Preparation of 2-(1-Chloroalkyl)-4,5-dimethyloxazoles and (*E*)-2-Alkenyl-4,5-dimethyloxazoles

 Table 1
 Synthesis of 3a-h

Hua Zhang,^{a-c} Peng-Fei Yan,^c Guo-Lin Zhang*^a

^a Chengdu Institute of Biology, The Chinese Academy of Sciences, Chengdu 610041, P. R. of China Fax +86(28)85225401; E-mail: zhanggl@cib.ac.cn

- ^b Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. of China
- ^c College of Chemical Engineering and Material of Heilongjiang University, Haerbin 150080, P. R. of China

Received 9 November 2005; revised 12 January 2006

Abstract: 2-(1-Chloroalkyl)-4,5-dimethyloxazoles were prepared in 84–91% yields by simultaneous reduction and regioselective chlorination of the corresponding unstable *N*-oxides with POCl₃ or SOCl₂. Dehydrochlorination of 2-(1-chloroalkyl)-4,5-dimethyloxazoles with potassium hydroxide afforded (*E*)-2-alkenyl-4,5-dimethyloxazoles in 71–90% yields.

Key words: oxazole, chlorination, regioselectivity, dehydrochlorination

Oxazoles have attracted great interest due to their occurrence as subunits of various biologically active natural products and some drug molecules, as well as their applications as valuable precursors in many useful synthetic transformations.^{1,2} There are some synthetic methods for 2,4,5-trisubstituted oxazoles,^{3,4} but there is no report on the synthesis of 2-(1-chloroalkyl)-4,5-dimethyloxazoles **5** and (*E*)-2-alkenyl-4,5-dimethyloxazoles **6**. Here, we report a practical and convenient synthesis of **5** and **6**.

According to the procedure reported,^{5,6} several 4-chloromethyl-2-aryl-5-methyloxazoles **3** were prepared from the *N*-oxides **2** with POCl₃ or SOCl₂ in chloroform at reflux (Scheme 1, Table 1). Compounds **2** could be obtained by condensation of aromatic aldehyde and 2,3butanedione monooxime **1** in acetic acid saturated by anhydrous hydrochloride gas.^{5,6}

Scheme 1 *Reagents and conditions*: (a) anhyd HCl (g), ArCHO, AcOH; (b) POCl₃ (or SOCl₂), CHCl₃, reflux.

While attempting to prepare 2-alkyl-4-chloromethyl-5methyloxazoles following the above-mentioned procedure, we observed the chlorination of the corresponding N-oxides by POCl₃ or SOCl₂ at 2-methylene rather than 4-methyl (Scheme 2) position. This phenomenon may be due to the activity difference between 2-methylene and 4-methyl (Scheme 2) groups. To investigate the scope and

SYNTHESIS 2006, No. 11, pp 1763–1766 Advanced online publication: 05.05.2006 DOI: 10.1055/s-2006-942351; Art ID: F19305SS © Georg Thieme Verlag Stuttgart · New York

R	Products	Isolated yield (%) ^a
Phenyl	3a	94 (91)
4-Methoxyphenyl	3b	88 (85)
3,4-Dimethoxyphenyl	3c	86 (83)
3,4,5-Trimethoxyphenyl	3d	83 (80)
4-Chlorophenyl	3e	89 (86)
4-Bromophenyl	3f	79 (78)
4-Nitrophenyl	3g	91 (89)
Furan-2-yl	3h	85 (84)

 $^{\mathrm{a}}$ The numbers in parentheses are the yields obtained when $SOCl_2$ was used.

efficiency of the reaction, compounds 5a-f were synthesized. Dehydrochlorination of 5b-f with potassium hydroxide afforded 6b-f (Table 2). The structure of 5b was determined by 2D NMR experiments (Figure 1).

Scheme 2 Reagents and conditions: (a) anhyd HCl (g), RCH₂CHO, AcOH; (b) POCl₃ or SOCl₂, CHCl₃, reflux; (c) KOH, C_2H_5OH , reflux.

In conclusion, a simple and efficient procedure to synthesize 2-(1-chloroalkyl)-4,5-dimethyloxazoles and (*E*)-2alkenyl-4,5-dimethyloxazoles was developed.

