STUDIES ON DEHYDRO-L-ASCORBIC ACID 2-ARYLHYDRAZONE 3-OXIMES: CONVERSION INTO SUBSTITUTED TRIAZOLES AND IS-OXAZOLINES*

MOHAMED ALI EL SEKILY**, SOHILA MANCY**, AND BERNARD GROSS

Laboratoire de Chimie Organique III (ERA CNRS no. 558), Université de Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre-les-Nancy Cédex (France)

(Received May 12th, 1982; accepted for publication, June 2nd, 1982)

ABSTRACT

L-threo-2,3-Hexodiulosono-1,4-lactone 2-(arylhydrazones) (2) were prepared by condensation of dehydro-L-ascorbic acid with various arylhydrazines. Reaction of 2 with hydroxylamine gave the 2-(arylhydrazone) 3-oximes (3). On boiling with acetic anhydride, 3 gave 2-aryl-4-(2,3-di-O-acetyl-L-threo-glycerol-1-yl)-1,2,3-triazole-5-carboxylic acid $5,4^1$ -lactones (4). On treatment of 4 with liquid ammonia, 2-aryl-4-(L-threo-glycerol-1-yl)-1,2,3-triazole-5-carboxamides (5) were obtained. Acetylation of 5 with acetic anhydride-pyridine gave the triacetates, and vigorous acetylation with boiling acetic anhydride gave the tetraacetyl derivatives. Periodate oxidation of 5 gave the 2-aryl-4-formyl-1,2,3-triazole-5-carboxamides (8), and, on reduction, 8 gave the 2-aryl-4-(hydroxymethyl)-1,2,3-triazole-5-carboxamides, characterized as the monoacetates and diacetates. Controlled reaction of 2 with sodium hydroxide, followed by neutralization, gave 3-(L-threo-glycerol-1-yl)-4,5-isoxazolinedione 4-(arylhydrazones), characterized by their triacetates. Reaction of 2 with HBr-HOAc gave 5-O-acetyl-6-bromo-6-deoxy-L-threo-2,3-hexodiulosono-1,4-lactone 2-(arylhydrazones); these were converted into 4-(2-O-acetyl-3-bromo-3-deoxy-L-threoglycerol-1-yl)-2-aryl-1,2,3-triazole-5-carboxylic acid 5,4¹-lactones on treatment with acetic anhydride-pyridine.

INTRODUCTION

It is known that sugar osazones readily undergo cyclization to triazoles^{2,3} on treatment with such heavy-metal salts as copper sulfate. Bromine³ in water brings about the same conversion, with subsequent bromination at the para position of the phenyl group whenever it is free. On the other hand, oxidation of dehydro-L-ascorbic acid bishydrazones yields bicyclic azo compounds⁴. The triazole derivatives

^{*}Triazole Derivatives from Dehydroascorbic Acids, Part IV. For Part III, see ref. 1.

^{**}On leave of absence from the Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt.

of dehydro-L-ascorbic acid and its 5-epimer have recently been prepared^{1,5,6} through dehydrative cyclization of its 3-oxime 2-phenylhydrazone. Similarly, the *p*-bromophenyl analogs were prepared by the action of bromine in water thereon¹. The insecticidal properties of 2-(*p*-chlorophenyl)- and 2-(*m*-chlorophenyl)-1,2,3-triazoles have been discussed⁷, and, as a continuation of our work⁸⁻¹¹ on the synthesis of nitrogen heterocycles from dehydro-L-ascorbic acid and analogs¹¹, we now describe the synthesis and some reactions of the 2-aryltriazoles prepared from dehydro-L-ascorbic acid 2-arylhydrazone 3-oximes; derivatives possessing the *p*-chlorophenyl, *p*-tolyl, and *p*-nitrophenyl substituents have been prepared.

DISCUSSION AND RESULTS

Unimolecular condensation of dehydro-L-ascorbic acid (L-threo-2,3-hexodiulosono-1,4-lactone) (1) with the selected substituted-phenylhydrazine at room temperature afforded L-threo-2,3-hexodiulosono-1,4-lactone 2-arylhydrazones (2). Derivatives possessing p-chlorophenyl¹², p-tolyl¹², and p-nitrophenyl substituents have been prepared; on treatment of these with hydroxylamine, L-threo-2,3-hexodiulosono-1,4-lactone 2-arylhydrazone 3-oximes (3) were obtained. Dehydrative cyclization and concomitant acetylation of 3 with boiling acetic anhydride gave the 2-aryl-4-(2,3-di-O-acetyl-L-threo-glycerol-1-yl)-1,2,3-triazole-5-carboxylic acid 5,4¹lactones (4). This reaction is similar to that conducted⁵ on the phenyl derivative. The infrared spectra of 4 showed the lactone band at 1800 cm⁻¹, in addition to an ester band at 1740 cm⁻¹. The n.m.r. spectra of compounds 4 showed two distinct, acetyl-group signals between δ 2.0 and 2.16 (see Table IX).

On treatment of 4 with liquid ammonia, deacetylation occurred concurrently with opening of the lactone ring, to afford the 2-aryl-4-(L-threo-glycerol-1-yl)-1,2,3-triazole-5-carboxamides (5). The infrared spectra of compounds 5 showed the amide band at 1690–1680 cm⁻¹, in addition to the hydroxyl band at 3500–3400 cm⁻¹ (see Table III); the lactone band at 1800 cm⁻¹ of the starting compounds had disappeared.

