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ABSTRACT: Achmatowicz rearrangement (AchR) is a very
important transformation for the synthesis of various heterocyclic
building blocks and natural products. Here, the discovery of
Fenton chemistry for AchR using a bifunctional catalyst (FeBr2 or
CeBr3), which has environmental friendliness and a broad substrate
scope at the same time has been reported. This method addresses
the major limitation of conventional chemical (hazardous) and
enzymatic (limited scope) methods. Mechanistic studies suggested that reactive brominating species (RBS) is the true catalyst for
AchR and that Fenton chemistry [Fe/Ce (cat.) + H2O2 → HO•/HOO• + H2O] is responsible for the oxidation of bromide into
RBS. Importantly, this in situ RBS generation from M-Brx−H2O2 under neutral conditions addresses the long-lasting problem of
many haloperoxidase mimics that require a strong acidic additive/medium for bromide oxidation with H2O2, which creates
opportunities for many other brominium-mediated organic reactions.
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Achmatowicz rearrangement (AchR) is a very important
reaction for the construction of six-membered hetero-

cyclic scaffolds (dihydropyranones and dihydropyridinones),
which are frequently found in bioactive molecules and natural
products.1 The synthetic utility of AchR has been illustrated by
various transformations of AchR products,2 including O-
glycosylation,3 [5 + 2] cycloaddition,4 Kishi reduction,5 Ferrier
allylation,6 ketalization,7 redox isomerization,8 and Tsuji−
Trost arylation9 (Figure 1a). The importance of AchR in
organic synthesis aroused great interest in developing new and
more efficient oxidation protocols, which can be classified into
chemical10 and enzymatic strategies11 (Figure 1b). The
chemical strategy employs stoichiometric strong oxidants
such as m-CPBA10m and N-bromosuccinimide (NBS),10n

which are toxic and result in stoichiometric harmful
byproducts (i.e., m-chlorobenzoic acid or succinimide).
Recently, our group reported oxone−KBr12 as a green catalytic
protocol for AchR. However, as compared to oxygen and
hydrogen peroxide, oxone as a terminal oxidant was not ideal
and the E-factor13 was usually high because of high molar mass
(307 g/mol) of oxone (molar mass of H2O2 and O2: 34 and 32
g/mol, respectively). Photochemical oxidation with singlet
oxygen reported by Vassilikogiannakis10p,10g was another green
method for AchR, but it requires stoichiometric reducing
agents (Me2S or Ph3P). Anodic oxidation/rearrangement (2
steps) as the greenest protocol was reported in 197610h but
with only three examples and moderate yields (37−73%). The
enzymatic strategy reported recently by Beifuss,11b Deska
(2014; 2018),11c11a and Hollmann and Rutjes11e uses hydro-
gen peroxide as the stoichiometric terminal oxidant and
produces water as the only byproduct. Enzymatic protocols are
green but suffer from a narrow scope (<10 examples

illustrated) and a low reaction concentration (mM). Herein,
we report the discovery of Fenton chemistry for AchR with
H2O2 as the terminal oxidant, which is not only green but also
has a wide scope under a normal concentration (0.2−0.5 M)
for organic reactions.
Fenton chemistry (FeII/H2O2) is widely used for contam-

inant or wastewater treatment14 because (i) Fenton chemistry
has low cost, negligible toxicity, and easy recovery and a (ii)
hydroxyl radical (•OH) generated from Fenton chemistry
(Figure 2a) is a highly strong oxidant15 that can degrade most
organic pollutants into nontoxic oxidized small molecules.16

Many iron catalysts have been developed17 and the Fenton
process can be advantageously performed in many physical
fields.14,18,19