Table 2Synthesis of 5a–f and 6b–f

Y	Y - V O	Isolated yield (%) ^a
Chlorophenylmethyl	5a	88 (86)
1-Chloro-2-phenylethyl	5b	91 (88)
1-Chloropropyl	5c	87 (81)
2-Chloropropan-2-yl	5d	90
1-Chloropentyl	5e	87
1-Chlorooctyl	5f	84
Styryl	6b	90
Propenyl	6c	73
Isopropenyl	6d	71
Pentenyl	6e	80
Octenyl	6f	87

 $^{\mathrm{a}}$ The numbers in parentheses are the yields obtained when SOCl_2 was used.

Figure 1 Major HMBC (\rightarrow) and NOESY (\leftrightarrow) correlations in compound **5b**.

All starting compounds were used as received from commercial sources without further purification. Petroleum ether (PE) used had the boiling range 60–90 °C. Melting points were determined on a XRC-1 micromelting point apparatus and are uncorrected. Column chromatography was carried out on silica gel (200–300 mesh, Qingdao Haiyang Chemical Co. Ltd.). NMR spectra were recorded on a Bruker Avance 600 spectrometer with TMS as internal standard. MS spectra measurements were carried out on a Finnigan LCQ^{DECA} mass spectrometer (ESI–MS) and a BioTOF-Q mass spectrometer (HR–ESI–MS). IR spectra were recorded on a Perkin-Elmer spectrum one FT-IR spectrometer (KBr disc).

Synthesis of 3a-h and 5a-f; General Procedure

A solution of 2,3-butanedione monooxime⁷ (0.40 g, 5.0 mmol) and aldehyde (5.3 mmol) in AcOH (20 mL) was cooled to 0–5 °C. Anhyd HCl (g) was bubbled into the reaction mixture for 0.5 h. The mixture was stirred at the same temperature for 0.5 h and diluted with Et_2O (40 mL). The precipitate was filtered and washed with Et₂O (2 × 10 mL), then dissolved in H₂O (20 mL) and concd NH₄OH (20 mL). This solution was extracted with CHCl₃. The combined organic layer was washed with H₂O and brine, and dried over MgSO₄. The solvent was removed in vacuo to give the unstable *N*-oxides. To a solution of the unstable *N*-oxides (4 mmol) in CHCl₃ (20 mL) was added dropwise POCl₃ or SOCl₂ (0.4 mL, 5 mmol). The mixture was stirred at reflux for 0.5 h, then cooled to r.t., and washed with H₂O (3 × 20 mL). The combined aqueous layer was reextracted with CHCl₃ (2 × 30 mL). The combined organic layer was dried over MgSO₄, and the solvent was removed in vacuo to give the crude products, which were purified by column chromatography or by recrystallization.

Synthesis of 6b-f; General Procedure

The mixture of **5b–f** (2.0 mmol) in anhyd EtOH (20 mL) and anhyd KOH (2.2 mmol) was stirred at reflux for 2 h and then cooled to r.t. The solvent was removed in vacuo to give the residue, which was washed with Et_2O (3 × 20 mL). The combined organic layer was washed with H_2O and dried over MgSO₄. Then the solvent was removed in vacuo to give the crude products, which were purified by column chromatography.

4-Chloromethyl-5-methyl-2-phenyloxazole (3a)

Yield: 0.78 g (94%); colorless columnar crystals [PE–acetone, 30:1]; mp 77.8–78.3 $^{\circ}\mathrm{C}.$

IR (KBr): 2924, 1633, 1558, 1490, 1448, 1259, 1112, 1063, 774, 700 $\rm cm^{-1}.$

¹H NMR (600 MHz, CDCl₃): δ = 2.43 (s, 3 H), 4.56 (s, 2 H), 7.26 (t, *J* = 7.8 Hz, 1 H), 7.30 (t, *J* = 7.2 Hz, 2 H), 7.42 (d, *J* = 7.5 Hz, 2 H).

¹³C NMR (150 MHz, CDCl₃): δ = 160.1, 146.6, 132.9, 130.3, 128.7, 127.2, 126.2, 37.3, 10.4.