Mild acetylation of compounds 5 with acetic anhydride-pyridine afforded triacetates designated 2-aryl-4-(1,2,3-tri-O-acetyl-L-threo-glycerol-1-yl)-1,2,3-triazole-5carboxamides (6). The infrared spectra of 6 showed an amide band at 1690-1685 cm⁻¹, in addition to an ester band at 1740 cm⁻¹. The n.m.r. spectra of compounds 6 showed three separated acetyl-group signals between δ 2.0 and 2.16, in addition to those expected for the other protons (see Table IX). On the other hand, vigorous acetylation of compounds 5 with boiling acetic anhydride afforded tetraacetates (7), as indicated on the basis of elemental analysis, and n.m.r.- and mass-spectral data. The n.m.r. spectra of compounds 7 showed three O-acetyl-group signals between δ 2.00 and 2.18, in addition to an N-acetyl-group signal at δ 2.60-2.64. The mass spectrum of 7b showed a molecular-ion peak (also the base peak), at m/z 460, corresponding to structure 7b. This was followed by a series of ions arising from the elimination processes involving the sugar moiety attached to the nitrogen hetero-

(a) $Ar = C_6H_4CI-p$, (b) $Ar = C_6H_4Me-p$, (c) $Ar = C_6H_4NO_2-p$, (d) Ar = Ph

Ár 15 cycle. In addition, there was some fragmentation involving the heterocyclic ring (see Table X).

Periodate oxidation of one mol of compound **5** resulted in the consumption of two mol of the oxidant, with the formation of 2-aryl-4-formyl-1,2,3-triazole-5carboxamides (**8**). The infrared spectra of **8** showed a broad band at 1700–1680 cm⁻¹ due to the aldehyde and the amide group (see Table V). Reduction of compounds **8** with sodium borohydride afforded the 2-aryl-4-(hydroxymethyl)-1,2,3-triazole-5carboxamides (**9**). Similarly, acetylation of compounds **9** with acetic anhydride pyridine afforded the 4-(acetoxymethyl)-2-aryl-1,2,3-triazole-5-carboxamides (**10**), whereas vigorous acetylation with boiling acetic anhydride gave the diacetates (**11**). The mass spectrum of compound **11a** (see Table XI) showed a molecular-ion peak at m/z 336, 338, in addition to a series of ions arising from elimination processes in the side chain and in the heterocyclic ring.

On controlled treatment of compounds 3 with sodium hydroxide, followed by acidification, opening of the lactone ring occurred, followed by elimination of a molecule of water, affording 3-(L-*threo*-glycerol-1-yl)-4,5-isoxazolinedione 4-aryl-hydrazones (12). The infrared spectra of compounds 12 showed carbonyl absorption at 1725–1720 cm⁻¹, and, in addition, hydroxyl absorption at 3460–3420 cm⁻¹ (see Table VII). The mass spectrum of 12a showed a molecular ion-peak at m/z 313, 315 (which is the base peak), followed by a series of ions arising from elimination processes involving the sugar moiety attached to the nitrogen heterocyclic. Ions arising from elimination of the chlorine atom, and cleavage in the sugar portion were also noted, in addition to some fragmentation involving the heterocyclic ring (see Table XII).

Treatment of compound 3 with hydrogen bromide in acetic acid gave 5-Oacetyl-6-bromo-6-deoxy-L-threo-2,3-hexodiulosono-1,4-lactone 2-arylhydrazone 3oximes (14). The infrared spectra of compounds 14 showed a band at 1740 cm⁻¹ due to the lactone and ester groups, in addition to the hydroxyl absorption at 3350-3320 cm⁻¹. On boiling with acetic anhydride, compounds 14 were dehydratively cyclized to 4-(2-O-acetyl-3-bromo-3-deoxy-L-threo-glycerol-1-yl)-2-aryl-1,2,3-triazole-5-carboxylic acid 5,4¹-lactone (15). The infrared spectrum of 15 showed the lactone band at 1800 cm⁻¹ and the ester band at 1740 cm⁻¹, and the n.m.r. spectrum showed one acetyl-group signal, at δ 2.00–2.02 (see Table IX).

EXPERIMENTAL

General methods. — Melting points were determined with a Tottoli (Büchi) apparatus and are uncorrected. I.r. spectra were recorded with a 580 B Perkin-Elmer spectrometer, and n.m.r. spectra (for solutions in chloroform-d), with tetramethyl-silane as the standard, with R 12 B Perkin-Elmer and 250 Cameca spectrometers. Chemical shifts are given on the δ scale. Mass spectra were recorded with an LKB 2091 spectrometer; intensities are given in parentheses, as percentages of the base

TABLE I

$\widehat{\mathbf{C}}$
OXIMES
AND
3
2-ARYLHYDRAZONES
×
LR. DATA F
ICROANALYTICAL /