Fenton chemistry has also been used in organic synthesis for
many oxidation reactions. For example, [FeII]/H2O2 was used
for C−H oxidation [Gif oxidation, Figure 2b(3)],20 Minisci
reaction [Figure 2b(4)],21 sulfide oxidation [Figure 2b(5)],22

and olefin oxidation [Figure 2b(6)].23 Notably, well-designed
organic ligands24 for iron are typically required to tune the
oxidation reactivity and selectivity, especially in an olefin
epoxidation reaction.25 Nevetheless, the synthetic utility of
Fenton chemistry in organic synthesis remains very limited due
to poor chemoselectivity of the highly oxidizing hydroxyl
radical. Our continuous interest in AchR drove us to upgrade
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our previous oxone−halide system and envisioned that Fenton
chemistry might be used for AchR [Figure 2c(c1)] through
epoxidation analogous to the equation (6) [Figure 2b(6)].25

Alternatively, Fenton chemistry may oxidize a bromide ion into
reactive brominating species (RBS; Br+) for AchR [Figure
2c(c2)], which is similar to NBS and oxone−KBr for AchR. If
successful, it would be the first example of Fenton chemistry
for AchR with H2O as the only waste product [Figure 2c(7)]
and greener than our previous oxone−KBr protocol.
Because other transition metals such as chromium, cerium,

copper, cobalt, manganese, ruthenium, and aluminum had
been used for decomposition of H2O2 into •OH and were
classified as iron-free Fenton-like catalysts,26 we started our
study with a nonselective screening of transition-metal salts
including lanthanides for oxidation of furfuryl alcohol (1a)
with hydrogen peroxide. Disappointingly, no reaction
occurred, which suggested that Fenton chemistry did not
work for AchR through the epoxidation pathway. However,
when 0.1 equiv of KBr was added to the reaction, we were
pleased to find that 16 out of 38 transition-metal salts showed a
positive result and delivered >5% yield of dihydropyranone
(2a) in nearly neutral conditions (Table 1). This finding
suggested KBr was mechanistically involved in the AchR and
the Fenton chemistry (FeII/H2O2) served as an oxidant for
bromide oxidation, which may follow the bromination
hypothetic pathway [Figure 2c(c2)].
This initial finding was significant because it suggested that

the oxidation of bromide with H2O2 could occur under neutral

conditions without an enzyme (haloperoxidase or halogenase)
or a strong acid (AcOH, HBr, H2SO4, or HClO4 was required
for haloperoxidase mimics).27 Remarkably, seven metal salts,
FeCl2, CeCl3, Sc(OTf)3, Cp2ZrCl2, SnCl2, Eu(OTf)3, and
Tm(ClO4)3, were found to be efficient catalysts (>40% yield,
the detailed information is provided in the Supporting
Information) under this unoptimized condition (Table 1).
Nevertheless, the yield was not high or synthetically useful yet
and needed to be further optimized. Since it was impractical to
simultaneously investigate all of these seven promising metal
salts for the yield improvement, we focused on iron and cerium
for further optimization because of their nontoxicity, low cost,
and environmental friendliness.
The optimization campaign was launched, and the

corresponding results are presented in Table 2. The standard
experiment employed 0.1 equiv of a metal catalyst and we
aimed for >70% yield to verify the good catalytic activity.
Interestingly, we observed that the organic ligands such as
acetylacetone (acac), porphyrin, cyclopentadiene (Cp), and
CO (entry 1−5, Table 2) were inferior to inorganic ligands
such as sulfate, nitrate, and chloride (entry 6−8, Table 2). The
best yield (78% for iron and 91% for cerium) was obtained
with catalytic FeBr2 (entry 11) and CeBr3 (entry 16), in which
bromide (Br−) was not only the ligand of iron and cerium but
also the source of reactive brominating species (RBS) for
AchR. Notably, the reaction using FeBr2 or CeBr3 as a catalyst
was completed within 2 h, which was faster than the other
combinations (metal salt + KBr).

