Accepted Manuscript

Synthesis and antituberculosis activity of the first macrocyclic glycoterpenoids comprising glucosamine and diterpenoid isosteviol

Bulat F. Garifullin, Irina Yu Strobykina, Radmila R. Sharipova, Marionella A. Kravchenko, Olga V. Andreeva, Olga B. Bazanova, Vladimir E. Kataev

PII: S0008-6215(16)30157-4

DOI: 10.1016/j.carres.2016.05.007

Reference: CAR 7201

To appear in: Carbohydrate Research

Received Date: 18 April 2016

Revised Date: 16 May 2016

Accepted Date: 22 May 2016

Please cite this article as: B.F. Garifullin, I.Y. Strobykina, R.R. Sharipova, M.A. Kravchenko, O.V. Andreeva, O.B. Bazanova, V.E. Kataev, Synthesis and antituberculosis activity of the first macrocyclic glycoterpenoids comprising glucosamine and diterpenoid isosteviol, *Carbohydrate Research* (2016), doi: 10.1016/j.carres.2016.05.007.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Synthesis and antituberculosis activity of the first macrocyclic glycoterpenoids comprising glucosamine and diterpenoid isosteviol

Bulat F. Garifullin^a, Irina Yu. Strobykina^a, Radmila R. Sharipova^a, Marionella A. Kravchenko^b, Olga V. Andreeva^a, Olga B. Bazanova^a, and Vladimir E. Kataev^a*

^a Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzova str., 8, Kazan, 420088, Russia ^b Unal Pasagraph Institute for Physican University of Health Protection of the Pussian

^b Ural Research Institute for Phtisiopulmonology, Ministry of Health Protection of the Russian Federation, XX Parts'ezda str., 50, Yekaterinburg, 620039, Russia

Keywords: Glucosamine; Isosteviol; Glycoconjugates; Glycoterpenoids; Glycosides; Macrocyclic; Tuberculosis; Antitubercular.

The first macrocyclic glycoterpenoids comprising glucosamine and diterpenoid isosteviol moieties were synthesized and evaluated for inhibition activity against *M. tuberculosis* H37Rv.

1. Introduction

An increasing number of studies have been devoted to the isolation, purification, and structural elucidation of natural macrocyclic glycosides. Among them a first place is occupied by resin glycosides (or else fatty acid glycosides) which contain saturated fatty acids mainly jalapinolic acid (11(S)-hydroxyhexadecanoic acid) and convolvulinolic acid (11(S)-hydroxytetradecanoic acid) as the aglycon.¹ A carbohydrate portion of resin glycosides is typically composed of two^{1b,c,e} to five^{1a,b,g,h} monosaccharides as D-glucose, D-fucose, L-rhamnose, and D-quinovose. Many resin glycosides have cytotoxic,^{1a-c,e,i} antibacterial,^{1b,i} and antifungal¹ⁱ effects. Perhaps one can single out from the rank of resin glycosides the macrocyclic glycolipids isolated from the plant Cerastium glomeratum, named glomerasides,^{1j} and glycolipids isolated from different microorganisms, e.g. cycloviracins,¹ⁱ and macroviracins.^{1d,i} Glomerasides were found to be unique 1,6-cyclic esters with 17-. 18- or 19-membered ring formed by D-glucose and 9(R)-, 10(R)- or 11(R)-hydroxydocosanoic acid.^{1j} Cycloviracins own C₂-symmetrical macrodilactone core functionalized with two long side polymethylene chains having several D-glucopyranose residues.¹¹ Macroviracins are 42- to 46membered macrodilactones composed of a glucopyranosyl C₂₂ or C₂₄ fatty acid dimer and a long side polymethylene chain attached to the core.^{1d,1} Both groups of glycolipids exhibit a powerful antiviral activity.^{1d,i} The following large group of macrocyclic glycosides contains phenols,^{1d,2} polyphenols^{1d} or flavonoids^{1d} as the aglycon. Among them cyclic dimers of 4-(glycosyloxy)benzoates with two and four sugar residues showed inhibitory activity against α - and antioxidant potential.^{1d,2c} Some polyphenols containing β -glucosidases, lipoxygenase, and macrocyclic glycosides demonstrated inhibitory activity against HIV-1 enzymes and have shown an antimicrobial activity against human bacterial pathogens as well.^{1d} The literature has provided several examples of the macrocyclic glycosides having a terpenoid moiety as the aglycon.^{1b,i,3} These are glycosides urceolide^{3a} and parkinsenes $A-E^{3b}$ which have some monoterpenoid acids as the aglycon as well as D-glucose,^{3a}, D-fucose,^{3b} D-quinovose,^{3b} and D-apiose^{3a} as the glycon. The aglycon of the macrocyclic glycosides of the syphonoside series is diterpenoid clerodane and the glycon is D-glucopyranose.^{3c,d} The macrocyclic glycosides lobatosides A-E are 34-membered macrocycles which are composed of triterpenoid oleanolic acid as the aglycon, and four or five monosaccharides (D-glucose, D-galactose, and L-arabinofuranose).^{1b,i} All above mentioned macrocyclic terpenoid glycosides have demostrated one or another type of biological activity. Monoterpene glycosides showed significant analgesis, anti-inflammatory, hepatoprotective, and hypoglycemic activities.^{3b} Diterpenoid glycoside syphonoside was able to inhibit high density induced apoptosis.^{3c} Lobatoside E belonging to the macrocyclic triterpenoid glycosides (saponins) demonstrated a high potency to inhibit the growth of tumor cells.¹¹

ACCEPTED MANUSCRIPT As far as we had reported on the synthesis of a large range of macrocycles constituted by one, two or four molecules of diterpenoid steviol or isosteviol,⁴ the aborementioned publications about naturally occurring macrocyclic terpenoid glycosides (or else macrocyclic glycoterpenoids^{3c}) gave us the impetus to synthesize macrocyclic derivatives of diterpenoid isosteviol that would also have carbohydrate residues. Recently the first synthesis of macrocyclic glycoterpenoids composed of diterpenoid isosteviol and monosaccharid (α, α '-trehalose or D-glucuronic acid) residues have been reported.⁵ In continuation of these studies, herein we describe the first synthesis of macrocyclic glycoterpenoids comprising glucosamine and isosteviol moieties. Their antituberculosis activities were also evaluated.

2. **Results and Discussion**

Diterpenoid isosteviol 1 (16-oxo-ent-beyeran-19-oic acid⁶) obtained by acid hydrolysis of commercially available sweetener Sweta⁷ and commercially available glucosamine hydrochloride **3** were used as starting compounds for the synthesis of target macrocyclic glycoterpenoids. General strategy for their synthesis consists of four stages and it is shown in Scheme 1. In the first stage, two isosteviol molecules are coupled with a linker attached to the atoms C16 of *ent*-beyerane skeletons and carboxylic groups are functionalized by ω -hydroxypolymethylene chains that afford a terpenoid precursor 2. In the second stage hydroxyl and amine groups of glucosamine hydrochloride 3 are protected and anomeric center is brominated that give a carbohydrate precursor 4. In the next stage terpenoid and carbohydrate precursors are coupled to afford diglycoside 5 which undergoes macrocyclization in the final stage to provide a target macrocyclic glycoterpenoid 6.

Scheme 1. General strategy for the synthesis of macrocyclic glycoterpenoids. Designations: Ter means terpenoid (isosteviol moiety), Sug means carbohydrate (glucosamine residue).

2.1. Chemistry 2.1.1. Synthesis of starting materials

To obtain terpenoid precursors, initially the 16-oxo group in isosteviol 1 was chemo- and stereoselectively reduced with sodium borohydride by analogy with described procedure⁸ to give dihydroisosteviol 7 (100% de). Then two molecules of dihydroisosteviol 7 were coupled with each other by the reaction with sebacyl dichloride to afford the binuclear derivative of isosteviol 8.^{4a,9} This compound was choosen as the intermediate in the pathway towards terpenoid precursors because it had exhibited the highest antitubercular activity in the series of binucleur isosteviol derivatives.^{4f} According to the X-ray crystal structure data^{4f} diacid 8 has the maximum folding, sandwich-like structure. Then diacid 8 was converted to its bis-acyl chloride that was involved in

the reactions with 1,4-butandiol and 1,6-hexanediol to afford terpenoid precursors 9 and 10^{5d} in 56% and 60% yields.

Scheme 2. *Reagents and conditions*: (i) NaBH₄, CH₃OH; (ii) ClC(O)(CH₂)₈C(O)Cl, CH₂Cl₂, DMAP; (iii) SOCl₂, 50°C; (iv) HO(CH₂)_nOH, CH₂Cl₂ (n = 4 or 6).

To prepare carbohydrate precursor **13** (Scheme 3), according to the known procedure,¹⁰ the amine group of glucosamine hydrochloride **3** was protected by 2,2,2-trichloroethoxycarbonyl (Troc) group to give glucosamine derivative **11** which was per-*O*-acetylated, and then monosaccharide **12** was treated with 33% HBr in AcOH in CH_2Cl_2 to afford glycosyl-donor **13**. It is to be noted that exactly Troc group was chosen for the protection of amine group of glucosamine for two reasons. Firstly, N-Troc-protected glucosamine derivatives is more reactive than benzylidene or N-phthalyl-protected derivatives.¹¹ Secondly, the selective removal of the Troc group takes place in a rather mild conditions under which acetate groups of glucosamine residues and ester groups of linkers are not affected.¹²

Scheme 3. *Reagents and conditions*: (i) NaHCO₃, TrocCl, H₂O; (ii) Ac₂O, Py; (iii) 33% HBr, AcOH, CH₂Cl₂.