Compound	Ar	M.p.	Molecular	Analysis				$v (cm^{-1})$	~		
		(degrees)	formula	C	H	Hal.	N	НО	lactone	c=0	C=N
2a	C ₆ H ₄ Cl-p	200-201ª	na se na mana de la compositiva de la c	A Normal State and A Normal And A	an da an			- manufacture and an and a state of the stat			
2b	C ₆ H ₄ Me-p	172-173									
20	C6H4NO2-p	189-190	C12H11N8O7	Calc. 46.61	3.58		13.58	3400	1720	1680	1610
				Found 46.72	3.46		13.49				
3a	C ₆ H ₄ Cl-p	235-236	C ₁₂ H ₁₂ CIN ₃ O ₅	Calc. 45.94	3.85	11.30	13.38	3330	1750		1600
	ł			Found 45.95	3.86	11.42	13.28				
3b	C ₆ H ₄ Me-p	241-242	C13H15N3O5	Calc. 53.24	5.15		14.32	3400	1750		1600
				Found 53 21	5.17		14.27				
3c	C6H4NO2-P	231-232	C ₁₂ H ₁₂ N ₄ O ₇	Calc. 44.45	3.73		17.27	3500	1750		1600
				Found 44.55	3.81		17.03				

"Lit.12 m.p. 203-204°. ^bLit.¹² m.p. 172-173°.

MICROANALY	TICAL AND I.R. DA	TA FOR TRIAZOI	LES (4)								
Compound	Ar	<i>M.p.</i>	Molecular	Analysis				-	$v \ (cm^{-1})$		
		(degrees)	formula	U	H		CI	N	lactone	ester	C=N
4a	C6H4Cl-p	87–88	C ₁₆ H ₁₄ CIN ₃ O ₆	Calc. 50.60 Equind 50.51		11 5	9.33	11.07	1800	1740	1600
4b	C ₆ H ₄ Me- <i>p</i>	6768	$C_{17}H_{17}N_{3}O_{\theta}$	Calc. 56.82 Enurd 66.74		29 29 29	20.2	11.46 11.46	1800	1740	1610
4c	$C_6H_4NO_{2-p}$	135–136	$C_{16}H_{14}N_4O_8$	Found 49.29	t tt o	57 57		14.22 14.22	1800	1740	1600
TABLE III											•
MICROANALY	IICAL AND I.R. DA	TA FOR TRIAZOI	JECARBOXAMIDES (5)								
Compound	Ar	M.p.	Molecular	Analysis				v (cm	-1)		
		(degrees)	formula	C	Ĥ	CI	N	НО	HN	CON	C=N
5a	C ₆ H ₄ Cl-p	190–192	C ₁₂ H ₁₃ CIN ₄ O ₄	Calc. 46.09 Equad 46.73	4.19 A 00	11.34	17.91	3350	3200	1685	1610
5b	C ₆ H ₄ Me- <i>p</i>	185-186	C ₁₃ H ₁₆ N ₄ O ₄	Calc. 53.42 Ecund 53.37	5.51		19.16	3380	3200	1690	1610
5c	C6H4NO2-p	194-195	C12H13N5O6	Calc. 44.58 Found 44.52	3.89		21.67	3440	3180	1680	1600

TABLE II

>	
- C	
Y)	
1	
n i	
7	
×.	

MICROANALYTICAL AND I.R. DATA FOR TRIAZOLE ACETATES (6 AND 7)

Compound	Ar	M.p.	Molecular	Analysis				v (cm ⁻¹)		
		(degrees)	formula	С	Н	сı	N	HN	ester	CON
6a	C ₆ H ₄ Cl-p	177-178	C ₁₈ H ₁₉ CIN4O7	Calc. 49.26 Found 49.43	4.36 4.43	8.07 7.90	12.76 12.96	3200	1740	1690
ę	C ₆ H ₄ Me-p	122-123	C ₁₉ H ₂₂ N ₄ O ₇	Calc. 54.54 Found 54.29	5.30 5.03		13.38 13.02	3180	1740	1690
ç	C ₆ H ₄ NO ₂ -p	211-212	C18H19N5O9	Calc. 48.11 Found 48.05	4.26		15.57 15.58	3180	1740	1685
7a	C₀H₄Cl-p	158-159	C20H21CIN4O8	Calc. 49.95 Found 49.72	4.40		11.64 11.78	3180	1740	1690
ď	C ₆ H ₄ Me- <i>p</i>	168-169	$C_{21}H_{24}N_4O_8$	Calc. 54.78 Found 54.62	5.25 5.08		12.16 12.46	3180	1740	1690
7c	C ₆ H ₄ NO ₂ -p	202-203	C20H21N6O10	Calc. 48.88 Found 48.62	4.30 4.54		14.24 14.62	3200	1740	1690

and the subscription of th			a de la casa de la cas	any and a second descent of a second seco	Construction of the second		and the second secon			
Compound	Ar	M.p.	Molecular	Analysis				$v (cm^{-1})$	(
		(degrees)	formula	C	H	CI	N	НО	HN	(CON + COH)
8a	C ₆ H ₄ Cl-p	205-206	C10H7CIN4O2	Calc. 47.92	2.81	14.14	22.34	annan search an the search and the s	3200	1700
				Found 47.52	2.99	14.11	21.94			
8b	C6H4Me-p	201-202	C11H10N4O2	Calc. 57.39	4.37		24.32		3200	1680
				Found 57.72	4.50		24.52			
8c	C6H4NO2-p	177-178	C10H7N5O4	Calc. 45.98	2.70		26.82		3200	1690
				Found 45.72	2.62		26.54			
9a	C ₆ H ₄ Cl-p	218-219	C ₁₀ H ₉ CIN ₄ O ₂	Calc. 47.54	3.59	14.03	22.16	3320	3180	1685
				Found 47.47	3.83	14.05	22.07			
9b	C ₆ H ₄ Me-p	150-151	C ₁₁ H ₁₂ N ₄ O ₂	Calc. 56.89	5.20		24.11	3400	3180	1680
				Found 56.72	5.06		24.36			
9c	C6H4NO2-p	217-218	C10H9N5O4	Calc. 45.63	3.44		26.59	3300	3200	1680
				Found 45.74	3.32		26.72			