Figure 1. Synthetic utilities of AchR, previous strategies for AchR, and our catalytic protocol.
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With the discovery and optimized condition (FeBr2−H2O2
and CeBr3−H2O2) in hand, we set out to examine and expand
the scope of furfuryl alcohol for AchR (Table 3a). It was
noteworthy that some substrates (2a, 2e, 2n, 2q, etc.) were
chosen according to our published literatures12 using the
oxone−KBr protocol to make a systematic green chemistry
metrics comparison with this M-Brx−H2O2 protocol. To our
delight, the oxidative rearrangement proceeded with high
efficiency for a variety of furfuryl alcohols under this catalytic
neutral condition. The mild reaction conditions tolerated
common functional groups such as ester (2g and 2w), alkene
(2e and 2t), electron-rich arenes (2o−2r), and furan/
thiophene (2x and 2y), commonly used protecting groups
like triisopropylsilyl (TIPS) (2p and 2aa), tert-butyldimethyl-
silyl (TBS) (2l and 2r), Bn (2i and 2v), Ac (2o and 2u), Bz

(2h), Piv (2k), and Boc (2j), unusual substituents on 3- and/
or 4-position of furan (2z−2ac), and sterically hindered
furfuryl tertiary alcohols (2m and 2n). The scalability of these
two catalytic methods was demonstrated by a 10 mmol scale
reaction of 2b (R1 = t-Bu, 1.54 g) at room temperature under
an open-air condition, which gave excellent yields (FeBr2: 77%;
CeBr3: 92%) comparable to the yields of 0.4 mmol scale (81
and 93%, respectively). It was noted that a relatively lower
catalyst loading was needed for CeBr3 (0.03 equiv) vs FeBr2
(0.15 equiv), which means that CeBr3 is more efficient than
FeBr2 for the large-scale synthesis. Furthermore, there were no
potentially competing side reactions like arene bromination,
alkene dibromination, and alcohol oxidation for the above
substrates. Interestingly, the more hydrophobic substrates
always gave a higher yield. Consequently, our Fenton protocol

Figure 2. Fenton chemistry and its synthetic utilities in organic synthesis, and our mechanistic hypothesis for AchR through Fenton chemistry.
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(FeBr2/H2O2 and CeBr3/H2O2) holds great promise for
commercialization and medicinal chemistry with the following
advantages: (1) H2O2 as the green oxidant, (2) low-toxic
catalyst (FeBr2 and CeBr3), (3) scalable operation without
special equipment, (4) very mild condition (RT), and (5) a
wide substrate scope with high yields and tolerence of multiple
functional groups.
To evaluate the greenness of our new system and make a

comparison with our previous oxone−halide protocol, we

chose AchR of furfuryl alcohols to 2a, 2e, 2n, and 2q as
representative examples to analyze their green chemistry
metrics. We performed the calculation of four green metrics,
environmental factor (E-factor),13 atom economy (AE),28

reaction mass efficiency (RME),29 and process mass intensity
(PMI),30 for FeBr2−H2O2, CeBr3−H2O2, and oxone−KBr
(Table 3b). The lower value of the E-factor (ideal: 0.00) and
PMI (ideal: 1.0) means that less waste is generated or less total
mass of material is needed for per mass of the desired
product,13,30 while the higher value of AE (ideal: 100%) and
RME (100%) reveals better atom and resource efficiency.28,29

As shown in Table 3b, the average E-factors of AchR using
oxone−KBr, FeBr2−H2O2, and CeBr3−H2O2 were 5.46, 0.98,
and 0.69, respectively, which suggested that M-Brx−H2O2
could be reduced six to eight times of mass waste than
oxone−KBr and was closely approaching to the ideal metrics
(E-factor: 0.00). The average AE value of FeBr2−H2O2 and
CeBr3−H2O2 was 91.2%, which suggested more than 50%
increase from 39.9% for oxone−KBr. The average 60% RME of
M-Brx−H2O2 indicated the reaction’s mass advantage over
oxone−KBr (RME: 16.8%). Finally, the PMI value ratio of
oxone−KBr (PMI: 6.46) and M-Brx−H2O2 (PMI: ∼1.8) was
∼3.5, which means nearly 4-fold materials were needed using
the oxone−KBr method. The analysis of these green metrics
clearly demonstrated that our new M-Brx−H2O2 was greener,
more efficient, and environmentally friendly (sustainable) than
our previous oxone−KBr and other existing approaches. It was
noteworthy that oxone was synthesized industrially from H2O2
in two steps (first concentrated H2SO4 and then KOH).31