In the next stage diglycosides 5 (Scheme 1) containing glucosamine residues and isosteviol moieties were synthesized by the reaction of bromide 13 with both terpenoid precursors 9 and 10. By analogy with the literature¹³ bromide 13 was treated with diterpenoid diols 9 and 10 in the presence of ZnCl₂ (Scheme 4). The reactions provided diglycosides 14 and 15 in 20% and 22% yields, respectively. It is worth noting that both reactions led to the formation of α -glycosides. This was proved by the fact that the anomeric protons in diglycoside 14 resonated in the ¹H NMR spectrum as a doublet at 4.88 ppm with a vicinal coupling constant of 3.4 Hz, and the anomeric protons in diglycoside 15 resonated as a doublet at 4.87 ppm with a vicinal coupling constant of 3.5

Hz. The reason is the amazing property of the Lewis acid $ZnCl_2$ to manifest itself as the stereoselective activator of the classical Koenigs-Knorr reaction.¹³ In both reactions glycosides **16** and **17** formed as the byproducts (Scheme 4). Glycoside **16** was detected in the reaction mixture by MALDI mass spectroscopy which revealed the peaks at 1436.9, $[M+Na]^+$ (calcd. 1436.7 $[M+Na]^+$ for $C_{73}H_{112}Cl_3NNaO_{19}$), and m/z 1452.9, $[M+K]^+$ (calcd. 1452.7 $[M+K]^+$ for $C_{73}H_{112}Cl_3KNO_{19}$). Glycoside **17** was obtained in 9% yield after flash chromatography. In contrast to diglycosides **14** and **15**, the ¹H NMR spectrum of glycoside **17** showed methylene protons of the terminal CH₂OH group as a triplet at 3.62 ppm with a coupling constant 6.8 Hz. The MALDI spectrum of glycoside **17** exhibited the peaks at m/z 1493.1, $[M+Na]^+$, and at m/z 1509.1, $[M+K]^+$ corresponding to molecular formulae $C_{77}H_{120}Cl_3NNaO_{19}$ and $C_{77}H_{120}Cl_3KNO_{19}$.

Scheme 4. *Reagents and conditions*: (i) bromide 13, ZnCl₂, CH₂Cl₂; (ii) Zn, AcOH; (iii) Ac₂O, Et₃N, CH₂Cl₂

2.1.2. Synthesis of macrocyclic glycoterpenoids

For closing diglycosides **14** and **15** in target macrocycles it was necessary to remove Troc groups and then to bind the amine groups by a suitable linker. Previously, during the synthesis of macrocyclic derivatives of isosteviol by closing diacid **8** it was found that the yield of forming macrocycle appeared to depend on the length of a linker which have to bind the carboxylic groups of diacid **8**.^{4f} The maximum yield was achieved by using 1,8-octanediol as a linker, that is, the length of a linker between two ester groups in the formed macrocycle should equal eight methylene groups.^{4f} Therefore sebacic acid chloroanhydride and 1,6-diisocyanatohexane were chosen as linkers for macrocyclization of diglycosides **14** and **15**. Beforehand we tested macrocyclization of glucosamine residues with 1,6-diisocyanatohexane in glycoside **21** which was obtained from

ketoalcohol **20^{5d}** in 40% yield (Scheme 5). As noted above, since ZnCl₂ was used as the catalytic activator of Koenigs-Knorr reaction, glycoside 21 had α -orientation of the glycoside bond. This followed from the anomeric proton signal in the ¹H NMR spectrum which appeared as a single doublet at 4.87 ppm with a vicinal coupling constant of 3.6 Hz. The amine group of glycoside 21 was deprotected by zinc dust in acetic acid¹² to provide free amine 22 which then was involved in the reaction with 1,6-diisocyanatohexane according to described procedure¹⁴ which afforded diglycoside 24 in 13% yield, and glycoside 25 in 19% yield (Scheme 5). Following spectral data confirmed the formation of diglycoside 24. Its MALDI spectrum showed peaks at m/z 1523.8, $[M+H]^+$, (calc. m/z 1523.9, $[M+H]^+$, $C_{80}H_{123}N_4O_{24}$), m/z 1545.6, $[M+Na]^+$, (calc. m/z 1545.8, $[M+Na]^+$, $C_{80}H_{122}N_4NaO_{24}$), and m/z 1561.6, $[M+K]^+$, (calc. m/z 1561.8, $[M+K]^+$, $C_{80}H_{122}KN_4O_{24}$). The IR spectrum of diglycoside 24 demonstrated absorption bands at 1561, 1641, 3367, 3412 cm⁻¹ which are typical to ureic moieties. The ¹H NMR spectrun of diglycoside **24** indicated the presence of ureic protons as a doublet at 4.90 ppm with a coupling constant of 5.7 Hz, and a triplet at 5.24 ppm with a coupling constant of 5.7 Hz. The MALDI spectrum of glycoside 25 showed peaks at m/z 846.7, $[M+H]^+$, (calc. m/z 846.5, $[M+H]^+$, C₄₄H₆₈N₃O₁₃), m/z 868.7, $[M+Na]^+$, (calc. m/z 868.5, $[M+Na]^+$, $C_{44}H_{67}N_3NaO_{13}$), and m/z 884.7, $[M+K]^+$, (calc. m/z 884.4, $[M+K]^+$, $C_{44}H_{67}KN_3O_{13}$). The IR and ¹H NMR spectra of glycoside 25 were similar to the spectra of diglycoside 24.

Scheme 5. *Reagents and conditions* (i) SOCl₂, 50 °C; (ii) HO(CH₂)_nOH, CH₂Cl₂; (iii) bromide 13, ZnCl₂, CH₂Cl₂; (iv) Zn, AcOH; (v) Ac₂O, Et₃N, CH₂Cl₂; (vi) OCN(CH₂)₆NCO, CH₂Cl₂.

The tested approach to the macrocyclization of glucosamine residues with 1,6-diisocyanatohexane linker was then used for the synthesis of target macrocyclic glycoterpenoids. Troc protective groups in diglycosides **14** and **15** were removed by zinc dust in acetic acid¹² to give diamines **26** and **27** in good yields (96% and 87%). As a rule, free amines formed after removing Troc protective groups were used without further purification in next steps.¹⁵ However, one of the diamines obtained, namely diamine **27**, has been isolated. Its MALDI spectrum showed peaks at m/z 1582.1, [M+H]⁺, (calc. m/z 1582.0, [M+H]⁺, C₈₆H₁₃₆N₂O₂₄), m/z 1604.1, [M+Na]⁺, (calc. m/z 1603.9, [M+Na]⁺, C₈₆H₁₃₆N₂NaO₂₄), and m/z 1620.1, [M+K]⁺ (calc. m/z 1619.9, [M+K]⁺, C₈₆H₁₃₆KN₂O₂₄). In the ¹H NMR spectrum of diamine **27** the anomeric protons resonated as a doublet at 4.85 ppm with a vicinal coupling constant of 3.2 Hz indicating α -orientation of the glycoside bonds. The reactions of diamines **26** and **27** with 1,6-diisocyanatohexane afforded the target macrocyclic glycoterpenoids

28 and 29 (Scheme 6) in 40% and 15% yields. The MALDI spectrum of macrocycle 28 showed peaks at m/z 1694.3, $[M+H]^+$, (calc. m/z 1694.0, $[M+H]^+$, $C_{90}H_{141}N_4O_{26}$), m/z 1716.3, $[M+Na]^+$, (calc. m/z 1716.0, $[M+Na]^+$, $C_{90}H_{140}N_4NaO_{26}$), and m/z 1732.2, $[M+K]^+$, (calc. m/z 1731.9, $[M+K]^+$, $C_{90}H_{140}KN_4O_{26}$). The MALDI spectrum of macrocycle **29** showed peaks at m/z 1750.7, $[M+H]^+$, (calc. m/z 1751.0, $[M+H]^+$, $C_{94}H_{149}N_4O_{26}$), and m/z 1772.7, $[M+Na]^+$, (calc. m/z 1773.0, displaed the $[M+Na]^+$, $C_{94}H_{148}N_4NaO_{26}$). The ¹H NMR spectra of macrocycles **28** and **29** methylene protons of the ureidic moieties NHC(O)NHCH₂ as multiplets at 3.02-3.24 ppm, and ureidic moieties own protons appeared as dublets at 4.92 ppm (${}^{3}J = 10 \text{ Hz}$) and 4.96 ppm (${}^{3}J = 10$ Hz), as well as multiplets at 5.40-5.47 ppm and 5.21-5.30 ppm. Diglycoside 27 was also involved in the reaction with sebacic acid chloroanhydride to give macrocyclic glycoterpenoid 30 in 23% yield (Scheme 6). The MALDI spectrum of macrocycle **30** showed peaks at m/z 1771.1, $[M+Na]^+$, (calc. m/z 1771.0, $[M+Na]^+$, $C_{96}H_{150}N_2NaO_{26}$, and 1787.1, $[M+K]^+$, (calc. m/z 1787.0, $[M+K]^+$, $C_{96}H_{150}KN_2O_{26}$). The ¹H NMR spectrum of macrocycle **30** showed the amidic protons as a doublet at 5.82 ppm with a vicinal constant of 9.3 Hz. The anomeric protons of macrocyclic glycoterpenoids 28-30 resonated as dublets at 4.83, 4.84, 4.83 ppm with coupling constants 3.4, 3.5, 3.6 Hz, respectively, that confirmed α -orientation of the glycoside bonds. It is to be noted that diacid 31 was formed simultaneously with macrocycle 30 and was isolated in 20% yield after column chromatography. The MALDI spectrum of glycoterpenoid 31 showed peaks at m/z 1973.2, $[M+Na]^+$, (calc. m/z 1973.2, $[M+Na]^+$, $C_{106}H_{168}N_2O_{30}Na$), and m/z 1989.3 $[M+K]^+$, (calc. m/z1989.1, C₁₀₆H₁₆₈N₂O₃₀K).