MICROANALYTICAL AND I.R. DATA FOR TRIAZOLE ALDEHYDES (8) AND TRIAZOLE ALCOHOLS (9)

TABLE V

7	
щ	
BI	
Ţ	

· · · · ·	
_	
-	
~	
_ <u>H</u>	
Z	
- 73	
_	
-	
0	
-	
-	
- 24	
- 12	
- 53	
<u> </u>	
C)	
- 2	
- •	
- m	
- 3	
- 3	
- N	
- 24	
_	
~	
- 14	
~	
- 12	
0	
Œ	
_	
-	
-	
- 21	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-	
- 🖓	
- 44	
-	
-	
1	
- 7	
_ <	
- 0	
_ <b>≃</b>	
- E	
~~	
ు	
- 2	
Z	
- 73	
~	
റ	
_ <del>``</del>	
_ P4	
- C)	
_ <b>H</b>	
- 9	
_	

Compound	Ar	M.P.	Molecular	Analysis				v (cm ⁻¹ )		
-		(degrees)	formula	C	Н	CI	N	HN	ester	CON
10a	C ₆ H ₄ Cl-p	160-161	C ₁₂ H ₁₁ CIN4O ₃	Calc. 48.91	3.76	12.03	19.00	3180	1740	1690
10b	C ₆ H ₄ Me- <i>p</i>	132-133	C ₁₃ H ₁₄ N ₄ O ₃	Found 49.26 Calc. 56.93	3.75 5.14	12.32	18.71 20.40	3200	1740	1690
10c	C ₆ H ₄ NO ₂ -p	196–197	C ₁₂ H ₁₁ N ₅ O ₅	Found 56.72 Calc. 47.22	5.36 3.63		20.68 22.93	3200	1740	1690
11a	$C_6H_4Cl-p$	177-178	C ₁₄ H ₁₃ ClN ₄ O ₄	Found 47.15 Calc. 49.94	3.49 3.89	10.52	22.43 16.63	3160	1740	1680
11b	C ₆ H₄Me- <i>p</i>	150-151	C ₁₅ H ₁₆ N ₄ O ₄	Found 50.21 Calc. 56.96	3.79 5.09	10.22	16.46 17.70	3180	1740	1685
11c	C ₆ H ₄ NO ₂ -p	174-175	C14H13N5O6	Found 56.71 Calc. 48.42	5.23 3.77		17.42 20.16	3200	1740	1690
				Found 48.12	3.61		20.38			

peak. Microanalyses were performed in the Service Central d'Analyse du CNRS, France.

L-threo-2,3-Hexodiulosono-1,4-lactone 2-(arylhydrazones) (2). — A solution of dehydro-L-ascorbic acid (1; 0.05 mol) in water (100 mL) was treated with the chosen arylhydrazine (0.05 mol). The mixture was kept for 24 h at room temperature; the monohydrazone that had separated out was filtered off, successively washed with water, ethanol, and ether, and dried. Recrystallization from ethanol gave compounds 2 as yellow needles. Melting points, formulas, analyses, and i.r. data are listed in Table I.

L-threo-2,3-Hexodiulosono-1,4-lactone 2-(arylhydrazone) 3-oximes (3). — A solution of the monoarylhydrazone 2 (1 g) in ethanol (50 mL) was treated with hydroxylamine hydrochloride (1 g) and sodium acetate (1 g), and the mixture was boiled under reflux for 3 h. It was then concentrated, water (20 mL) was added, and the solid that separated out was filtered off, washed successively with water, ethanol, and ether, and dried. Each compound was recrystallized from ethanol, giving yellow needles. Melting points, formulas, analyses, and i.r. data are listed in Table I.

2-Aryl-4-(2,3-di-O-acetyl-L-threo-glycerol-1-yl)-1,2,3-triazole-5-carboxylic acid 5,4¹-lactone (4). — (a) A suspension of each compound 3 (1 g) in dry pyridine (20 mL) was treated with acetic anhydride (10 mL), and kept overnight at room temperature. The mixture was poured onto crushed ice, and the product that separated was filtered off, washed with water, and dried. The products were recrystallized from ethanol, to give colorless needles (see Table II). N.m.r. data are listed in Table IX.

(b) A suspension of compound 3 (0.1 g) in acetic anhydride (10 mL) was boiled under reflux for 30 min. The mixture was poured onto crushed ice, and the product that separated was filtered off, successively washed with water and ethanol, and dried. The product was recrystallized from ethanol, to give colorless needles, identical with those obtained by method a.

