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A catalytic asymmetric conjugate arylation of racemic 5-(trimethylsilyl)cyclohex-2-enone with arylboronic acids was catalyzed by 3 mol %
chiral amidophosphane- or BINAP-Rh(l) in dioxane -water (10:1) to afford trans- and cis-3-aryl-5-(trimethylsilyl)cyclohexanones in high
enantioselectivity. Dehydrosilylation of the product mixture with cupric chloride in DMF gave 5-arylcyclohex-2-enones with up to 93% ee in

good yield. Enantiofacial selectivity with chiral phosphane-Rh(l) exceeds the

trans- diastereoselectivity that is maintained in the achiral or

racemic phosphane-Rh(l)-catalyzed conjugate arylation of 5-(trimethylsilyl)cyclohexenone.

Enantiomerically enriched substituted cyclohexenones haveenzymatic reactioishas proven to be the most effective

been utilized as versatile chiral building blocks for the
synthesis of biologically important compounddmong a
variety of methods for the preparation of these chiral
cyclohexenones? kinetic resolution of racemic substituted
cyclohexenones by catalytic asymmetric reactioasd
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However, kinetic resolution involves a fatal disadvantage
because half of the starting material is discarded. It should scheme 2. Substrate Control versus Chiral Catalyst Control in

also be emphasized that careful control of the reaction Conjugate Arylation of Racemit
progress is required to maximize the recovery yield and ee Substrate-controlled Chiral catalyst-controlled
of the unreacted starting material. Since the enantioenriched addition addition
5-(trialkylsilyl)cyclohexenones themselves have been the o
choice of starting material for the preparation of 5-substituted o trans Siface
cyclohexenones, 5-(trialkylsilyl)cyclohexenones have been TMS»
the target of kinetic resolutiof."*2We describe herein the @ |> ij
straightforward asymmetric synthesis of 5-arylcyclohex- ™S ™S™
enones4 with high ee from racemic 5-(trimethylsilyl)- 1 --
cyclohexenond via chiral phosphane-rhodium(l)-catalyzed Ar’e face
conjugate arylatioi’ and subsequent oxidative dehydrosi-
lylation (Scheme 1). Namely, the idea is based on the utility o

trans re face
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We anticipated that the high enantioselectivity up to 97%
of racemic1 as a synthetic equivalent of cyclohex-2,5- €€ observed with an amidophosph&rgodium(l) catalyst
dienone, which readily isomerizes to phenol. in the conjugate arylation of cyclohexenéhevould over-
Genera”y’ 5-substituted Cyc|ohexenones undqrgns_ come thetranS'diaStereoseleCtiVity, prOViding a mixture of
selective conjugate additida® Although this substrate 2 andent3 with high ee (Figure 1). The difference of the
control is operative in the reaction of racenli¢1 andent
1) to stereoselectively produce racer@i€2 andent2), the
enantiofacial control of a chiral catalyst, if favorisgface

addition, produce® as a major product ovemt2, allowing OO
kinetic resolution to recoveentl as has been reported PPh,
(Scheme 23}5 However, if the chiral catalyst control %O PPh2 PPh,
overcomes theransdiastereoselectivity of the substrate ‘O

control? 2 and ent3 are the major products that bear the
same stereochemistry at the newly created chiral centers.
Dehydrosilylatiod">2 thereof completes an asymmetric syn- Figure 1. Chiral phosphane ligandsand6 for Rh(l).
thesis of 5-substituted cyclohexenonkfrom the racemic
mixture of 1 andent1.
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Table 1. Phosphane-Rh(acacyd,),-Catalyzed Asymmetric Arylation of Racemicat 100°C and Dehydrosilylation t@?