2.2. Antituberculosis activity

Since both glucosamine¹⁶ and isosteviol¹⁷ included in the target macrocyclic glycoterpenoids 28-30 are biologically active molecules, there is no doubt that macrocycles 28-30 should have also a broad spectrum of biological activity. As we have previously studied the ability of some glycoterpenoids based on isosteviol and trehalose 32-34,^{5d} as well as glucuronic acid 35, 36^{5e} (Fig. 1) to inhibit the in vitro growth of M. tuberculosis H37Rv, ^{5d,e} the target macrocyclic glycoterpenoids 28-30 as well as some of their precursors 19, 23, 24, and byproduct 31 were also screened against *M. tuberculosis* H37Rv. The obtained values of minimum inhibitory concentration (MIC) are presented in Table 1. To analyse the data obtained, MIC values found for isosteviol 1,⁹ diacid 8,⁹ glycoconjugates of isosteviol and trehalose 32-34,^{5d} glycocnjugates of isosteviol and glucuronic acid 35, 36,^{5e} 2-acetamido-1,3,4,6-tetra-O-acetyl-2-deoxy- α -D-glucopyranose 37,²¹ as well as antitubercular drugs isoniazid and pyrazinamide are also presented in Table 1. The comparison of MIC values indicates that antituberculosis activity of target macrocycles 28-30, their precursors 19, 24, and diglycoside 31 is almost the same. Macrocyclic glycoterpenoids 34^{5d} and 36^{5e} as well as their precursors 32^{5d} and 35^{5e} showed a similar activity. One can see that antituberculosis activities of isosteviol glycoconjugates 19, 24, 28-32, 34-36 are 19-13-fold lower than the activity of antitubercular drug isoniazid in control experiments, but, at the same time, these compounds appeared to be 8-17-fold better inhibitors than antitubercular drug pyrazinamide whose MIC equals 101.5 µM.¹⁸ Several important conclusions can be drawn from an examination of Table 1. Firstly, the binding of two molecules of isosteviol **1** (MIC 157 µM) with 1,8-octanedioate linker increases its antituberculosis activity by 2.5 times (MIC for diacid 8 equals 62 μ M). The functionalization of isosteviol 1 with 3,4,6-tri-O-acetyl-glucosamine moiety increases its antituberculosis activity by 9 times (MIC for glycoside 23 equals 17.4 µM). The functionalization of isosteviol 1 with several 3,4,6-tri-O-acetyl-glucosamine moieties increases its antituberculosis activity already by 22 times. This is another confirmation of the known fact that glycosylation of bioactive compounds enhances their activity.¹⁹ By the way, the antituberculosis activity of glucosamine itself, or rather, its derivative 37 (MIC 16.2 µM), was not changed after it had been coupled with isosteviol to afford glycoside 23 (MIC 17.4 µM). Secondly, the antituberculosis activity of macrocyclic glycoterpenoids investigated does not depend on the presence (or absence) of nitrogen-containig functional groups. Thus MIC values for nitrogen-containig macrocyclic

Scheme 6. *Reagents and conditions* (i) Zn, AcOH; (ii) OCN(CH₂)₆NCO, CH₂Cl₂ (iii) ClOC(CH₂)₈COCl, CH₂Cl₂.

Fig. 1. Glycoterpenoids which have already been synthesized and have been subjected to biological evaluation as antituberculosis agents.^{5d,e}

Table	1
-------	---

In vitro inhibitory activities against the growth of M. tuberculosis H37Rv

Compound	MIC (µM)	Compound	MIC (µM)
1	157.0 ⁹	31	6.4
8	62.0^{9}	32	12.7 ^{5d}
19	9.1	33	0.3 ^{5d}
23	17.4	34	8.3 ^{5d}
24	8.2	35	10.5 ^{5e}
28	7.4	36	9.2 ^{5e}
29	7.1	37	16.2
30	7.2	pyrazinamide	101.5 ¹⁰
		isoniazid	0.7

glycoterpenoids **28-30**, **36** and the MIC value for macrocyclic glycoterpenoid **34** which has no nitrogen atoms are almost the same. The striking conclusion that has been already marked^{5d} is that

glycoconjugate of trehalose and isosteviol **33** which has no nitrogen atoms showed the same antituberculosis activity as antitubercular drug isoniazid in control experiment. This is all the more surprising that both isosteviol 1^{9} and trehalose²⁰ are poor inhibitors of the growth of *M*. *tuberculosis* H37Rv.^{9,20} Of course, this unexpected finding requires a careful study.

3. Conclusions

We have proposed for the first time a synthetic approach to macrocyclic glycoterpenoids containing glucosamine and isosteviol moieties. The target macrocycles **28-30** as well as some of their precursors **19**, **23**, **24** were examined for the ability to inhibit the in vitro growth of *M. tuberculosis* H37Rv. All compounds tested showed moderate tuberculostatic activity, MIC values for them were within range of $6.4-17.4 \mu M$ while MIC value for antitubercular drug isoniazid (reference compound in experiment) was 0.7 μM .

4. Experimental

4.1. Chemistry

4.1.1. General

NMR experiments were carried out with Avance-400 or Avance-500 (Bruker) spectrometers MALDI mass spectra were measured on DYNAMO in CDCl₃ at 400 or 500 MHz at 30 °C. MALDI TOF instrument (Thermo BioAnalysis, Santa Fe, New Mexico). Samples were prepared as 0.1% solutions of compounds in an appropriate solvent. The matrix was *p*-nitroaniline (Acros). IR spectra of the compounds 24, 25 were recorded with Bruker Vector-22 Fourier spectrometer in the wavenumber range from 400 to 4000 cm⁻¹. Melting points of substances were determined on a BOETIUS compact heating table. Optical rotations were determined on a Perkin-Elmer 341 polarimeter (concentration c is given as g/100 mL) (PerkinElmer, Inc, USA) at 20 °C, $\lambda = 589$ nm. The completeness of the reactions and the purity of the compounds were monitored by TLC on Sorbfil plates (Sorbfil, Russia). Spots were detected by treatment with the 5% solution of sulfuric acid, followed by heating up to 120 °C. The isolation of individual substances 19, 21, 23-25, 28, 29–31 was performed with a flash chromatography on Silicagel KSKG (< 0.063 mm, Crom-Lab Ltd, Russia). All solvents were dried according to standard protocols. Isosteviol 1,⁷ dihydroisosteviol 7,⁸ diacid 8,^{4a,9} diols 9, 10,^{5d} compounds 13,¹⁰ 20,^{5d} and 37²¹ were prepared according to the literature.^{4a,5d,7,8,9,10,21} The physicochemical properties of these compounds agreed with those published. Sweetener Sweta was obtained from Stevian Biotechnology Corporation Sdn Bhd (Malaysia), glucosamine hydrochloride 3 were purchased from abcr GmbH&Co.

4.1.2. Synthesis of compounds

4.1.2.1. General procedure for the synthesis of diglycosides (14-17)

 $ZnCl_2$ (2 equiv) was added to a solution of diol **9** or **10** (1 equiv) and bromide **13** (2.2-2.5 equiv) in CH_2Cl_2 under argon. The reaction mixture was stirred for 15 h at room temperature, then was diluted with CH_2Cl_2 , washed with 5% NaHCO₃, water and brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (hexane/EtOAc = 5/1).

4.1.2.1.1. Bis{19-[3',4',6'-tri-O-acetyl-2'-deoxy-2'-(2",2",2"-trichloroethoxycarbonyl)amino- α -D-glucopyranosyl-oxybutyl-4-oxycarbonyl]-ent-beyeran-16-yl}-1,8-octanedioat (**14**) This compound was prepared as a white foam in 20% yield (0.37 g). $[\alpha]_D^{20}$ +22.2 (c 1.40,

This compound was prepared as a white foam in 20% yield (0.37 g). $[\alpha]_D^{20}$ +22.2 (*c* 1.40, CH₂Cl₂); Anal. Calcd for C₈₈H₁₃₀Cl₆N₂O₂₈: C, 56.32; H, 6.98; Cl, 11.33; N, 1.49. Found: C, 56.44; H, 6.97; Cl, 11.37; N, 1.49; ¹H NMR (400 MHz, CDCI₃): δ 0.70 (s, 6H, C²⁰H₃, C²⁰H₃), 0.90 (s, 6H, C¹⁷H₃, C¹⁷H₃), 1.18 (s, 6H, C¹⁸H₃, C¹⁸H₃), 0.83–1.89 (m, 58H, *ent*-beyerane skeleton, two (CH₂)₂ linkers and (CH₂)₆ linker), 2.00 (s, 6H, CH₃CO, C'H₃CO), 2.03 (s, 6H, CH₃CO,

C'H₃CO), 2.09 (s, 6H, CH₃CO, C'H₃CO), 2.16 (d, 2H, J = 13.0 Hz, C³H_{eq}, C³'H_{eq}), 2.30 (t, 4H, J = 7.4 Hz, C¹⁶OC(O)CH₂, C¹⁶'OC(O)CH₂), 3.44–3.52 (m, 2H, C^{1s}OCH₂, C^{1s}'OCH₂), 3.70–3.78 (m, 2H, C^{1s}OCH₂, C^{1s}'OCH₂), 3.93–4.01 (m, 4H, H-5s, H-5s', H-2s, H-2s'), 4.03–4.17 (m, 6H, H-6s, H-6s', C¹⁹(O)OCH₂, C¹⁹'(O)OCH₂), 4.27 (dd, 2H, J = 12.4, 4.6 Hz, H-6s, H-6s'), 4.64 (d, 2H, J = 12.1 Hz, 2 OCH₂CCl₃), 4.72 (dd, 2H, J = 10.5, 4.2 Hz, C¹⁶H, C¹⁶'H), 4.81 (d, 2H, J = 12.1 Hz, 2 OCH₂CCl₃), 4.89 (d, 2H, J = 3.4 Hz, H-1s, H-1s'), 5.10 (t, 2H, J = 9.9 Hz, H-4s, H-4s'), 5.24 (t, 2H, J = 9.9 Hz, H-3s, H-3s'), 5.29 (d, 2H, J = 9.8 Hz, 2 NH) ppm; MALDI-TOF MS *m*/*z* calcd for C₈₈H₁₃₀Cl₆N₂O₂₈Na [M+Na]⁺ 1899.7, found 1899.5; calcd for C₈₈H₁₃₀Cl₆N₂O₂₈K [M+K]⁺ 1915.6, found 1915.6.