2-Aryl-4-(L-threo-glycerol-1-yl)-1,2,3-triazole-5-carboxamides (5). — A solution of compound 4 (1 g) in methanol (20 mL) was treated with concentrated ammonia (20 mL), and kept overnight at room temperature. The solution was concentrated under diminished pressure to a small volume, and the solid that separated was filtered off and dried. The products were recrystallized from ethanol-chloroform, to give colorless needles (see Table III).

2-Aryl-4-(1,2,3-tri-O-acetyl-L-threo-glycerol-1-yl)-1,2,3-triazole-5-carboxamide (6). — A solution of each compound 5 (0.1 g) in dry pyridine (10 mL) was treated with acetic anhydride (5 mL), and kept overnight at room temperature. The mixture was poured onto crushed ice, and the solid that separated was filtered off, successively washed with water and ethanol, and recrystallized from ethanol, to give colorless needles. Melting points, formulas, analyses, and i.r. data are listed in Table IV, and n.m.r. data in Table IX.

Triazole tetraacetates (7). — A suspension of each compound 5 (0.1 g) in acetic anhydride (10 mL) was boiled under reflux for 1 h. The mixture was then cooled,

and poured onto crushed ice, and the product that separated was filtered off, washed successively with water and ethanol, and dried. The products were recrystallized from ethanol, giving colorless needles. Melting points, formulas, analyses, and i.r. spectra are listed in Table IV, and n.m.r. data in Table IX. Mass-spectral data for compound 7b are given in Table X.

2-Aryl-4-formyl-1,2,3-triazole-5-carboxamides (8). — A suspension of each compound 5 (0.3 g) in water (30 mL) was treated with a solution of sodium metaperiodate (1 g) in water (20 mL), and the mixture was shaken for 24 h. The solid that separated was filtered off, washed with water, and dried. Each product was recrystallized from chloroform-ethanol, giving colorless prisms. Melting points, formulas, analyses, and i.r. data are listed in Table V.

2-Aryl-4-(hydroxymethyl)-1,2,3-triazole-5-carboxamide (9). — A solution of each compound 8 (0.1 g) in methanol (20 mL) was treated with a solution of sodium borohydride (0.1 g) in water (10 mL), added in small portions with occasional shaking. The solution was acidified with acetic acid, and the solid that separated was filtered off, washed with water, and dried. It was recrystallized from methanol, to give colorless needles (see Table V).

4-(Acetoxymethyl)-2-aryl-1,2,3-triazole-5-carboxamides (10). — A solution of each compound 9 (0.1 g) in dry pyridine (10 mL) was treated with acetic anhydride (5 mL), and kept overnight at room temperature. The mixture was poured onto crushed ice, and the product was filtered off, successively washed with water, ethanol, and ether, and dried. Each product was recrystallized from ethanol, to give colorless needles. Melting points, formulas, analyses, and i.r. data are listed in Table VI.

Triazole diacetates (11). — A suspension of each compound 9 (0.1 g) in acetic anhydride (10 mL) was boiled under reflux for 2 h. The mixture was poured onto crushed ice, and the product was filtered off, washed with water, and dried. Recrystallization from ethanol gave compounds 11 as colorless needles (see Table VI). N.m.r. data are listed in Table IX, and mass-spectral data for compound 11a, in Table XI.

### TABLE VII

MICROANALYTICAL AND I.R. DATA FOR ISOXAZOLINEDIONES (12) AND ACETATES (13)

