPES, 4 MgCl₂, 12 phosphocreatine, 2 Na₂ATP, 0.5 Na₃GTP, 0.1 leupeptin, 5 BAPTA, pH 7.2–7.3. Electrophysiological signals were analyzed using Clampfit 9.2 (Axon Instruments).

Acknowledgments

We are grateful for financial support of this research to Dr. Drew Senyei (through a Northwestern University Translational Science Award), RJG Research Foundation, and Michael J. Fox Foundation.

Supplementary data

Supplementary data (compound characterization) associated with this article can be found, in the online version, at doi:10.1016/j.bmc.2010.03.038.

References and notes

- 1. Zamponi, G. W. Voltage-Gated Calcium Channels; Kluwer Academic: New York, 2005.
- 2. Catterall, W. A.; Striessnig, J.; Snutch, T. P.; Perez-Reyes, E. Pharmacol. Rev. 2003, 55, 579.
- 3. Striessnig, J. Cell Physiol. Biochem. 1999, 9, 242.
- 4. Eisenberg, M. J.; Brox, A.; Bestawros, A. N. Am. J. Med. 2004, 116, 35.
- Helton, T. D.; Xu, W.; Lipscombe, D. J. Neurosci. 2005, 25, 10247.
 Moosmang, S.; Schulla, V.; Welling, A.; Feil, R.; Feil, S.; Wegener, J. W.; Hofmann, F.; Klugbauer, N. EMBO J. 2003, 22, 6027.
- Epstein, B. J.; Vogel, K.; Palmer, B. F. Drugs **2007**, 67, 1309.
- Chan, C. Savio.; Guzman, Jaime N.; Ilijic, Ema.; Mercer, Jeff N.; Rick, Caroline.; Tkatch, Tatiana.; Meredith, Gloria E.; Surmeier, D. James. *Nature* 2007, 447, 1081.
- Brevetti, G.; Bonaduce, D.; Breglio, R.; Perna, S.; Simonelli, P.; Marconi, R.; Campanella, G. Clin. Cardiol. 1990, 13, 474.
- Sinnegger-Brauns, M. J.; Huber, I. G.; Koschak, A.; Wild, C.; Obermair, G. J.; Einzinger, U.; Hoda, J.-C.; Sartori, S. B.; Striessnig, J. *Mol. Pharmacol.* 2009, 75, 407.
- 11. Xu, W.; Lipscombe, D. J. Neurosci. 2001, 21, 5944.
- Striessnig, J.; Koschak, A.; Sinnegger-brauns, M. J.; Hetzenauer, A.; Nguyen, N. K.; Busquet, P.; Pelster, G.; Singewald, N. *Biochem. Soc. Trans.* 2006, 34, 903.
- 13. Zolfigol, M. A.; Safaiee, M. Synlett 2004, 5, 827.
- 14. van Rhee, A. M.; Jiang, J.-L.; Melman, N.; Olah, M. E.; Stiles, G. L.; Jacobson, K. A. *J. Med. Chem.* **1996**, *39*, 2980.
- 15. Lee, L. F. Eur. Patent 135,491, 1985.
- Harper, J. L.; Camerini-Otero, C. S.; Li, A.-H.; Kim, S.-A.; Jacobson, K. A.; Daly, J. W. Biochem. Pharmacol. 2003, 65, 329.
- 17. Satoh, Y.; Ichihashi, M.; Okumura, K. Chem. Pharm. Bull. 1991, 39, 3189.
- 18. Goldmann, S.; Stoltefuss, J. Angew. Chem., Int. Ed. Engl. 1991, 30, 1559.
- 19. Corey, E. J.; Choi, S. Tetrahedron Lett. 1993, 34, 6969.
- 20. Ogawa, T.; Hatayama, K.; Maeda, H.; Kita, Y. Chem. Pharm. Bull. 1994, 42,
- 1579. 21. Goldmann, S.; Born, L.; Kazda, S.; Pittel, B.; Schramm, M. J. Med. Chem. **1990**, 33,
- 1413. 22. Urbahns, K.; Horváth, E.; Stasch, J.-P.; Mauler, F. Bioorg. Med. Chem. Lett. 2003,
- 13, 2637. 23. Wu, X.-Y.; Hu, A.-X.; Cao, G. *Acta Crystallogr., Sect. E* **2007**, 63, 04578.
- 24. Ismail, F. M. D. J. Fluorine Chem. **2002**, 118, 27.
- 25. Böhm, H.-J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Müller, K.; Obst-
- Stander, U.; Stahl, M. ChemBioChem 2004, 5, 637.