4.1.2.1.2. Bis{19-[3',4',6'-tri-O-acetyl-2'-deoxy-2'-(2",2",2"-trichloroethoxycarbonyl)amino- α -D-glucopyranosyl-oxyhexyl-6-oxycarbonyl]-ent-beyeran-16-yl}-1,8-octanedioat (15)

This compound was prepared as a white foam in 22% yield (0.52 g). $[\alpha]_D^{20}$ +17.7 (*c* 2.05, CH₂Cl₂); Anal. Calcd for C₉₂H₁₃₈Cl₆N₂O₂₈: C, 57.17; H, 7.20; Cl, 11.01; N, 1.45. Found: C, 57.14; H, 7.19; Cl, 11.03; N, 1.44; ¹H NMR (400 MHz, CDCI₃): δ 0.70 (s, 6H, C²⁰H₃, C²⁰'H₃), 0.89 (s, 6H, C¹⁷H₃, C¹⁷'H₃), 1.16 (s, 6H, C¹⁸H₃, C¹⁸'H₃), 0.81–1.89 (m, 66 H, *ent*-beyerane skeleton, two (CH₂)₄ linkers and (CH₂)₆ linker), 1.99 (s, 6H, CH₃CO, C'H₃CO), 2.02 (s, 6H, CH₃CO, C'H₃CO), 2.09 (s, 6H, CH₃CO, C'H₃CO), 2.15 (d, 2H, *J* = 12.8 Hz, C³H_{eq}), 2.30 (t, 4H, *J* = 7.4 Hz, C¹⁶OC(O)CH₂, C^{16'}OC(O)CH₂), 3.41–3.49 (m, 2H, C^{1s}OCH₂, C^{1s'}OCH₂), 3.65–3.73 (m, 2H, C^{1s}OCH₂, C^{1s'}OCH₂), 3.90–3.99 (m, 4H, H-5s, H-5s', H-2s, H-2s'), 4.00–4.15 (m, 6H, H-6s, H-6s', C¹⁹(O)OCH₂, C^{19'}(O)OCH₂), 4.26 (dd, 2H, *J* = 12.3, 4.6 Hz, H-6s, H-6s'), 4.64 (d, 2H, *J* = 12.1 Hz, 2 OCH₂CCl₃), 4.70 (dd, 2H, *J* = 10.5, 4.2 Hz, C¹⁶H, C^{16'}H), 4.79 (d, 2H, *J* = 12.1 Hz, 2 OCH₂CCl₃), 4.87 (d, 2H, *J* = 3.5 Hz, H-1s, H-1s'), 5.09 (t, 2H, *J* = 9.8 Hz, H-4s, H-4s'), 5.24 (t, 2H, *J* = 9.8 Hz, H-3s, H-3s'), 5.37 (d, 2H, *J* = 9.9 Hz, 2 NH) ppm; MALDI-TOF MS *m/z* calcd for C₉₂H₁₃₈Cl₆N₂O₂₈K [M+K]⁺ 1971.7, found 1971.7.

4.1.2.1.3. O-{19-[3',4',6'-tri-O-acetyl-2'-deoxy-2'-(2",2",2"-trichloroethoxycarbonyl)amino- α -D-glucopyranosyl-oxyhexyl-6-oxycarbonyl]-ent-beyeran-16-yl]-O'-[19-(6'-hydroxyhexyloxycarbonyl)-ent-beyeran-16-yl]-1,8-octanedioat (17)

This compouns was prepared as a white foam in 9% yield (0.16 g). $[\alpha]_D^{20}$ -2.3 (*c* 0.75, CH₂Cl₂); Anal. Calcd for C₇₇H₁₂₀Cl₃NO₁₉: C, 62.91; H, 8.23; Cl, 7.23; N, 0.95. Found: C, 62.95; H, 8.21; Cl, 7.25; N, 0.94; ¹H NMR (400 MHz, CDCI₃): δ 0.70 (s, 6H, C²⁰H₃, C²⁰'H₃), 0.89 (s, 3H, C¹⁷H₃), 0.90 (s, 3H, C¹⁷'H₃), 1.15 (s, 3H, C¹⁸H₃), 1.16 (s, 3H, C¹⁸'H₃), 0.82–1.90 (m, 66H, *ent*-beyerane skeleton, two (CH₂)₄ linkers, and (CH₂)₆ linker), 2.00 (s, 3H, CH₃CO), 2.03 (s, 3H, CH₃CO), 2.09 (s, 3H, CH₃CO), 2.16 (d, 2H, *J* = 13.1 Hz, C³H_{eq}, C^{3'}H_{eq}), 2.30 (t, 4H, *J* = 7.4 Hz, C¹⁶OC(O)CH₂, C^{16'}OC(O)CH₂), 3.42–3.49 (m, 1H, C^{1s}OCH₂), 3.62 (t, 2H, *J* = 6.8 Hz, C¹⁹OC(O)(CH₂)₅CH₂OH), 3.66–3.74 (m, 1H, C^{1s}OCH₂), 3.91–4.15 (m, 7H, H-2s, H-5s, H-6s, C¹⁹(O)OCH₂, C^{19'}(O)OCH₂), 4.26 (dd, 1H, *J* = 12.4, 4.5 Hz, H-6s), 4.62–4.73 (m, 3H, OCH₂CCl₃, C¹⁶H, C^{16'}H), 4.80 (d, 1H, *J* = 9.9 Hz, H-3s), 5.39 (d, 1 H, *J* = 9.7 Hz, NH) ppm; MALDI-TOF MS *m*/z calcd for C₇₇H₁₂₀Cl₃NO₁₉Na [M+Na]⁺ 1492.7, found 1493.1; calcd. for C₇₇H₁₂₀Cl₃NO₁₉K [M+K]⁺ 1508.7, found 1509.1.

4.1.2.2. O-{19-[3',4',6'-tri-O-acetyl-2'-deoxy-2'-acetamido- α -D-glucopyranosyl-oxyhexyl-6-oxycarbonyl]-ent-beyeran-16-yl}-O'-[19-(6'-acetoxyhexyloxycarbonyl)-ent-beyeran-16-yl]-1,8-octanedioat (**19**)

To a solution of monoglycoside **17** (0.12 g, 0.08 mmol) in AcOH (6 mL) Zn powdered (0.048 g, 0.8 mmol) was added under argon. The reaction mixture was stirred for 3 h at room temperature, then was concentrated under reduced pressure. The residue diluted with CH_2Cl_2 , washed with 5% NaHCO₃ and water and brine, dried over Na₂SO₄, and concentrated under reduced pressure to give glicoside **18** (0.1 g, 95 %) which was used without further purification in the next step.

Glycoside 18 0.10 g (0.08 mmol) was dissolved in CH₂Cl₂ (6 mL), then Et₃N (0.068 mL, 0.49 mmol) and Ac₂O (1 mL, 7.7 mmol) were added. The reaction mixture was stirred for 2 h at room temperature, then diluted with CH₂Cl₂, washed with sat. NaHCO₃ and 1.0 M HCl, dried over Na₂SO₄, and concentrated under reduced pressure. Silica gel flash chromatography (eluent – hexane/EtOAc = 5/1) of the residue afforded compound **19** in 57% yield (0.06 g) as a colourless oil. $[\alpha]_D^{20}$ +10.2 (c 1.00, CH₂Cl₂); Anal. Calcd for C₇₈H₁₂₃NO₁₉: C, 67.95; H, 8.99; N, 1.02. Found: C, 67.91; H, 8.96; N, 1.03; ¹H NMR (400 MHz, CDCI₃): δ 0.70 (s, 6H, C²⁰H₃, C²⁰H₃), 0.90 (s, 6H, $C^{17}H_3$, $C^{17'}H_3$), 1.15, 1.16 (2s, 6H, $C^{18}H_3$, $C^{18'}H_3$), 0.78 - 1.90 (m, 66 H, *ent*-beyerane skeleton, two (CH₂)₄ linkers, and (CH₂)₆ linker), 1.95 (s, 3H, CH₃CO, C'H₃CO), 2.01 (s, 3H, CH₃CO, C'H₃CO), 2.03 (s, 3H, CH₃CO, C'H₃CO), 2.04 (s, 3H, CH₃CO, C'H₃CO), 2.09 (s, 3H, CH₃CO, C'H₃CO), 2.15 (d, 2H, J = 13.1 Hz, C³H_{eq}, C³'H_{eq}), 2.30 (td, J = 7.4, 2.4 Hz, 4H, C¹⁶OC(O)CH₂, C¹⁶'OC(O)CH₂), 3.39–3.49 (m, 2H, C^{1s}OCH₂, C^{1s}'OCH₂), 3.61–3.71 (m, 2H, C^{1s}OCH₂, C^{1s}'OCH₂), $3.91-4.14 \text{ (m, 6H, H-5s, H-6s, C}^{19}(\text{O})\text{OCH}_2, \text{C}^{19}(\text{O})\text{OCH}_2), 4.24 \text{ (dd, 1H, } J = 12.3, 4.5 \text{ Hz, H-6s}),$ 4.32–4.37 (m, 1H, H-2s), 4.71 (td, 2H, J = 9.8, 4.4 Hz, C^{16} H, $C^{16'}$ H), 4.83 (d, 1H, J = 3.6 Hz, H-1s), 5.11 (t, 1H, J = 9.5 Hz, H-4s), 5.21 (t, 1H, J = 9.5 Hz, H-3s), 5.78 (d, 1H, J = 9.5 Hz, NH) ppm; MALDI-TOF MS m/z calcd for C₇₈H₁₂₃NO₁₉Na [M+Na]⁺ 1400.9, found 1400.9; calcd for $C_{78}H_{123}NO_{19}K [M+K]^+$ 1416.8, found 1416.9.