Ar	M.p.	Molecular	Analys	is			v (cm	-1)
	(degrees)	formula		С	H	N	OH	CO
C6H4Cl-p	170-171	C12H12ClN3O5	Calc.	45.94	3.85	13.38	3420	1725
C6H4Me-p	192–193	$C_{13}H_{15}N_3O_5$	Found Calc.	45.72 53.24	3.76 5.15	13.20 14.32	3460	1720
C ₆ H ₅	150-151	C12H13N3O5	Calc.	51.61	5.24 4.69	14.46	3400	1725
$C_6H_5$	syrup	C18H19N3O8	Calc. Found	53.33 53.71	4.60 4.72 4.52	14.84 10.36 10.58		1730
	Ar C ₆ H ₄ Cl- <i>p</i> C ₆ H ₄ Me- <i>p</i> C ₆ H ₅ C ₆ H ₅	Ar      M.p. (degrees)        C ₆ H ₄ Cl-p      170–171        C ₆ H ₄ Me-p      192–193        C ₆ H ₅ 150–151        C ₆ H ₅ syrup	Ar      M.p. (degrees)      Molecular formula        C ₆ H ₄ Cl-p      170–171      C ₁₂ H ₁₂ ClN ₃ O ₅ C ₆ H ₄ Me-p      192–193      C ₁₃ H ₁₅ N ₃ O ₅ C ₆ H ₅ 150–151      C ₁₂ H ₁₃ N ₃ O ₅ C ₆ H ₅ syrup      C ₁₈ H ₁₉ N ₃ O ₈	Ar      M.p. (degrees)      Molecular formula      Analys Analys $C_6H_4Cl-p$ 170–171 $C_{12}H_{12}ClN_3O_5$ Calc. Found $C_6H_4Me-p$ 192–193 $C_{13}H_{15}N_3O_5$ Calc. Found $C_6H_5$ 150–151 $C_{12}H_{13}N_3O_5$ Calc. Found $C_6H_5$ syrup $C_{18}H_{19}N_3O_8$ Calc. Found	Ar      M.p. (degrees)      Molecular formula      Analysis $C_6H_4Cl_{-p}$ 170–171 $C_{12}H_{12}ClN_3O_5$ Calc. 45.94 Found 45.72 $C_6H_4Me_p$ 192–193 $C_{13}H_{15}N_3O_5$ Calc. 53.24 Found 53.36 $C_6H_5$ 150–151 $C_{12}H_{13}N_3O_5$ Calc. 51.61 Found 51.20 $C_6H_5$ syrup $C_{18}H_{19}N_3O_8$ Calc. 53.33 Found 53.71	Ar      M.p. (degrees)      Molecular formula      Analysis $C$ H        C ₆ H ₄ Cl-p      170–171      C ₁₂ H ₁₂ ClN ₃ O ₅ Calc. 45.94      3.85 Found 45.72        C ₆ H ₄ Me-p      192–193      C ₁₃ H ₁₅ N ₃ O ₅ Calc. 53.24      5.15 Found 53.36      5.24        C ₆ H ₅ 150–151      C ₁₂ H ₁₃ N ₃ O ₅ Calc. 51.61      4.69 Found 51.20      4.60        C ₈ H ₅ syrup      C ₁₈ H ₁₉ N ₃ O ₈ Calc. 53.33      4.72 Found 53.71      4.52	Ar      M.p. (degrees)      Molecular formula      Analysis        C      H      N        C ₆ H ₄ Cl-p      170–171      C ₁₂ H ₁₂ ClN ₃ O ₅ Calc. 45.94      3.85      13.38        C ₆ H ₄ Me-p      192–193      C ₁₃ H ₁₅ N ₃ O ₅ Calc. 53.24      5.15      14.32        Found 53.36      5.24      14.46        C ₆ H ₅ 150–151      C ₁₂ H ₁₃ N ₃ O ₅ Calc. 51.61      4.69      15.04        Found 51.20      4.60      14.84      C ₈ H ₅ syrup      C ₁₈ H ₁₉ N ₃ O ₈ Calc. 53.33      4.72      10.36        Found 53.71      4.52      10.58      Found 53.71      4.52      10.58	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Compound	Ar	<i>M.p.</i>	Molecular	Analysis			$v (cm^{-1})$		
		(degrees)	formula	C	Н	N	lactone	(lactone + ester)	ester
<b>14a</b>	C6H4Cl-p	206-207	C ₁₄ H ₁₃ BrClN ₃ O ₅	Calc. 40.16	3.13	10.03	And a first second seco	1740	
14b	C ₆ H ₄ Me-p	216-218	C ₁₅ H ₁₆ BrN ₃ O ₅	Calc. 45.24	4.05	10.54		1740	
14c	C ₆ H ₄ NO ₂ -p	218-220	C14H13BrN4O7	Calc. 39.18	4.32 3.05	10./4		1740	
15b	C ₆ H ₄ Me- <i>p</i>	117-118	C15H14BrN3O4	Calc. 47.38	3.71	11.04	1800		1740
15c	C ₆ H ₄ NO ₂ -p	139-140	C14H11BrN4O6	Found 47.00 Calc. 40.89 Found 40.72	2.69 2.69 2.60	13.62 13.62 13.42	1800		1740