ESI–MS (+ve mode): m/z (%) = 230 (82) [M + Na]⁺, 246 (15) [M + K]⁺.

HRMS (ESI, +ve mode): m/z [M + H]⁺ calcd for C₁₁H₁₁ClNO: 208.0524; found: 208.0521.

4-Choromethyl-2-(4-methoxyphenyl)-5-methyloxazole (3b)

Yield: 0.83 g (88%); colorless cubic crystals [PE–acetone, 30:1]; mp 83.9–84.2 °C.

IR (KBr): 2964, 1617, 1590, 1499, 1447, 1251, 1165, 1024, 832, 740, 698 $\rm cm^{-1}.$

¹H NMR (600 MHz, CDCl₃): δ = 2.40 (s, 3 H), 3.85 (s, 3 H), 4.54 (s, 2 H), 6.94 (d, *J* = 8.8 Hz, 2 H), 7.93 (d, *J* = 8.6 Hz, 2 H).

¹³C NMR (150 MHz, CDCl₃): δ = 161.2, 160.2, 145.9, 132.6, 127.8, 120.1, 114.1, 55.4, 37.4, 10.3.

ESI–MS (+ve mode): m/z (%) = 238 (70) [M + H]⁺, 260 (10) [M + Na]⁺.

HRMS (ESI, +ve mode): m/z [M + H]⁺ calcd for C₁₂H₁₃ClNO₂: 238.0635; found: 238.0629.

4-Chloromethyl-2-(3,4-dimethoxyphenyl)-5-methyloxazole (3c) Yield: 0.92 g (86%); colorless needles [PE–acetone, 20:1]; mp 113.8–114.3 °C.

IR (KBr): 2962, 1607, 1568, 1513, 1463, 1251, 1138, 1023, 858, 770, 714 $\rm cm^{-1}.$

¹H NMR (600 MHz, CDCl₃): δ = 2.42 (s, 3 H), 3.93 (s, 3 H), 3.97 (s, 3 H), 4.54 (s, 2 H), 6.91 (d, *J* = 8.3 Hz, 1 H), 7.52 (d, *J* = 1.7 Hz, 1 H), 7.57 (dd, *J* = 1.7, 8.3 Hz, 1 H).

 ^{13}C NMR (150 MHz, CDCl₃): δ = 160.1, 150.9, 149.1, 146.1, 132.6, 120.2, 119.4, 111.0, 109.0, 56.0, 37.4, 10.4.

ESI–MS (+ve mode): m/z (%) = 268 (71) [M + H]⁺, 290 (60) [M + Na]⁺.

HR–MS (ESI, +ve mode): m/z [M + H]⁺ calcd for C₁₃H₁₅ClNO₃: 268.0739; found: 268.0735.

4-Chloromethyl-2-(3,4,5-trimethoxyphenyl)-5-methyloxazole (3d)

Yield: 0.98 g (83%); colorless cubic crystals [PE–acetone, 15:1]; mp 113.9–114.6 $^{\circ}\mathrm{C}.$

IR (KBr): 2924, 1630, 1560, 1502, 1418, 1241, 1127, 1004, 747, 779, 714 $\rm cm^{-1}.$

¹H NMR (600 MHz, CDCl₃): δ = 2.44 (s, 3 H), 3.90 (s, 3 H), 3.94 (s, 6 H), 4.56 (s, 2 H), 7.25 (s, 2 H).

¹³C NMR (150 MHz, CDCl₃): δ = 159.9, 153.5, 146.5, 140.0, 132.9, 122.6, 103.4, 61.0, 56.3, 37.3, 10.4.

ESI–MS (+ve mode): m/z (%) = 298 (84) [M + H]⁺, 320 (72) [M + Na]⁺, 337 (15) [M + K]⁺.

HRMS (ESI, +ve mode): m/z [M + H]⁺ calcd for C₁₄H₁₇ClNO₄: 298.0841; found: 298.0834.

4-Chloromethyl-2-(4-chlorophenyl)-5-methyloxazole (3e)

Yield: 0.86 g (89%); colorless cubic crystals [PE–acetone, 30:1]; mp 92.3–92.9 °C.