4.1.2.3. 4-[3',4',6'-tri-O-acetyl-2'-deoxy-2'-(2",2",2"-trichloroethoxycarbonyl)amino- α -D-glucopyranosyl]-butyl-16-oxo-ent-beyeran-19-oat (**21**)

To a solution of ketoalcohol 20 (0.40 g, 1.02 mmol) and bromide 13 (0.71 g, 1.30 mmol) in CH₂Cl₂ (15 mL) ZnCl₂ (0.21 g, 1.54 mmol) was added under argon. The reaction mixture was stirred for 30 h at room temperature, then was diluted with CH₂Cl₂, washed with 5% NaHCO₃, water and brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (hexane/EtOAc = 3/1) to give glycoside 21 in 58% yield (0,47 g) as a colourless oil. $[\alpha]_D^{20}$ +1.0 (*c* 0.47, CH₂Cl₂); Anal. Calcd for C₃₉H₅₆Cl₃NO₁₃: C, 54.90; Cl, 12.47; H, 6.62; N, 1.64. Found: C, 55.11; Cl, 12.52; H, 6.59; N, 1.63; ¹H NMR (400 MHz, CDCI₃): δ 0.69 (s, 3H, C²⁰H₃), 0.94 (s, 3H, C¹⁷H₃), 1.18 (s, 3H, C¹⁸H₃), 0.80–1.90 (m, 22H, ent-beyerane skeleton and (CH₂)₂ linker), 1.97 (s, 3H, CH₃CO), 2.00 (s, 3H, CH₃CO), 2.06 (s, 3H, CH₃CO), 2.16 (d, 1H, C³H_{eq}, J = 13.3 Hz), 2.59 (dd, 1H, C¹⁵ H_q, J = 18.6, 3.7 Hz), 3.42–3.49 (m, 1H, C^{1s}OCH₂), 3.68–3.75 (m, 1H, C^{1s}OCH₂), 3.89-3.95 (m, 1H, H-5s), 3.99 – 4.10 (m, 4H, H-6s, H-2s, $C^{19}(O)OCH_2$), 4.24 (dd, 1H, H-6s, J = 12.3, 4.5 Hz), 4.63 (d, 1H, OCH₂CCl₃, J = 12.1 Hz), 4.76 (d, 1H, OCH₂CCl₃, *J* = 12.1 Hz), 4.87 (d, 1H, H-1s, *J* = 3.6 Hz), 5.07 (t, 1H, H-4s, *J* = 9.8 Hz), 5.21 (t, 1H, H-3s, J = 9.7 Hz), 5.27 (d, 1H, NH, J = 9.7 Hz) ppm; MALDI-TOF MS m/z calcd for $C_{39}H_{56}Cl_3NO_{13}Na [M+Na]^+ 876.3$, found 876.4; calcd for $C_{39}H_{56}Cl_3NO_{13}K [M+K]^+ 892.2$, found 892.4.

4.1.2.4. 4- $(3',4',6'-tri-O-acetyl-2'-deoxy-2'-amino-\alpha-D-glucopyranosyl)$ -butyl-16-oxo-ent-beyeran-19-oat (**22**)

To a solution of glycoside **21** (0.47 g, 0.55 mmol) in AcOH (12 mL) Zn powdered (1.2 g, 18 mmol) was added under argon. The reaction mixture was stirred for 1 h at room temperature, then was concentrated under reduced pressure. The residue diluted with CH₂Cl₂, washed with saturated solution NaHCO₃, dried over Na₂SO₄, and concentrated under reduced pressure to give glycoside **22** in 92% yield (0.34 g) as a colourless oil. Anal. Calcd for $C_{36}H_{55}NO_{11}$: C. 63.79; H, 8.18; N, 2.07. Found: C, 63.44; H, 8.21; N, 2.05. ¹H NMR (400 MHz, CDCI₃): δ 0.71 (s, 3H, C²⁰H₃), 0.97 (s, 3H, C¹⁷H₃), 1.20 (s, 3H, C¹⁸H₃), 0.83–1.96 (m, 22H, *ent*-beyerane skeleton and (CH₂)₂ linker), 2.01 (s, 3H, CH₃CO), 2.07 (s, 3H, CH₃CO), 2.08 (s, 3H, CH₃CO), 2.19 (d, 1H, C³H_{eq}, *J* = 13.2 Hz), 2.61 (dd, 1H, C¹⁵H_α, *J* = 18.5, 3.7 Hz), 2.93 (dd, 1H, H-2s, *J* = 10.2, 3.6 Hz), 3.43–3.52 (m, 1H, C^{1s}OCH₂), 3.71–3.79 (m, 1H, C^{1s}OCH₂), 3.92–3.99 (m, 1H, H-5s), 4.00–4.13 (m, 3H, H-6s, C¹⁹(O)OCH₂), 4.28 (dd, 1H, H-6s, *J* = 12.2, 4.6 Hz), 4.86 (d, 1H, H-1s, *J* = 3.6 Hz), 4.95 (t, 1H, H-4s, *J* = 9.8 Hz), 5.11 (t, 1H, H-3s, *J* = 9.8 Hz) ppm; MALDI-TOF MS *m*/*z* calcd for C₃₆H₅₆NO₁₁ [M+H]⁺ 678.4; found 678.4; calcd for C₃₆H₅₅NO₁₁Na [M+Na]⁺ 700.4; found 700.4.

4.1.2.5. 4-[3',4',6'-tri-O-acetyl-2'-deoxy-2'-acetamido-α-D-glucopyranosyl]-butyl-16-oxo-entbeyeran-19-oat (23)

The mixture of Et₃N (0.16 mL, 1.16 mmol) and Ac₂O (2.4 mL, 18.29 mmol) was added to a solution of amine **22** (0.13 g, 0.19 mmol) in CH₂Cl₂ (5 mL) under argon. The reaction mixture was stirred for 2 h at room temperature, then diluted with CH₂Cl₂, washed with sat. NaHCO₃ and 1.0 M HCl, dried over Na₂SO₄, and concentrated under reduced pressure. Silica gel flash chromatography (hexane/EtOAc = 1/1) of the residue afforded glycoside **23** in 73% yield (0.10 g) as a colorless oil. $[\alpha]_D^{20}$ +16.4 (*c* 0.65, CH₂Cl₂); Anal. Calcd for C₃₈H₅₇NO₁₂: C, 63.40; H, 7.98; N, 1.95. Found: C, 63.54; H, 7.95; N, 1.96.01; ¹H NMR (400 MHz, CDCI₃) : δ 0.72 (s, 3H, C²⁰H₃), 0.97 (s, 3H, C¹⁷H₃), 1.21 (s, 3H, C¹⁸H₃), 0.86–1.93 (m, 22H, *ent*-beyerane skeleton and (CH₂)₂ linker), 1.96 (s, 3H, CH₃CO), 2.01 (s, 3H, CH₃CO), 2.02 (s, 3H, CH₃CO), 2.09 (s, 3H, CH₃CO), 2.19 (d, 1H, C³H_{eq}, *J* = 13.2 Hz), 2.63 (dd, 1H, C¹⁵H_a, *J* = 18.5, 3.7 Hz), 3.41–3.49 (m, 1H, C^{1s}OCH₂), 3.70–3.78 (m, 1H, C^{1s}OCH₂), 3.88–3.94 (m, 1H, H-5s), 4.01–4.15 (m, 3H, H-6s, C¹⁹(O)OCH₂), 4.24 (dd, 1H, H-6s, *J* = 12.3, 4.5 Hz), 4.31–4.38 (m, 1H, H-2s), 4.84 (d, 1H, H-1s, *J* = 3.6 Hz), 5.11 (t, 1H, H-4s, *J* = 9.7 Hz,), 5.19 (t, 1H, H=3s, *J* = 9.8 Hz), 5.83 (d, 1H, NH, *J* = 9.4 Hz) ppm; MALDI-TOF MS *m*/*z* calcd for C₃₈H₅₇NO₁₂Na [M+Na]⁺ 742.4, found 742.3; calcd for C₃₈H₅₇NO₁₂K [M+K]⁺ 758.4, found 758.3.

4.1.2.6. The synthesis of compounds (24) and (25)

A solution of 1,6-diisocyanatohexane (0.024 g, 0.14 mmol) in CH_2Cl_2 (1 mL) was added in portions during 1 h to a solution of amine **22** (0.21 g, 0.29 mmol) in CH_2Cl_2 (10 mL) under argon. The reaction mixture was stirred for 40 h at room temperature, then washed with water, and dried over Na₂SO₄. The residue was purified by silica gel flash chromatography (hexane/EtOAc = 5/1) to give diglycoside **24** and glycoside **25**.

4.1.2.6.1. 1,6-Bis[2'-(16"-oxo-ent-beyeran-19"-carboxybutyl-6"'-oxy)-4',5'-diacetoxy-6'methylacetoxy-tetrahydropyran-3'-ureidyl]hexane (24)

This compound was prepared in 13% yield (0.06 g) as a colorless oil. $[\alpha]_D^{20}$ +27.7 (*c* 1.95, CH₂Cl₂); Anal. Calcd for C₈₀H₁₂₂N₄O₂₄: C, 63.06; H, 8.07; N, 3.68. Found: C, 63.27; H, 8.05; N, 3.70; IR (film); v 1561, 1641 [NHC(O)], 1726 [C(O)O], 1746 [CH₃C(O)O], 3367, 3412 cm⁻¹ (NH); ¹H NMR (400 MHz, CDCI₃) : δ 0.72 (s, 6H, C²⁰H₃, C²⁰'H₃), 0.97 (s, 6H, C¹⁷H₃, C^{17'}H₃), 1.21 (s, 6H, C¹⁸H₃, C^{18'}H₃), 0.87–1.90 [m, 52H, *ent*-beyerane skeleton, two (CH₂)₂ linkers, and (CH₂)₄ linker), 1.99 (s, 6H, CH₃CO, C'H₃CO), 2.00 (s, 6H, CH₃CO, C'H₃CO), 2.08 (s, 6H, CH₃CO, C'H₃CO), 2.16 (d, 2H, C³H_{eq}, C^{3'}H_{eq}, J = 13.1 Hz), 2.64 (dd, 2H, C¹⁵ H_α, C^{15'} H_α, J = 18.5, 3.5 Hz), 3.00–3.21 (m, 4H, 2C(O)NHCH₂), 3.36–3.45 (m, 2H, C^{1s}OCH₂, C^{1s'}OCH₂), 3.73–3.82 (m, 2H, C^{1s}OCH₂, C^{1s'}OCH₂), 3.87–3.95 (m, 2H, H-2s, H-2s'), 4.04–4.26 (m, 10H, 2H-6s, 2H-6s', H-5s, H-5s', C¹⁹(O)OCH₂, C^{19'}(O)OCH₂), 4.82 (d, 2H H-1s, H-1s', J = 3.5 Hz), 4.90 (d, 2H 2 NHC(O), J = 9.9 Hz), 5.05–5.19 (m, 4H, H-4s, H-4s', H-3s, H-3s'), 5.24 (t, 2H, 2 C(O)NHCH₂ J = 5.7 Hz) ppm; MALDI-TOF MS *m*/z calcd for C₈₀H₁₂₃N₄O₂₄ [M+H]⁺ 1523.9, found 1523.8; calcd for C₈₀H₁₂₂N₄O₂₄Ka [M+K]⁺ 1561.8, found 1561.6.