Taking this fact and the stoichiometric waste generated into
consideration, our new M-Brx−H2O2 method was greener and
should be preferably used over the oxone−KBr protocol (H2O
vs K2SO4 + Na2SO4 + CO2).
To shed light on the mechanism of Fenton chemistry for

AchR, we designed and performed a series of controlled
experiments and characterizations of AchR (Figure 3). First,
controlled experiments (Figure 3a) were divided into two sets
(S-1 and S-2); S-1 was designed to investigate the role of metal
and bromide (Figure 3a, entries 1−17). It was found that both
metal (Fe2+ or Ce3+) and bromide were indispensable for
AchR, which suggested that (1) RBS was generated from the
reaction of M-Br (FeBr2 or CeBr3) and H2O2 and served as the

Table 1. Nonselective Screening of a Metal Catalyst for AchR for 1a Using H2O2 as an Oxidanta

aReaction was carried out at rt: 1a (0.1 mmol) was dissolved in a solvent (tetrahydrofuran (THF)/H2O 10/1, 0.55 mL), and then transition-metal
salt (0.01 mmol), KBr (0.01 mmol), and H2O2 (30%, 22 μL, 0.22 mmol) were added and stirred at rt for 8 h. The reaction was quenched using a
dilute Na2S2O3 aqueous solution. The detailed procedure is given in the Supporting Information.

Table 2. Optimization of AchR for 1a

entrya MXn (0.1 equiv) + KBr (0.1 equiv) solvent yieldd (%)

1 Ferroceneacetic acid + KBr THF/H2O <5
2b Cp2Fe2(CO)4 + KBr THF/H2O <5
3 Fe(acac)3 + KBr THF/H2O <5
4b Fe2(CO)9 + KBr THF/H2O <5
5 Heme B + KBr THF/H2O <5
6 Fe(NO3)3 + KBr THF/H2O 37
7 FeSO4 + KBr THF/H2O 30
8 FeCl3 + KBr THF/H2O 58
9 FeBr2 MeCN/H2O 68
10 FeBr2 DMF/H2O 30
11c FeBr2 THF/H2O 78
12b Ce2(C2O4)3 + KBr THF/H2O 61
13 Ce(NO3)3 + KBr THF/H2O 80
14 Ce(SO4)2 + KBr THF/H2O 81
15 CeCl3 + KBr THF/H2O 77
16c CeBr3 THF/H2O 91

aReaction was carried out at rt: 1a (0.1 mmol) was dissolved in a
solvent (organic solvent/H2O 10/1, 0.55 mL), and then [Fe] or [Ce]
(0.01 mmol), KBr (0.01 mmol), and H2O2 (30%, 22 μL, 0.22 mmol)
were added and stirred at rt for 8 h. The reaction was quenched using
a dilute Na2S2O3 aqueous solution.

bMetal catalyst (0.005 mmol) was
added. cReaction time was 2 h. dYield was determined by 1H NMR
analysis of the crude reaction mixture using CH2Br2 as the internal
reference.
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active catalyst for AchR, and (2) without a bromide ion,
Fenton chemistry (FeSO4−H2O2)

14,32 could not affect AchR
(Figure 3a, entries, 2, 4, 6, 8, 10, 12, 14, and 16). The second
set (S-2) of controlled experiments (Figure 3a, entries 18−25)
was designed to explore the possible presence of a hydroxyl
radical (HO•)33 from Fenton chemistry. ABTS34 [2,2′-Azino-
bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt]
as a Fenton scavenger was added to the AchR reaction
promoted by FeBr2−H2O2 (entries 18−19), CeBr3−H2O2