IR (KBr): 2962, 1634, 1605, 1549, 1485, 1260, 1118, 1090, 834, 716, 691 $\rm cm^{-1}.$

¹H NMR (600 MHz, CDCl₃): δ = 2.42 (s, 3 H), 4.54 (s, 2 H), 7.41 (d, *J* = 8.5 Hz, 2 H), 7.93 (d, *J* = 8.5 Hz, 2 H).

¹³C NMR (150 MHz, CDCl₃): δ = 159.1, 146.8, 136.4, 133.1, 129.0, 127.4, 125.7, 37.1, 10.4.

ESI–MS (+ve mode): m/z (%) = 243 (74) [M + H]⁺, 265 (20) [M + Na]⁺.

HRMS (ESI, +ve mode): m/z [M + H]⁺ calcd for C₁₁H₁₀Cl₂NO: 243.0134; found: 243.0125.

2-(4-Bromophenyl)-4-chloromethyl-5-methyloxazole (3f)

Yield: 0.91 g (79%); colorless cubic crystals [PE–acetone, 20:1]; mp 57–58 °C.

IR (KBr): 2970, 1633, 1599, 1481, 1402, 1258, 1117, 1006, 843, 718, 700 $\rm cm^{-1}.$

¹H NMR (600 MHz, CDCl₃): δ = 2.44 (s, 3 H), 4.53 (s, 2 H), 7.57 (d, *J* = 8.5 Hz, 2 H), 7.87 (d, *J* = 8.5 Hz, 2 H).

¹³C NMR (150 MHz, CDCl₃): δ = 159.3, 146.6, 133.2, 132.0, 127.8, 126.1, 124.7, 37.4, 10.7.

ESI–MS (+ve mode): m/z (%) = 286 (80) [M + H]⁺, 308 (24) [M + Na]⁺.

4-Chloromethyl-5-methyl-2-(4-nitrophenyl)oxazole (3g)

Yield: 0.92 g (91%); yellow columnar crystals [PE–acetone, 25:1]; mp 107.4–107.9 °C.

IR (KBr): 3088, 2975, 2925, 1629, 1603, 1561, 1520, 1485, 1353, 1333, 1108, 1063, 864, 852, 710 $\rm cm^{-1}.$

¹H NMR (600 MHz, CDCl₃): δ = 2.48 (s, 3 H), 4.57 (s, 2 H), 8.18 (d, *J* = 8.6 Hz, 2 H), 8.31 (d, *J* = 8.6 Hz, 2 H).

¹³C NMR (150 MHz, CDCl₃): δ = 157.9, 148.6, 148.3, 134.1, 132.6, 126.9, 124.2, 36.8, 10.5.

ESI-MS (+ve mode): m/z (%) = 253 (85) [M + H]⁺.

HRMS (ESI, +ve mode): m/z [M + H]⁺ calcd for $C_{11}H_{10}ClN_2O_3$: 253.0312; found: 253.0316.

4-Chloromethyl-2-(furan-2-yl)-5-methyloxazole (3h)

Yield: 0.67 g (85%); colorless needles [PE–acetone, 40:1]; mp 43–45 °C.

IR (KBr): 3106, 2970, 1634, 1620, 1546, 1495, 1436, 1305, 1264, 1157, 1025, 954, 893, 764, 774, 747, 706 $\rm cm^{-1}.$

¹H NMR (600 MHz, CDCl₃): δ = 2.42 (s, 3 H), 4.53 (s, 2 H), 6.53 (dd, *J* = 1.7, 3.4 Hz, 1 H), 6.98 (d, *J* = 3.4 Hz, 1 H), 7.54 (t, *J* = 0.8 Hz, 1 H).

¹³C NMR (150 MHz, CDCl₃): δ = 152.7, 146.1, 144.3, 142.6, 132.7, 111.8, 111.2, 37.0, 10.3.

ESI–MS (+ve mode): m/z (%) = 220 (75) [M + Na]⁺, 162 (79) [M – Cl]⁺.