4.1.2.6.2. 4'-[3",4",6"-tri-O-acetyl-2"-deoxy-2"-(ureidyl-6"'-isocyanatohexane)- α -D-glucopyranosyl]-butyl-16-oxo-ent-beyeran-19-oat (25)

This compound was prepared in 19% yield (0.005 g) as a colorless oil. Anal. Calcd for $C_{44}H_{67}N_3O_{13}$: C, 62.47; H, 7.98; N, 4.97. Found: C, 62.51; H, 8.01; N, 4.95; IR (film); v 1561, 1641]NHC(O)], 1726 [C(O)O], 1746 [CH₃C(O)O], 2272 (NCO), 3364, 3408 cm⁻¹ (NH); ¹H NMR (400 MHz, CDCI₃) : δ 0.74 (s, 3H, C²⁰H₃), 0.98 (s, 3H, C¹⁷H₃), 1.23 (s, 3H, C¹⁸H₃), 0.87–1.90 (m, 30 H, *ent*-beyerane skeleton, (CH₂)₂ linker, and (CH₂)₄ linker), 2.01 (s, 3H, CH₃CO), 2.04 (s, 3H, CH₃CO), 2.09 (s, 3H, CH₃CO), 2.18 (d, 1H, C³H_{eq}, *J* = 13.5 Hz), 2.65 (dd, 1H, C¹⁵ H_a, *J* = 18.5, 3.7 Hz), 3,03–3.24 (m, 2H, C(O)NHCH₂), 3.28 (t, 2H, CH₂NCO, *J* = 6.6), 3.36–3.43 (m, 1H,

CCEPTED MANUSCRIPT

 $C^{1s}OCH_2$), 3.76–3.84 (m, 1H, $C^{1s}OCH_2$), 3.87–3.93 (m, 1H, H-2s), 4.03–4.26 (m, 5H, 2 H-6s, H-5s, $C^{19}(O)OCH_2$), 4.83 (d, 1H H-1s, J = 3.6 Hz), 4.87 (d, 1H, NHC(O), J = 9.8 Hz), 5.07–5.17 (m, 2H, H-3s, H-4s), 5.18–5.22 [m, 1H, C(O)NHCH₂] ppm; MALDI-TOF MS *m*/*z* calcd for C₄₄H₆₈N₃O₁₃ [M+H]⁺ 846.5, found 846.7; calcd for C₄₄H₆₇N₃O₁₃Na [M+Na]⁺ 868.5, found 868.7; calcd for C₄₄H₆₇N₃O₁₃K [M+K]⁺ 884.4, found 884.7.

4.1.2.7. The general procedure for the synthesis of diamines (26, 27)

To a solution of diglycoside **14** or **15** (1 equiv) in AcOH was added Zn powdered (100 equiv) under argon. The reaction mixture was stirred for 3 h at room temperature, then was concentrated under reduced pressure. The residue was diluted with CH_2Cl_2 , washed with 5% NaHCO₃ and water and brine, dried over Na₂SO₄, and concentrated under reduced pressure.

4.1.2.7.1. Bis{19-[3',4',6'-tri-O-acetyl-2'-deoxy-2'-amino- α -D-glucopyranosyl-oxybutyl-4-oxycarbonyl]-ent-beyeran-16-yl}-1,8-octanedioat (**26**)

This compound was prepared as a white foam in 96% yield (0.11 g) and was used without further purification in the next step.

4.1.2.7.2. Bis{19-[3',4',6'-tri-O-acetyl-2'-deoxy-2'-amino- α -D-glucopyranosyl-oxyhexyl-6-oxycarbonyl]-ent-beyeran-16-yl}-1,8-octanedioat (27)

This compound was prepared as a white foam in 87% yield (0.13 g). Anal. Calcd for $C_{86}H_{136}N_2O_{24}$: C, 65.29; H, 8.66; N, 1.77. Found: C, 65.53; H, 8.69; N, 1.78; ¹H NMR (400 MHz, CDCI₃) : δ 0.70 (s, 6H, C²⁰H₃, C²⁰'H₃), 0.90 (s, 6H, C¹⁷H₃, C¹⁷'H₃), 1.16 (s, 6H, C¹⁸H₃, C¹⁸'H₃), 0.81–1.89 [m, 66 H, *ent*-beyerane skeleton, two (CH₂)₄ linkers, and (CH₂)₆ linker), 2.02 (s, 6H, CH₃CO, C'H₃CO), 2.07 (s, 6H, CH₃CO, C'H₃CO), 2.08 (s, 6H, CH₃CO, C'H₃CO), 2.15 (d, 2H, J = 13.5 Hz, C³H_{eq}, C³'H_{eq}), 2.30 (t, 4H, J = 7.4 Hz, C¹⁶OC(O)CH₂, C¹⁶'OC(O)CH₂), 2.93 (dd, 2H, J = 10.2, 3.3 Hz, H-2s, H-2s'), 3.40–3.49 (m, 2H, C^{1s}OCH₂), C^{1s'}OCH₂), 3.66–3.75 (m, 2H, C^{1s}OCH₂, C^{1s'}OCH₂), 3.89–4.13 (m, 8H, H-6s, H-6s', C¹⁹(O)OCH₂, C^{19'}(O)OCH₂, H-5s, H-5s'), 4.28 (dd, 2H, J = 12.3, 4.7 Hz, H-6s, H-6s'), 4.72 (dd, 2H, J = 10.5, 4.2 Hz, C¹⁶H, C¹⁶'H), 4.85 (d, 2H, J = 3.2 Hz, H-1s, H-1s'), 4.95 (t, 2H, J = 9.8 Hz, H-4s, H-4s'), 5.12 (t, 2H, J = 9.7 Hz, H-3s, H-3s') ppm; MALDI-TOF MS m/z calcd for $C_{86}H_{137}N_2O_{24}$ [M+H]⁺ 1582.0, found 1582.1; calcd for $C_{86}H_{136}N_2O_{24}$ K [M+K]⁺ 1619.9, found 1620.1.

4.1.2.8. General procedure for the synthesis of macrocycles (28, 29)

1,6-Diisocyanatohexane (1 equiv) was added to a solution of diglycoside **26** or **27** (1 equiv) in CH_2Cl_2 under argon. The reaction mixture was stirred for 40 h at room temperature, then was concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (hexane/EtOAc = 5/1).

4.1.2.8.1. 2,13,16,20,35,40-Hexaoxa-22,24,31,33-tetraaza-1,14(16α,4α)di(19-nor-ent-beyeran)-21,34(1,2)di(3',4',6'-tri-O-acetyl-2'-deoxy-α-D-glucopyranosyl)cyclohentetracontaphan-3,12,15,23,32,41-hexaon (**28**)

This compound was prepared in 39.5% yield (0.05 g) as a white powder. Mp 106-108 °C (hexane/EtOAc); $[\alpha]_D{}^{20}$ +17.5 (*c* 0.83, CH₂Cl₂); Anal. Calcd for C₉₀H₁₄₀N₄O₂₆: C, 63.81; H, 8.33; N, 3.31. Found: C, 63.77; H, 8.35; N, 3.32; ¹H NMR (400 MHz, CDCI₃) : δ 0.69 (s, 6H, C²⁰H₃, C²⁰'H₃), 0.90, 0.92 (2s, 6H, C¹⁷H₃, C¹⁷'H₃), 1.20 (s, 6H, C¹⁸H₃, C¹⁸'H₃), 0.81–1.90 (m, 58H, *ent*-beyerane skeleton, two (CH₂)₂ linkers, and (CH₂)₆ linker), 1.99 (s, 6H, CH₃CO, C'H₃CO), 2.00 (s, 6H, CH₃CO, C'H₃CO), 2.09 (s, 6H, CH₃CO, C'H₃CO), 2.13–2.19 (m, 2H, C³H_{eq}, C³'H_{eq}), 2.27–2.36 (m, 4H, C¹⁶OC(O)CH₂, C¹⁶'OC(O)CH₂), 3.02–3.24 (m, 4H, 2C(O)NHCH₂), 3.36–3.44 (m, 2H, C^{1s}OCH₂, C^{1s'}OCH₂), 3.74–3.82 (m, 2H, C^{1s}OCH₂, C^{1s'}OCH₂), 3.87–3.95 (m, 2H, H-2s, H-2s'), 4.03–4.27 (m, 10 H, 2 H-6s, 2 H-6s', C¹⁹(O)OCH₂, C^{19'}(O)OCH₂, H-5s, H-5s'), 4.66 (dd, 2H, *J* = 10.6, 4.4 Hz, C¹⁶H, C¹⁶'H), 4.83 (d, 2H, *J* = 3.4 Hz, H-1s, H-1s'), 4.92 [d, 2H, *J* = 10.0 Hz, 2

NHC(O)], 5.06–5.18 (m, 4H, H-4s, H-4s', H-3s, H-3s'), 5.40–5.47 (m, 2H, 2 C(O)N*H*CH₂) ppm; MALDI-TOF MS m/z calcd for C₉₀H₁₄₁N₄O₂₆ [M+H]⁺ 1694.0, found 1694.3; calcd for C₉₀H₁₄₀N₄O₂₆Na [M+Na]⁺ 1716.0, found 1716.3; calcd for C₉₀H₁₄₀N₄O₂₆K [M+K]⁺ 1731.9, found 1732.2.