35

(entries 20−21), m-CPBA (entries 22−23), and oxone−KBr
(entries 24−25). Clearly, only FeBr2−H2O2 and CeBr3−H2O2

were significantly suppressed by ABTS, which suggested that
they involved the hydroxyl radical (HO•). To further support
the generation of the hydroxyl radical (HO•), we recorded the
UV−visible spectra for the reaction of M-Br (FeBr2 or CeBr3)
and H2O2 in the presence of ABTS (λmax = 340 nm) (Figure
3b). Chromagen ABTS35 (λmax = 340 nm) was widely used to
trap the short-lived hydroxyl radical, and the resulting cation

Table 3. Fenton Chemistry for Achmatowicz Rearrangementa

aReaction conditions for AchR: furfuryl alcohol (0.4 mmol), FeBr2 (0.1 equiv) or CeBr3 (0.08 equiv), H2O2 (2.2 equiv), THF/H2O (10/1, 2.2
mL), and room temperature for 2−3 h. bFeBr2 (0.2 equiv) and H2O2 (4.4 equiv) were needed.

cYield obtained from 1.54 g of 1b using FeBr2 (0.15
equiv) or CeBr3 (0.03 equiv).
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radical ABTS+•34 (λmax = 415 nm) was far more stable and
could be characterized by UV−visible spectroscopy. It was
observed that absorbance of ABTS+• at 415 nm increased with
increasing concentration of FeBr2 and CeBr3, which corrobo-
rated the generation of the hydroxyl radical (HO•) from
FeBr2−H2O2 and CeBr3−H2O2 (Figure 3b). It was interesting
to note that the absorbance of ABTS+• at 415 nm in a CeBr3−
H2O2 solution was considerably lower than that in a FeBr2−
H2O2 solution. This difference might suggest that the
generation of the hydroxyl radical (HO•) from CeBr3−H2O2

was slower than that from FeBr2−H2O2. The slow release of
the fleeting hydroxyl radical (HO•)33,36 from the CeBr3−H2O2

solution might well explain our observation that CeBr3−H2O2

generally outperformed the FeBr2−H2O2 system in the AchR
(Table 3).
To further support the generation of RBS from FeBr2−H2O2

and CeBr3−H2O2, we performed two oxidative bromination, as
shown in Figure 3c. Bromolactonization of alkenyl carboxylic
acid 3 using FeBr2−H2O2 or CeBr3−H2O2 in acetonitrile
provided lactone 4 in 53 and 62% yields, respectively.
Bromination of TBS-protected phenol (5) with FeBr3−H2O2

and CeBr3−H2O2 gave TBS-protected 4-bromophenol (6) in
high yields (FeBr2:76%; CeBr3:94%). These experiments
conclusively confirmed the generation of RBS ([Br+]) from
FeBr2−H2O2 and CeBr3−H2O2.

According to these mechanistic studies, we proposed a
plausible mechanism for AchR (Figure 3d−f). Fenton
chemistry occurred to generate a hydroxyl radical and/or a
hydroperoxyl radical (HOO•) as a strong oxidant, which can
oxidize a bromide ion into hypobromous acid (HO−Br)37 as
the RBS for various oxidations (Figure 3d). To account for this
observation that FeBr2 and CeBr3 were consistently more
efficient than the corresponding combination of metal salts and
potassium bromide (i.e., FeSO4 + KBr, Ce(OAc)3 + KBr in
Table 2), we proposed the concept of an ion−radical pair:
short-lived hydroxyl radical (HO•)33,36 released from the metal
(Fe or Ce)35 was more efficiently reacting with bromide
bonded to the metal because they formed a tight ion−radical
pair such as complex I or II (Figure 3e). However, if KBr was
used as the source of bromide in the combination with metal
salts, the bromide would be surrounded by solvents as a
solvated bromide, which disfavored the reaction with the
fleeting hydroxyl radical.33,36 This hypothesis also explained
that organic ligands were ineffective for metal (entry 1−5,
Table 2). Taking all of the mechanistic studies and hypothesis
together, we could depict the overall mechanism for AchR
(Figure 3f). For catalytic cycle 1 (c-1), Fenton chemistry
generated an oxygen-based radical (HO• and HOO•) from
H2O2 by the Fenton catalyst (FeII or CeIII),14,32,35 which
oxidized bromide to RBS (HOBr).37 For catalytic cycle 2 (c-
2), the in situ generated RBS catalyzed the oxidation of furfuryl