HRMS (ESI, +ve mode): m/z [M + Na]⁺ calcd for C₉H₈ClNO₂Na: 220.0138; found: 220.0136.

2-(Phenylchloromethyl)-4,5-dimethyloxazole (5a)

Yield: 0.78 g (88%); colorless oil.

IR (KBr): 2928, 2852, 1625, 1559, 1490, 1441, 1254, 1110, 1030, 770, 690 $\rm cm^{-1}.$

¹H NMR (600 MHz, CDCl₃): δ = 2.36 (s, 3 H), 2.38 (s, 3 H), 6.21 (s, 1 H), 7.28 (d, *J* = 7.8 Hz, 2 H), 7.30 (t, *J* = 7.3 Hz, 1 H), 7.33 (t, *J* = 7.6 Hz, 2 H).

¹³C NMR (150 MHz, CDCl₃): δ = 159.4, 138.7, 136.2, 129.7, 128.3, 127.6, 126.2, 62.8, 12.1, 10.3.

HRMS (ESI, +ve mode): m/z [M + H]⁺ calcd for C₁₂H₁₃ClNO: 222.0618; found: 222.0612.

2-(1-Chloro-2-phenylethyl)-4,5-dimethyloxazole (5b) Yield: 0.86 g (91%); yellow oil.

IR (KBr): 2965, 1630, 1551, 1497, 1443, 1260, 1110, 1060, 771, 710 $\rm cm^{-1}.$

¹H NMR (600 MHz, CDCl₃): $\delta = 2.06$ (s, 3 H), 2.34 (s, 3 H), 3.39 (dd, J = 7.1, 14.1 Hz, 1 H), 3.58 (dd, J = 8.2, 14.1 Hz, 1 H), 5.05 (t, J = 7.6 Hz, 1 H), 7.20 (d, J = 7.4 Hz, 2 H), 7.24 (t, J = 7.1 Hz, 1 H), 7.28 (t, J = 7.5 Hz, 2 H).

¹³C NMR (150 MHz, CDCl₃): δ = 158.4, 144.4, 136.5, 131.2, 129.3, 128.6, 127.2, 53.8, 42.2, 11.1, 10.0.

HRMS (ESI, +ve mode): m/z [M + H]⁺ calcd for C₁₃H₁₅ClNO: 236.0837; found: 236.0831.

2-(1-Chloropentyl)-4,5-dimethyloxazole (5c)

Yield: 0.60 g (87%); colorless oil.

IR (KBr): 2967, 2862, 1667, 1455, 1384 cm⁻¹.

¹H NMR (600 MHz, CDCl₃): δ = 1.05 (t, *J* = 7.3 Hz, 3 H), 2.04 (s, 3 H), 2.18 (s, 3 H), 2.20 (m, 2 H), 4.79 (t, *J* = 7.1 Hz, 1 H).

¹³C NMR (150 MHz, CDCl₃): δ = 159.2, 144.2, 130.9, 55.0, 37.3, 13.7, 10.1, 9.9.

HRMS (ESI, +ve mode): m/z [M + H]⁺ calcd for C₈H₁₃ClNO: 174.0686; found: 174.0683.

2-(2-Chloropropan-2-yl)-4,5-dimethyloxazole (5d) Yield: 0.64 g (90%), colorless oil.

IR (KBr): 2957, 2868, 1661, 1445, 1380 cm⁻¹.

¹H NMR (600 MHz, CDCl₃): δ = 1.98 (s, 6 H), 2.20 (s, 3 H), 2.39 (s, 3 H).

¹³C NMR (150 MHz, CDCl₃): δ = 167.4, 145.8, 130.8, 58.2, 29.3, 10.1.

HRMS (ESI, +ve mode): m/z [M + H]⁺ calcd for C₈H₁₃ClNO: 174.0686; found: 174.0683.

2-(1-Chloropentyl)-4,5-dimethyloxazole (5e)

Yield: 0.70 g (87%); colorless oil.

IR (KBr): 2959, 2874, 1645, 1455, 1196 cm⁻¹.