2 +ent-3 (9)-4°
time yield 2 ee ent-3 ee yield ee
entry Ar 5/6 (h) (%) ratio (%) (%) 4 (%) (%)
1 Ph 5¢d 3 91 59:41 76 98 4a 73 83
2 Ph 6 10 91 61:39 89 99 4a 75 93
3 3-MeOCsH4 5¢ 2 93 65:35 72 99 4b 73 84
4 3-MeOCsH4 6 5 92 61:39 83 99 4b 73 93
5 3-ClCsH4 5¢ 2 93 67:33 70 97 4c 72 78
6 3-ClCgH4 6 6 82 63:37 4c 77 90
7 4-CF3C6Hy 5¢ 11 88 68:32 72 99 4d 74 80
8 4-CF35C6Hy 6 22 82 63:37 88 99 4d 74 93
9 2-Naph 5¢d 32 55 87:13 50 98
10 2-Naph 6° 3 94 51:49 83 99 4e 70 90

apPercent ee was determined by HPLC (Supporting Informatfofipe absolute configuration was assigned to $ebfy comparing specific rotation of
the 3-arylcyclohexanones obtained by hydrogenatioa. 6fRhCI(C;Ha)2]2 (1.5 mol %) and KOH (1 equiv) were usetiAt 60 °C.

equiv of KOH in dioxane-water (10:1) at 60C to afford a
59:41 mixture oRaandent3ain 91% yield (Table 1, entry
1). The enantioselectivity was determined by chiral stationary

(racemic2:3 = 83:17-89:11) due to the conformational and
stereoelectronic effects dfwas confirmed without excep-
tion.

phase HPLC to be 76% and 98% ee, respectively. Treatment | conclusion, a chiral phosphane-Rh(l)-catalyzed asym-

of the above mixture o2a andent3a with cupric chloride
in DMF*? at 60°C for 5 h gave §-4a (Ar = Ph) with 83%
ee in 73% yield. §-BINAP 6 was more effective to give a
61:39 mixture of2 with 89% ee andnt3 with 99% ee in
91% combined yield. Dehydrosilylation t&)¢4a with 93%
ee was carried out in 68% overall yield from racerhientry
2).

Aryl groups having electron-donating and -withdrawing
substituents, for example, 3-methoxyphenyl, 3-chlorophenyl,
4-trifluoromethylphenyl, and 2-naphthyl groups, were suc-
cessfully introduced into racemig giving the corresponding
2 andent3 with reasonably high ee (5(09%) in high yields
(55—94%). In the production 02, 6 is superior tdb, giving
higher enantioselectivity (entries 2, 4, 6, 8, and 10). In the
production ofent3 both phosphanegsand6 behave equally
efficiently, giving selectivity over 97% ee. Dehydrosilylation
of a mixture of2b—e and ent3b—e successfully afforded
the correspondingtb—e with 90—93% ee by6 and 78-
84% ee by5 in 70—77% yield. It is also important to note
that with use ofdl-6 as a ligandirans-diastereoselectivity

(12) Asaoka, M.; Shima, K.; Takei, H. Chem. Soc., Chem. Commun.
1988 430-431.
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metric conjugate arylation of racemic 5-(trimethylsilyl)-
cyclohexenone with arylboronic acids and subsequent de-
hydrosilylation gave 5-arylcyclohex-2-enones in high enantio-
selectivity and good two-step yield. The present asymmetric
reaction protocol overcomes the drawback involved in
catalytic kinetic resolution. Enantiofacial selectivity with
chiral phosphane-Rh(l) exceeds thens-diastereoselectivity
that is maintained in achiral or racemic phosphane-rhodium-
catalyzed conjugate arylation of 5-(trimethylsilyl)cyclohex-
enone.

Acknowledgment. This research was supported by the
COE Program “Knowledge Information Infrastructure for
Genome Science” and a Grant-in-Aid for Scientific Research
from the Ministry of Education, Culture, Sports, Science and
Technology, Japan.

Supporting Information Available: Reaction procedure
and characterization data of new compounds. This material
is available free of charge via the Internet at http://pubs.acs.org.

OL051704M

4441