MICROANALYTICAL AND I.R. DATA FOR COMPOUNDS 14 AND 15

TABLE VIII

		and the second	Address of the second se	the second se	and the second	
Com- pound	Н-3	Н-3′	7-Н	І-Н	Aryl	Others
4448686666866366128444453 8444453	4.36 q 4.35 q 4.35 q 4.16 q 4.20 q 4.20 q 4.20 q 4.20 q 4.20 q 3.66 3.66 3.66 3.76 3.77 3.76	4.55 a 4.55 a 4.55 a 4.35 a 4.35 a 4.35 a 4.35 a 4.35 a 8.35 a 8.	5.50 q 5.55 q 5.55 q 5.55 q 5.80 q 5.80 q 5.82 q 5.82 q 5.82 q 5.82 q 5.82 q 5.82 q 5.82 q 5.82 q 5.82 m 4.44 m	5.86 d 5.84 d 6.72 d 6.72 d 6.72 d 6.72 d 6.70 d 6.70 d 5.56 s 5.55 s 5.55 s 5.55 s 5.55 s 6.95 d 6.01 d 6.01 d 6.01 d	7.50–8.20 m 7.25–8.47 m 7.25–8.47 m 7.50–8.00 m 7.26–8.43 m 7.24–7.93 m 7.24–7.92 m 8.26–8.41 m 7.45–8.03 m 7.45–8.03 m 7.45–8.00 m 7.25–7.92 m 7.25–7.92 m 7.25–7.92 m 7.25–7.72 m 7.25–7.72 m 7.25–7.72 m 7.21–7.79 m	2.04, 2.1 (2 s, 2 × 3 H, 2 OAc) 2.03, 2.09 (2 s, 2 × 3 H, 2 OAc) 2.03, 2.09 (2 s, 2 × 3 H, 2 OAc) 2.04, 2.15 (2 s, 2 × 3 H, 2 OAc) 2.03, 2.08, and 2.16 (3 s, 3 × 3 H, 3 OAc) 2.03, 2.04, and 2.13 (3 s, 3 × 3 H, 3 OAc) 2.00, 2.04, and 2.13 (3 s, 3 × 3 H, 3 OAc) 2.00, 2.04, and 2.15 (3 s, 3 × 3 H, 3 OAc) 2.00, 2.04, and 2.15 (3 s, 3 × 3 H, 3 OAc); 2.64 (s, 3 H, NAc) 2.00, 2.07, and 2.18 (3 s, 3 × 3 H, 3 OAc); 2.64 (s, 3 H, NAc) 2.00, 2.07, and 2.18 (3 s, 3 × 3 H, 3 OAc); 2.64 (s, 3 H, NAc) 2.02, 2.07, and 2.18 (3 s, 3 × 3 H, 3 OAc); 2.64 (s, 3 H, NAc) 2.15 (s, 3 H, OAc) 2.15 (s, 3 H, OAc) 2.16 (s, 3 H, OAc) 2.17 (s, 3 H, OAc) 2.18 (3 s, 3 × 3 H, 3 OAc), and 12.69 (NH) 2.06 (s, 3 H, OAc) 2.04 (s, 3 H, OAc) 2.06 (s, 3 H, OAc) 2.06 (s, 3 H, OAc) 2.00 (s, 3 H, OAc) 2.01 (s, 3 H, OAc) 2.01 (s, 3 H, OAc) 2.01 (s, 3 H, OAc) 2.02 (s, 3 H, OAc) 2.01 (s, 3 H, OAc) 2.01 (s, 3 H, OAc) 2.02 (s, 3 H, OAc) 2.01 (s, 3 H, OAc) 2.01 (s, 3 H, OAc) 2.02 (s, 3 H, OAc) 2.01 (s, 3 H, OAc) 2.02 (s, 3 H, OAc) 2.03 (s, 3 H, OAc) 2.04 (s, 3 H, OAc) 2.04 (s, 3 H, OAc) 2.05 (s, 3 H, OAc) 2.06 (s, 3 H, OAc) 2.04 (s, 3 H, OAc) 2.04 (s, 3 H, OAc) 2.04 (s, 3 H, OAc) 2.05 (s, 3 H, OAc) 2.06 (s, 3 H, OAc) 2.06 (s, 3 H, OAc) 2.01 (s, 3 H, OAc) 2.01 (s, 3 H, OAc) 2.02 (s, 3 H, OAc) 2.02 (s, 3 H, OAc) 2.03 (s, 3 H, OAc) 2.04 (s, 3 H, OAc) 2.04 (s, 3 H, OAc) 2.05 (s, 3 H, OAc) 2.05 (s, 3 H, OAc) 2.06 (s, 3 H, OAc) 2.06 (s, 3 H, OAc) 2.07 (s, 3 H, OAc) 2.08 (s, 3 H, OAc) 2.09 (s, 3 H, OAc) 2.00 (s, 3 H, OAc) 2.0

¹H-N.M.R. DATA FOR COMPOUNDS PREPARED

**TABLE IX** 

DEHYDRO-L-ASCORBIC ACID 2-ARYLHYDRAZONE 3-OXIMES

# TABLE X

SELECTED IONS IN THE MASS SPECTRUM OF COMPOUND 7b

Ion	m/z	
M + 1	461 (25)	
Μ	460 (100)	
$M - CH_2CO + H$	419 (20)	
$M - CH_2CO$	418 (70)	
$M - CH_3 - CH_2CO$	403 (16)	
M - HOAc + H	401 (45)	
M – HOAc	400 (15)	
M - HOAc - OH	383 (70)	
$M - HOAc - H_2O$	382 (60)	
$M - 2 CH_2CO$	376 (20)	
$M - 2 CH_2CO - H_2O$	366 (90)	
$M - 3 CH_2CO - OH$	317 (28)	
$M - 4 CH_2CO + 2 H$	294 (36)	
N ₃ C ₆ H ₄ CH ₃	133 (70)	
N ₂ C ₆ H ₄ CH ₃	119 (62)	
NHC ₆ H ₄ CH ₃	105 (36)	
NC6H4CH3	104 (60)	
C ₆ H ₄ CH ₃	91 (70)	

# TABLE XI

### SELECTED IONS IN THE MASS SPECTRUM OF COMPOUND 11a

----

m/z	
337 (50); 339 (20)	
336 (80); 338 (40)	
294 (100); 296 (30)	
278 (20); 280 (10)	
259 (40)	
252 (80); 254 (40)	
217 (8)	
178 (30); 180 (18)	
153 (12); 155 (8)	
139 (30); 141 (15)	
126 (10); 128 (6)	
125 (20); 127 (12)	
111 (70); 113 (30)	
	m/z 337 (50); 339 (20) 336 (80); 338 (40) 294 (100); 296 (30) 278 (20); 280 (10) 259 (40) 252 (80); 254 (40) 217 (8) 178 (30); 180 (18) 153 (12); 155 (8) 139 (30); 141 (15) 126 (10); 128 (6) 125 (20); 127 (12) 111 (70); 113 (30)