¹H NMR (600 MHz, CDCl₃): $\delta = 0.92$ (t, J = 7.1 Hz, 3 H), 1.24–1.56 (m, 6 H), 2.08 (s, 3 H), 2.27 (s, 3 H), 4.86 (t, J = 5.1 Hz, 1 H).

¹³C NMR (150 MHz, CDCl₃): δ = 159.4, 144.3, 130.9, 53.5, 35.8, 28.6, 21.9, 13.9, 11.0, 10.0.

HRMS (ESI, +ve mode): m/z [M + H]⁺ calcd for C₁₀H₁₇ClNO: 202.1017; found: 202.1015.

2-(1-Chlorooctyl)-4,5-dimethyloxazole (5f)

Yield: 0.82 g (84%); colorless oil.

IR (KBr): 2982, 2857, 1669, 1450, 1378 cm⁻¹.

¹H NMR (600 MHz, CDCl₃): δ = 0.89 (t, *J* = 6.7 Hz, 3 H), 1.20–1.54 (m, 12 H), 2.08 (s, 3 H), 2.26 (s, 3 H), 4.85 (t, *J* = 5.1 Hz, 1 H).

¹³C NMR (150 MHz, CDCl₃): δ = 160.4, 144.8, 131.0, 53.5, 38.3, 31.6, 29.0, 28.8, 25.2, 23.6, 14.3, 10.1, 9.8.

HRMS (ESI, +ve mode): m/z [M + H]⁺ calcd for C₁₃H₂₃ClNO: 244.1466; found: 244.1461.

(E)-4,5-Dimethyl-2-styryloxazole (6b)

Yield: 0.36 g (90%); white solid.

IR (KBr): 3025, 2963, 16370, 1550, 1493, 1440, 1260, 1110, 1060 $\rm cm^{-l}.$

¹H NMR (600 MHz, CDCl₃): δ = 2.08 (s, 3 H), 2.26 (s, 3 H), 6.90 (d, *J* = 16.2 Hz, 1 H), 6.98 (d, *J* = 16.2 Hz, 1 H), 7.18 (t, *J* = 7.6 Hz, 2 H), 7.28 (t, *J* = 7.3 Hz, 1 H), 7.37 (d, *J* = 7.8 Hz, 2 H).

¹³C NMR (150 MHz, CDCl₃): δ = 155.1, 139.6, 136.2, 133.8, 128.8, 127.8, 126.9, 124.9, 124.1, 11.3, 10.7.

HRMS (ESI, +ve mode): m/z [M + H]⁺ calcd for C₁₃H₁₄NO: 200.1062; found: 200.1068.

(E)-4,5-Dimethyl-2-propenyloxazole (6c)

Yield: 0.20 g (73%); light-yellow oil.

IR (KBr): 3052, 2980, 2831, 16651, 1441, 1380 cm⁻¹.

¹H NMR (600 MHz, CDCl₃): δ = 1.78 (d, *J* = 15.6 Hz, 3 H), 2.12 (s, 3 H), 2.41 (s, 3 H), 6.10 (dq, *J* = 6.9, 16.2 Hz, 1 H), 6.42 (d, *J* = 16.2 Hz, 1 H).

¹³C NMR (150 MHz, CDCl₃): δ = 158.8, 142.3, 131.3, 131.0, 130.0, 15.1, 9.8.

HRMS (ESI, +ve mode): m/z [M + H]⁺ calcd for C₈H₁₂NO: 138.0934; found: 138.0975.

4,5-Dimethyl-2-isopropenyloxazole (6d)

Yield: 0.19 g (71%); light-yellow oil.

IR (KBr): 3075, 2928, 2830, 1668, 1440, 1375, 1118 cm⁻¹.

¹H NMR (600 MHz, CDCl₃): δ = 1.76 (s, 3 H), 2.10 (s, 3 H), 2.31 (s, 3 H), 4.93 (d, *J* = 7.1 Hz, 1 H), 5.31 (d, *J* = 7.1 Hz, 1 H).

¹³C NMR (150 MHz, CDCl₃): δ = 156.8, 145.8, 139.6, 126.7, 119.3, 22.5, 11.7, 10.1.

HRMS (ESI, +ve mode): m/z: $[M + H]^+$ calcd for $C_8H_{12}NO$: 138.0934; found: 138.0906.