4.1.2.8.2. 2,13,16,23,38,45-Tetraoxa-25,27,34,36-tetraaza-1,14(16α,4α)di(19-nor-ent-beyeran)-24,37(1,2)di(3',4',6'-tri-O-acetyl-2'-deoxy-α-D-glucopyranosyl)cyclohexatetracontaphan-3,12,15,26,35,46-hexaon (**29**)

This compound was prepared in 14.5% yield (0.03 g) as a white powder. Mp 110-111 °C (hexane/EtOAc); $[\alpha]_D^{20}$ +16.7 (*c* 1.05, CH₂Cl₂); Anal. Calcd for C₉₄H₁₄₈N₄O₂₆: C, 64.51; H, 8.52; N, 3.20. Found: C, 64.55; H, 8.49; N, 3.19; ¹H NMR (500 MHz, CDCI₃) : δ 0.69 (s, 6H, C²⁰H₃, C²⁰'H₃), 0.90 (s, 6H, C¹⁷H₃, C^{17'}H₃), 1.16 (s, 6H, C¹⁸H₃, C^{18'}H₃), 0.84–1.88 (m, 66 H, *ent*-beyerane skeleton, two (CH₂)₄ linkers, and (CH₂)₆ linker), 1.99 (s, 6H, CH₃CO, C'H₃CO), 2.00 (s, 6H, CH₃CO, C'H₃CO), 2.08 (s, 6H, CH₃CO, C'H₃CO), 2.15 (d, 2H, *J* = 13.5 Hz, C³H_{eq}, C^{3'}H_{eq}), 2.27–2.35 (m, 4H, C¹⁶OC(O)CH₂, C^{16'}OC(O)CH₂), 3.04–3.20 (m, 4H, 2C(O)NHCH₂), 3.37–3.44 (m, 2H, C^{1s}OCH₂, C^{1s'}OCH₂), 3.60–3.68 (m, 2H, C^{1s}OCH₂, C^{1s'}OCH₂), 3.89–4.03 (m, 4H, H-2s, H-2s', H-5s, H-5s'), 4.07–4.24 (m, 8H, 2 H-6s, 2 H-6s', C¹⁹(O)OCH₂, C^{19'}(O)OCH₂), 4.66 (dd, 2H, *J* = 10.3, 4.1 Hz, C¹⁶H, C^{16'}H), 4.84 (d, 2H, *J* = 3.5 Hz, H-1s, H-1s'), 4.96 [d, 2H, *J* = 10.0 Hz, 2 NHC(O)], 5.08 (t, 2H, *J* = 9.7 Hz, H-4s, H-4s'), 5.16 (t, 2H, *J* = 9.7 Hz, H-3s, H-3s'), 5.21–5.30 (m, 2 C(O)N*H*CH₂) ppm; MALDI-TOF MS *m*/z calcd for C₉₄H₁₄₉N₄O₂₆ [M+H]⁺ 1751.0, found 1750.7; calcd for C₉₄H₁₄₈N₄O₂₆Na [M+Na]⁺ 1773.0, found 1772.7.

4.1.2.9. Synthesis of macrocycle (30) and diglycoside (31)

A solution of sebacyl dichloride (0. 012 g, 0.05 mmol) in CH_2Cl_2 (3 mL) was added to a solution of diglycoside **27** (0.08 g, 0.05 mmol) and pyridine (0.008 g, 0.1 mmol) in CH_2Cl_2 (5 mL) under argon. The reaction mixture was stirred for 8 h at room temperature, then diluted with CH_2Cl_2 , washed with 0.1 M HCl and water, dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography (hexane/EtOAc = 1/1) to give macrocycle **30** and diglycoside **31**.

4.1.2.9.1. 2,13,16,23,38,45-Hexaoxa-25,36-diaza-1,14($16\alpha,4\alpha$)di(19-nor-ent-beyeran)-24,37(1,2)di(3',4',6'-tri-O-acetyl-2'-deoxy- α -D-glucopyranosyl)cyclohexatetracontaphan-3,12,15,26,35,46-hexaon (**30**)

This compound was prepared in 23% yield (0.02 g) as a white foam. $[\alpha]_D^{20}$ +13.8 (*c* 0.53, CH₂Cl₂); Anal. Calcd for C₉₆H₁₅₀N₂O₂₆: C, 65.95; H, 8.65; N, 1.60. Found: C, 66.01; H, 8.62; N, 1.60; ¹H NMR (500 MHz, CDCl₃) : δ 0.70 (s, 6H, C²⁰H₃, C²⁰'H₃), 0.91 (s, 6H, C¹⁷H₃, C¹⁷'H₃), 1.16 (s, 6H, C¹⁸H₃, C¹⁸'H₃), 0.80–1.89 [m, 78H, *ent*-beyerane skeleton, two (CH₂)₄ linkers, and two (CH₂)₆ linkers), 2.00 (s, 6H, CH₃CO, C'H₃CO), 2.03 (s, 6H, CH₃CO, C'H₃CO), 2.09 (s, 6H, CH₃CO, C'H₃CO), 2.10–2.19 (m, 6H, C³H_{eq}, C³'H_{eq}, 2 NHC(O)CH₂), 2.28–2.33 (m, 4H, C¹⁶OC(O)CH₂, C¹⁶'OC(O)CH₂), 3.39–3.47 (m, 2H, C¹⁸OCH₂, C^{18'}OCH₂), 3.65–3.71 (m, 2H, C^{1s}OCH₂, C^{1s'}OCH₂), 3.91–4.12 (m, 8H, C¹⁹(O)OCH₂, C^{19'}(O)OCH₂, H-6s, H-6s', H-5s, H-5s'), 4.24 (dd, 2H, *J* = 12.4, 4.5 Hz, H-6s, H-6s'), 4.32–4.38 (m, 2H, H-2s, H-2s'), 4.68 (dd, 2H, *J* = 10.2, 4.4 Hz, C¹⁶H, C¹⁶'H), 4.83 (d, 2H, *J* = 3.6 Hz, H-1s, H-1s'), 5.11 (t, 2H, *J* = 9.9 Hz, H-4s, H-4s'), 5.21 (t, 2H, *J* = 10.0 Hz, H-3s, H-3s'), 5.82 (d, 2H, *J* = 9.3 Hz, 2 NH) ppm; MALDI-TOF MS *m*/z calcd for C₉₆H₁₅₀N₂O₂₆Na [M+Na]⁺ 1771.0, found 1771.1; calcd for C₉₆H₁₅₀N₂O₂₆K 1787.0, found 1787.1.

4.1.2.9.2. Bis{19-[8-carboxy-2-octylacetamido-3,4,6-tri-O-acetyl-2-deoxy- α -D-glucopyranosyl-oxyhexyl-6-oxycarbonyl]-ent-beyeran-16-yl}-1,8-octanedioat (**31**)

This compound was prepared in 20% yield (0.01 g) as a white foam. $[\alpha]_D^{20}$ +4.4 (*c* 1.06, CH₂Cl₂/MeOH = 3/1); Anal. Calcd for C₁₀₆H₁₆₈N₂O₃₀: C, 65.27; H, 8.68; N, 1.44. Found: C, 65.05; H, 8.70; N, 1.45; ¹H NMR (400 MHz, CDCI₃) : δ 0.70 (s, 6H, C²⁰H₃, C²⁰H₃), 0.90 (s, 6H,

 $C^{17}H_3$, $C^{17'}H_3$), 1.17 (s, 6H, $C^{18}H_3$, $C^{18'}H_3$), 0.81–1.90 [m, 90H, *ent*-beyerane skeleton, two (CH₂)₄ linkers and three (CH₂)₆ linkers), 2.01 (s, 6H, CH₃CO, C'H₃CO), 2.03 (s, 6H, CH₃CO, C'H₃CO), 2.09 (s, 6H, CH₃CO, C'H₃CO), 2.11–2.20 (m, 6H, $C^{3}H_{eq}$, $C^{3'}H_{eq}$, 2 NHC(O)CH₂), 2.28–2.37 (m, 8H, $C^{16}OC(O)CH_2$, $C^{16'}OC(O)CH_2$, 2 CH₂COOH), 3.38–3.47 (m, 2H, $C^{1s}OCH_2$, $C^{1s'}OCH_2$), 3.64–3.72 (m, 2H, $C^{1s}OCH_2$, $C^{1s'}OCH_2$), 3.90–4.12 (m, 8H, $C^{19}(O)OCH_2$, $C^{19'}(O)OCH_2$, H-6s, H-6s', H-5s, H-5s'), 4.24 (dd, 2H, *J* = 12.3, 4.1 Hz, H-6s, H-6s'), 4.33–4.39 (m, 2H, H-2s, H-2s'), 4.70 (dd, 2H, *J* = 10.5, 4.2 Hz, C^{16} H, $C^{16'}$ H), 4.83 (d, 2H, *J* = 3.4 Hz, H-1s, H-1s'), 5.11 (t, 2H, *J* = 9.8 Hz, H-4s, H-4s'), 5.21 (t, 2H, *J* = 9.5 Hz, H-3s, H-3s'), 5.81 (d, 2H, *J* = 9.1 Hz, 2 NH) ppm; MALDI-TOF MS *m*/*z* calcd for $C_{106}H_{168}N_2O_{30}Na$ [M+Na]⁺ 1973.2, found 1973.2; calcd for $C_{106}H_{168}N_2O_{30}K$ [M+K]⁺ 1989.1, found 1989.3.