#### TABLE XII

SELECTED IONS IN THE MASS SPECTRUM OF COMPOUND 12a

Ion	m/z
M	213 (100); 315 (30)
M - O	297 (60); 299 (20)
$M - H_2O$	295 (65); 297 (30)
$M - CH_2OH$	282 (60); 284 (25)
M - Cl	279 (15)
$M - CH_2OH - O$	266 (82); 268 (36)
$M - CH_2OH - OH$	265 (76); 267 (32)
$M - CH_2OH - H_2O$	264 (40); 266 (18)
$M - CH_2OH - H_2O - H_2$	262 (36); 264 (15)
$M - CH_2OH - CHOH$	252 (32); 254 (14)
$M - Cl - CH_2OH$	248 (22)
$M - CH_2OH - CHOH - O$	236 (40); 238 (18)
$M - CH_2OH - CHOH - Cl$	218 (64)
N ₃ C ₆ H ₄ Cl	153 (30); 155 (12)
N ₂ C ₆ H ₄ Cl	139 (28); 141 (17)
HNC ₆ H ₄ Cl	126 (10); 128 (6)
NC ₆ H ₄ Cl	125 (18); 127 (10)
C ₆ H ₄ Cl	111 (60); 113 (28)

3-(L-threo-glycerol-1-yl)-4,5-isoxazolinedione 4-arylhydrazones (12). — A suspension of each compound 2 (1 mmol) in water (10 mL) was treated with a 10% solution of sodium hydroxide (20 mL), and the mixture was heated for 15 min at 80°, cooled, acidified with acetic acid, and kept overnight at room temperature. The product was filtered off, washed with water, and recrystallized from ethanol, to give pale-yellow needles (see Table VII). Mass-spectral data for compound 12a are given in Table XII.

3-(Tri-O-acetyl-L-threo-glycerol-1-yl)-4,5-isoxazolinedione 4-phenylhydrazone (13d). — A solution of 3-(L-threo-glycerol-1-yl)-4,5-isoxazolinedione 4-phenylhydrazone (12d; 0.1 g) in dry pyridine (10 mL) was treated with acetic anhydride (5 mL), and kept overnight at room temperature. The mixture was poured onto crushed ice, and a pure sample of the product was obtained by preparative t.l.c. on silica gel, using 1:3 (v/v) cyclohexane-methanol as the eluant (see Table VII). N.m.r. data are listed in Table IX.

5-O-Acetyl-6-bromo-6-deoxy-L-threo-2,3-hexodiulosono-1,4-lactone 2-arylhydrazone 3-oximes (14). — To each compound 3 (1 g) was added HBr-HOAc (20 mL), and the mixture was stirred for 24 h at room temperature. Water (100 mL) was added, and the solid that separated was filtered off, washed successively with water, ethanol, and ether, and dried. It was recrystallized from ethanol, to give colorless needles (see Table VIII). N.m.r. data are given in Table IX.

2-Aryl-4-(2-O-acetyl-3-bromo-3-deoxy-L-threo-glycerol-1-yl)-1,2,3-triazole-5carboxylic acid 5,4¹-lactone (15). — A suspension of compound 14 (0.1 g) in acetic anhydride (10 mL) was boiled under reflux for 30 min. The mixture was poured onto crushed ice, and the product that separated was filtered off, washed with water, and dried. Each product was recrystallized from ethanol, giving colorless needles. Melting points, formulas, analyses, and i.r. data are listed in Table VIII, and n.m.r. data in Table IX.

# REFERENCES

- 1 M. A. EL SEKILY AND S. MANCY, Carbohydr. Res., 102 (1982) 231-239.
- 2 R. M. HANN AND C. S. HUDSON, J. Am. Chem. Soc., 66 (1944) 735-738.
- 3 H. EL KHADEM AND Z. M. EL SHAFEI, J. Chem. Soc., (1958) 3117-3119.
- 4 H. S. EL KHADEM AND E. S. H. EL ASHRY, Carbohydr. Res., 7 (1968) 501-502; 13 (1970) 57-61.
- 5 M. EL SEKILY, S. MANCY, I. EL KHOLY, E. S. H. EL ASHRY, H. S. EL KHADEM, AND D. L. SWARTZ, Carbohydr. Res., 59 (1977) 141–149.
- 6 M. A. EL SEKILY AND S. MANCY, Carbohydr. Res., 68 (1979) 87-93.
- 7 H. S. EL KHADEM, A. M. KOLKAILA, AND M. H. MESHREKI, J. Chem. Soc., (1963) 3531-3535.
- 8 B. GROSS, M. A. EL SEKILY, S. MANCY, AND H. S. EL KHADEM, Carbohydr. Res., 37 (1974) 384-389.
  9 M. A. EL SEKILY, Pharmazie, 34 (1979) 531-534.
- 10 H. S. EL KHADEM, Z. M. EL SHAFEI, AND M. A. EL SEKEILI, J. Org. Chem., 37 (1972) 3523-3525.
- 11 H. S. EL KHADEM, M. H. MESHREKI, E. S. H. EL ASHRY, AND M. A. EL SEKEILY, Carbohydr. Res., 21 (1972) 430-439.
- 12 E. S. H. EL ASHRY, I. E. EL KHOLY, AND Y. EL KILANY, Carbohydr. Res., 59 (1977) 417-426.