Figure 3. Mechanistic studies and hypothesis. (a) RBS-promoted AchR and the presence of a hydroxyl radical from Fenton chemistry. For the first
set, light blue bars represent the controls using either M or Br, while the orange ones use both M and Br. Compared with the green bars in set 2, the
red ones represent the controls with the addition of ABTS to trap the hydroxyl radical. Note: 5% yield was used in the chart for the yields lower
than 5%. (b) UV−vis spectral experiments with ABTS to confirm the generation of the hydroxyl radical. (c) Br+-trapping experiment by the
intramolecular bromocyclization of alkenyl carboxylic acid 3 and bromination of arene 5 using FeBr2−H2O2 or CeBr3−H2O2. (d) Proposed
mechanism for generation of reactive brominating species (RBS). (e) Hypothesis of a tight ion−radical pair that might exhibit higher efficiency in
generating RBS from oxidation of bromide with the fleeting hydroxyl radical. (f) Proposed mechanism for catalytic oxidation of furans.
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alcohols (AchR) and released the bromide ion that could be
reoxidized by the hydroxyl/hydroperoxyl radical generated
from Fenton chemistry. Clearly, Fenton chemistry and
bromide redox work in a synergistic way (Figure 3f c-1 and
c-2), and FeBr2 (or CeBr3) serves as a bifunctional catalyst for
AchR (Figure 3f). The detailed hypothesis for the catalytic
cycles (c-1 and c-2) of Fenton metal (Fe2+ or Ce3+) and RBS
in our system (M-Brx−H2O2) is provided in the SI, which
further demonstrated that M-Brx serves as a bifunctional
catalyst: iron (or cerium) as a catalyst for Fenton chemistry to
generate hydroxyl/hydroperoxyl radical oxidants and bromide
as a precatalyst for RBS-promoted Achmatowicz rearrange-
ment. Notably, the stepwise mechanisms of AchR using RBS
were similar to those that employed NBS or oxone−KBr,
which have been well established in the literature.1a

In summary, we discovered that Fenton chemistry can be
used for Achmatowicz rearrangement, which represents a new
and greenest catalytic protocol (FeBr2−H2O2 and CeBr3−
H2O2) for AchR with H2O as the only byproduct. Four green
chemistry metrics, environmental factor (E-factor), atom
economy (AE), reaction mass efficiency (RME), and process
mass intensity (PMI), were used to evaluate the greenness of
our new M-Brx−H2O2 method as compared to our previous
oxone−KBr protocol and revealed that the new M-Brx−H2O2
was much more efficient and environmentally friendly
(sustainable). Our mechanistic study showed that Fenton
chemistry operated to generate a fleeting hydroxyl radical,
which further oxidized bromide to produce hypobromous acid
as the reactive brominating species (RBS) that promote
Achmatowicz rearrangement. It is believed that the bromide
chemically bonded to the metal without other ligands favors
bromide oxidation through a hypothetic ion−radical pair. The
discovery of in situ generation of RBS from M-Brx−H2O2
under neutral conditions addresses the long-lasting problem of
haloperoxidase mimics that require an acidic additive/medium
for bromide oxidation with H2O2 and therefore, may create
new green opportunities for many other brominium-mediated
organic reactions under neutral conditions.
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