4.2. In vitro assays

Compounds 19, 23, 24, 28-31 were tested for antituberculosis activity by the vertical diffusion method on a *Novaya* solid nutrient medium using H37Rv laboratory strain as a test culture. The nutrient medium was placed in 5 mL test tubes and inoculated with 0.1 mL of test culture diluted to a turbidity of 10 units, and the test tubes were incubated for 24 h to grow *M. tuberculosis*. The test tubes were then set vertically, and 0.3 mL of a solution of compounds 19, 23, 24, 28-31 in aqueous EtOH with a concentration of 12.5, 6.2, 3.1, 1.5, 0.7, 0.35, or 0.1 µg/mL was added dropwise (test solutions were prepared by serial decimal dilutions of the initial solution of 100 µg of compounds tested in the mixture of 5 mL of 96% ethanol and 5 mL of sterile distilled water). The test tubes were incubated for 10 days at 37 °C under sterile conditions, and the zone of bacterial growth inhibition was measured. An inhibition zone of longer than 10 mm indicated tuberculostatic activity. Antitubercular drug isoniazid which was used as a control inhibited the in vitro growth of *M. tuberculosis* at MIC 0.1 µg/mL (0.7 µM).

Acknowledgments

The microbiological assay was performed under financial support of the Russian Science Foundation (grant № 14-50-00014).

Appendix: Supplementary information

Supplementary information to this article can be found online at ...

References

- 1. (a) Pereda-Miranda R, Bah M. Curr Top Med Chem 2003;3:111-31;
 - (b) Dembitsky VM. *Chem Biodiversity* 2004;**1**:673-781;
 - (c) Cao S, Guza RC, Wisse JH, Miller JS, Evans R, Kingston DGI. *J Nat Prod* 2005;**68**:487–92;
 - (d) Dembitsky VM. Lipids 2005;40:219-48;
 - (e) Cao S, Norris A, Wisse JH, Miller JS, Evans R, Kingston DGI. *Nat Prod Res* 2007;**21**:872-76;
 - (f) Mirón-López G, Herrera-Ruiz M, Estrada-Soto S, Aguirre-Crespo F, Vásquez-Navarrete L, León-Rivera I. *J Nat Prod* 2007;**70**:557-62;
 - (g) Castañeda-Gómez J, Pereda-Miranda R. J Nat Prod 2011;74:1148-1153;
 - (h) Ono M, Takaki Y, Takasuji M, Akiyama K, Okawa M, Kinjo J, et al. *Chem Pharm Bull* 2012;**60**:1083-87;
 - (i) Xie J, Bogliotti N. Chem Rev 2014;114:7678-7739;
 - (j) Asai T, Nakamura Y, Hirayama Y, Ohyama K, Fujimoto Y. Phytochem 2012; 82:149-57.

(a) Shi S-P, Dong C-X, Jiang D, Tu P-F. *Helv Chim Acta* 2006; **89**: 3002-6;

- (b) Yan L, Yang S, Zou Z, Luo X, Xu L. *Heterocycles* 2006;**68**:1917-24;
- (c) Mukhtar N, Malik A, Riaz N, Iqbal K, Tareen RB, Khan SN, Nawaz SA, Siddiqui J, Choudhary MI. *Helv Chim Acta* 2004;**87**:416-24.
- (a) Iwagawa T, Hase T. *Phytochem* 1983;**22**:255-58;

2.

3.

(b) Marzouk MS, Moharram FA, El Dib RA, El-Hossary DG. *Cell Biochem Biophys* 2013;**65**:301-13;

(c) Gavagnin M, Carbone M, Amodeo P, Mollo E, Vitale RM, Roussis V, Cimino G. *J Org Chem* 2007;**72**:5625-30;

(d) Carbone M, Gavagnin M, Mollo E, Bidello M, Roussis V, Cimino G. *Tetrahedron* 2008;**64**:191-96.

4. (a) Khaybullin RN, Strobykina IYu, Gubskaya VP, Fazleeva GM, Latypov ShK, Kataev VE. *Mendeleev Comm* 2011;**21**:134-6;

(b) Garifullin BF, Strobykina IYu, Lodochnikova OA, Musin RZ., Gubaidullin AT, Kataev VE. *Chem Nat Comp* 2011;**47**:422-7;

- (c) Khaybullin RN, Strobykina IYu, Dobrynin AB, Gubaydullin AT, Chestnova RV, Babaev VM, Kataev VE. *Bioorg Med Chem Lett* 2012;**22**:6909-13;
- (d) Korochkina MG, Nikitashina AD, Khaibullin RN, Petrov KA, Strobykina IYu, Zobov VV, Kataev VE. *Med Chem Comm* 2012;**3**:1449-54;

(e) Garifullin BF, Andreeva OV, Strobykina IYu, Babaev VM., Kataev VE. *Macroheterocycles* 2013;**6**:184-91;

(f) Andreeva OV, Strobykina IYu, Kataeva ON, Dobrynin OB, Babaev VM, Rizvanov IKh, Islamov DR, Kataev VE. *Macroheterocycles* 2013;**6**:315-22;

(g) Strobykina IYu, Babaev VM, Rizvanov IKh, Kataev VE. *Chem Nat Comp* 2013;**49**:462-66;

(h) Andreeva OV, Babaev VM, Rizvanov IKh, Strobykina IYu, Kataev VE. Russ J Gen Chem 2014;84: 304-8.

5. (a) Andreeva OV, Sharipova RR, Garifullin BF, Strobykina IYu, Kataev VE. *Chem Nat Comp* 2015;**51**:689-92;

(b) Garifullin BF, Sharipova RR, Strobykina IYu, Andreeva OV, Kataev VE. *Chem Nat Comp* 2015;**51**:886-9;

(c) Sharipova RR, Garifullin BF, Andreeva OV, Strobykina IYu, Bazanova OB, Kataev VE. *Russ J Org Chem* 2015;**51**:424-9;

(d) Garifullin BF, Sharipova RR, Strobykina IYu, Andreeva OV, Kravchenko MA, Kataev VE. *Russ J Org Chem* 2015;**51**:1488–98;

(e) Andreeva OV, Sharipova RR, Strobykina IYu, Kravchenko MA, Strobykina AS,

- Voloshina AD, Musin RZ, Kataev VE. Russ J Org Chem 2015;51:1324–33.
- 6. Mosettig E, Nes WR. J. Org. Chem. 1955;20: 884–99.
- 7. Khaibullin RN, Strobykina IYu, Kataev VE, Lodochnikova OA, Gubaidullin AT, Musin RZ. *Russ J Gen Chem* 2009;**79**: 967–71.
- 8. Al'fonsov VA, Bakaleinik GA, Gubaidullin AT, Kataev VE, Kovylyaeva GI, Konovalov AI, Litvinov IA, Strobykina IY, Strobykin SI, Andreeva OV, Korochkina MG *Russ J Gen Chem* 2000;**70**:953-60.
- 9. Kataev VE, Militsina OI, Strobykina IYu, Kovylyaeva GI, Musin RZ, Fedorova OV, Rusinov GL, Zueva MN, Mordovskoi GG, Tolstikov AG. *Pharm Chem J* 2006;**40**:473-75.
- 10. Lioux T, Busson R, Rozenski J, Nguyen-Distèche M, Frère J-M, Herdewijn P. Collect Czech Chem Commun 2005;**70**:1615-41.
- 11. Zhang Z, Ollmann IR, Ye X-S, Wischnat R, Baasov T, Wong C-H. J Am Chem Soc 1999;121:734–53.
- 12. Kaskiw MJ, Tassotto ML, Th'ng J, Jiang ZH. Bioorg Med Chem 2008;16:3209-17.
- 13. Higashi K, Nakayama K, Soga T, Shioya E, Uoto K, Kusama T. Chem Pharm Bull 1990;**38**:3280-82.

- 14. Tournaire-Arellano C, Younes-El Hage S, Valès P, Caujolle R, Sanon A, Bories C, Loiseau
- PM. *Carbohydr Res* 1998;**314**:47–63.
- 15. (a) Kusama T, Soga T, Shioya E, Nakayama K, Nakajima H, Osada Y, Ono Y, Kusumoto S, Shiba T. *Chem Pharm Bull* 1990;**38**:3366-72;
 - (b) Ziegler T. *Carbohydr Res* 1994;**262**:195-212;
 - (c) Kaskiw MJ, Tassotto ML, Th'ng J, Jiang Z-H. *Bioorg Med Chem* 2008;16:3209-17.
- 16. (a) Werz DB, Ranzinger R, Herget S, Adibekian A, Von Der Lieth C-W, Seeberger PH *ACS Chem Biol* 2007;**10**:685-91;
 - (b) Enugala R, Carvalho LCR, Dias Pires MJ, Marques MMB. *Chem Asian J* 2012;**7**:2482-501;
 - (c) Moussian B. Comparative Biochem Physiol, Part B 2008;149:215-26;
 - (d) Parker RB, Kohler JJ. ACS Chem Biol 2009;5:35-46.
- 17. (a) Liu J, Kao P, Hsieh M, Chen Y, Chan P. Acta Cardiolog Sinica 2001;17:133-40;
 - (b) Xu D, Xu M, Lin L, Rao S, Wang J, Davey AK. Life Sci 2012;90:30-8;
 - (c) Jeppesen PB, Gregersen S, Alstrup KK, Hermansen K. *Phytomed* 2002;9:9–14;
 - (d) Takasaki M, Konoshima T, Kozuka M, Tokuda H, Takayasu J, Nishino H, Miyakoshi M, Mizutani K, Lee K-H. *Bioorg Med Chem* 2009;**17**:600–5.
- 18. Donald PR. *Tuberculosis* 2010;**90**:279-92.
- 19. Grynkiewicz G, Szeja W, Boryski J. Acta Poloniae Pharmaceutica Drug Research 2008;65:655-76.
- 20. Backus KM, Boshoff HI, Barry CS, Boutureira O, Patel MK, D'Hooge F, Lee SS, Via LE, Tahlan K, Barry III CE, Davis BG. *Nat Chem Biol* 2011;7:228-35.
- 21. Kyas A, Feigel M. Helv Chim Acta 2005;88:2375–96.

ACCEPTED MANUSCRIPT The first macrocyclic glycoterpenoids comprising glucosamine and diterpenoid isosteviol moieties were synthesized and evaluated for inhibition activity against *M. tuberculosis* H37Rv.