(*E*)-4,5-Dimethyl-2-pentenyloxazole (6e)

Yield: 0.26 g (80%); yellow oil.

IR (KBr): 3028, 2962, 2853, 1660, 1439, 1105 cm⁻¹.

¹H NMR (600 MHz, CDCl₃): δ = 0.93 (t, *J* = 6.0 Hz, 3 H), 1.42 (m, 2 H), 1.90 (m, 2 H), 2.15 (s, 3 H), 2.39 (s, 3 H), 6.12 (dt, *J* = 7.1, 15.9 Hz, 1 H), 6.46 (d, *J* = 15.9 Hz, 1 H).

¹³C NMR (150 MHz, CDCl₃): δ = 159.8, 138.1, 131.5, 130.0, 126.7, 36.2, 21.5, 14.1, 9.9.

HRMS (ESI, +ve mode): m/z [M + H]⁺ calcd for C₁₀H₁₆NO: 166.1213; found: 166.1216.

(E)-4,5-Dimethyl-2-octenyloxazole (6f)

Yield: 0.36 g (87%); yellow oil.

IR (KBr): 3034, 2958, 2872, 1644, 1455, 1094 cm⁻¹.

¹H NMR (600 MHz, $CDCl_3$): $\delta = 0.89$ (t, J = 6.2 Hz, 3 H), 1.29–1.98 (m, 10 H), 2.10 (s, 3 H), 2.31 (s, 3 H), 6.12 (dt, J = 7.2, 16.1 Hz, 1 H), 6.58 (d, J = 16.1 Hz, 1 H).

 ^{13}C NMR (150 MHz, CDCl₃): δ = 156.3, 139.3, 130.6, 126.1, 123.8, 35.6, 30.7, 29.6, 29.0, 23.5, 15.1, 10.0, 9.6.

HRMS (ESI, +ve mode): m/z [M + H]⁺ calcd for C₁₃H₂₂NO: 208.1712; found: 208.1702.

References

- (a) Searle, P. A.; Molinski, T. F. J. Am. Chem. Soc. 1995, 117, 8126. (b) Lewis, J. R. Nat. Prod. Rep. 1995, 12, 135.
 (c) Suenaga, K.; Kokubo, S.; Shinohara, C.; Tsuji, T.; Uemura, D. Tetrahedron Lett. 1999, 40, 1945.
- (2) (a) Spande, T. F.; Garraffo, H. M.; Edwards, M. W.; Yeh, H. J. C.; Pannell, L.; Daly, J. W. J. Am. Chem. Soc. 1992, 114, 3475. (b) Holladay, M. W.; Dart, M. J.; Lynch, J. K. J. Med. Chem. 1997, 40, 4169.
- (3) (a) Zificsak, C. A.; Hlasta, D. J. *Tetrahedron* 2004, *60*, 8991. (b) Pens van Stralen, M. J.; Postma, D.; van Leusen, A. M. *Tetrahedron Lett.* 1986, *27*, 2173. (c) Williams, E. L. *Tetrahedron Lett.* 1992, *33*, 1033. (d) Das, J.; Reid, J. A.; Kronenthal, D. R.; Singh, J.; Pansegrau, P. D.; Mueller, R. H. *Tetrahedron Lett.* 1992, *33*, 7835.
- (4) (a) Williams, D. R.; McClymont, E. L. *Tetrahedron Lett.* 1993, *34*, 7705. (b) Lee, J. C.; Choi, H. J.; Lee, Y. C. *Tetrahedron Lett.* 2003, *44*, 123. (c) Cai, X. H.; Yang, H. J.; Zhang, G. J. *Synthesis* 2005, 1569.
- (5) Daw, A. B.; Garret, J. E.; Christopher, J. R.; Athony, J. S. J. *Med. Chem.* **2001**, *44*, 2061.
- (6) Goto, Y.; Yamazaki, M.; Hamana, M. Chem. Pharm. Bull. 1971, 19, 2050.
- (7) Semon, W. L.; Damerell, V. R. Org. Synth., Coll. Vol. II; Wiley: New York, 1943, 204.