SYNTHESES OF PACHYSANDRINES AND EPIPACHYSANDRINE-A FROM ERGOSTEROL

Tohru Kikuchi, Toshinari Nishinaga, and Yohko Yoshimura

Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan

(Received in Japan 28 February 1969; received in UK for publication 25 March 1969)

Pachysandrine-A (Va), B (Vb), C (VI) and epipachysandrine-A (Xc) are 3,20-diamino-pregnane type alkaloids having an oxygen function at 4-position, which were isolated from <u>Pachysandra terminalis SIEB</u>, et <u>ZUCC</u>. Now we wish to report the syntheses of these alkaloids starting from 3β ,4 β -dihydroxy-20 α -dimethylamino-5 α -pregnane (Ia) 3) which has previously been synthesized from ergosterol and is readily available by a few steps transformation from pachysandrines through a diosphenol (XI) 3 , 4).

First, the synthesis of pachysandrine-A (Va), one of the major alkaloids of the plant, is described. Reaction of Ia with p-tosyl chloride in pyridine at room temperature gave a mono-tosylate (II) in almost quantitative yield, $C_{20}H_{h7}O_{h}NS^{*}$, m.p. * 211-213°, [α]_D * -3°, IR * 1170, 1100, 925, 868, 810 cm $^{-1}$ (tosylate); NMR * 2.22, 2.70 (4H, A_2B_2 q., J=8 c.p.s., aromatic H), 5.58 (1H, m., -CH(OTs), 6.15 (1H, m., -CH(OH)), 7.56 (3H, s., aryl CH_3), 7.82 (6H, s., $N(CH_3)_2$), 9.00 (3H, s., 19-CH₃), 9.13 (3H, d., sec. CH_3), 9.38 τ (3H, s., 18- $_{\mathrm{CH_3}}$). On heating with $_{\mathrm{NaN_3}}$ in N-methylpyrrolidone $_{\mathrm{Nan_3}}^{\mathrm{50}}$ this tosylate afforded a crude azide (III) (IR 2200 cm $^{-1}$) which was immediately reduced with LiAlH₄. The total product was then formylated as usual and again subjected to the LiAlH $_4$ reduction to give a crystalline residue (IVa). Purification of this crude N-methyl compound by alumina chromatography and by recrystallizations of its picrate (m.p. 244-247°, decom.) gave rise to IVa, C₂₄H₄₄ON₂, m.p. 214-215°, $\left[\alpha\right]_{D}^{}$ +28°. This was found to be quite identical with 0,N-desacylpachysandrine -A (IVa) $^{1)}$ by mixed m.p. and IR (KBr), NMR and MS * spectra. We then used the natural IVa in the Curther synthesis: partial acetylation of IVa using Ac20- $_{1000}^{1000}$ HOAc-p-TsOH gave an O-acetate (IVb), $_{100}^{100}$ C $_{100}^{100}$ Mark $_{100}^{100}$

1680 No.21

IR 1720, 1250 cm⁻¹; NMR 7.95 τ (OCOCH₃), which on subsequent benzoylation yielded Va, $C_{33}^{H}_{50}^{O}_{3}^{N}_{2}$, m.p. 237-238°, $[\alpha]_{D}^{}$ +90°, identical with natural pachysandrine-A (Va) in every respect. Transformations of pachysandrine-A into pachysandrine-B (Vb) and C (VI) have already been reported¹⁾.

The synthesis of the next alkaloid, epipachysandrine-A (Xc), was initiated by partial acetylation of Ia 6). Reaction of the diol (Ia) with Ac $_2$ O-pyridine afforded 3-mono-acetate (Ib) in good yield, C $_2$ 5 $^{\rm H}$ 4 $^{\rm J}$ 0 $^{\rm J}$ N, m.p. 212-213 $^{\rm J}$, [α] $_{\rm D}$ +16 $^{\rm S}$, IR 3550, 1728, 1250 cm $^{-1}$; NMR 5.27 (1H, m., -CH(OAc)), 6.17 (1H, m., -CH(OH)), 7.92 τ (3H, s., -OCOCH $_3$). The facile acyl migration of this acetate was achieved by treating with alumina to give the 4-acetate (Ic), C $_2$ 5 $^{\rm H}$ 4 $_3$ 0 $_3$ N, m.p. 206-208 $^{\rm S}$, [α] $_{\rm D}$ +18 $^{\rm S}$, IR 3480, 1725 cm $^{-1}$; NMR 4.90 (1H, m., -CH(OAc)), 6.37 τ (1H, m., -CH(OH)), which was subsequently oxidized by CrO $_3$ -HOAc to a keto acetate (VII), C $_2$ 5 $^{\rm H}$ 4 $_3$ 0 $_3$ N, m.p. 185-187 $^{\rm S}$, [α] $_{\rm D}$ +89 $^{\rm S}$, IR 1740, 1725 cm $^{-1}$; NMR 5.02 (1H, br. d., J=3 c.p.s. -CH(OAc)), 8.87 τ (3H, 19-CH $_3$). In this oxidation procedure the β -configuration of the 4-acetoxyl group was believed to be unchanged, since the acid treatment of VII gave a more stable isomer (VIII), C $_2$ 5 $^{\rm H}$ 4 $_1$ 0 $_3$ N, m.p. 185-188 $^{\rm S}$, [α] $_{\rm D}$ +5 $^{\rm S}$, IR 1740, 1725 cm $^{-1}$; NMR 4.92 (1H, br. d., J=11 c.p.s. -CH(OAc)), 8.87 τ (3H, 19-CH $_3$) as a sole product.

The above keto acetate (VII) was then converted to an oxime (IX), $C_{25}H_{42}O_3N_2$ m.p. $205-207^\circ$, $\left[\alpha\right]_D$ -7° , IR 3280, 1734 cm⁻¹; NMR 4.61 τ (1H, m., $-C\underline{H}(\text{OAc})$), and stereospecifically reduced by $\text{LiA1H}_4^{(7)}$ to produce a crystalline amino alcohol (Xa as an essentially single product, which was characterized as a corresponding O,N-diacetate (Xb), m.p. $220-225^\circ$, identified with 3 β -methyl,acetylamino- 20α -dimethyl amino- 4β -acetoxy- 5α -pregnane (Xb) derived from pachystermine-B (XII) (mixed m.p., IR in KBr) $^{(8)}$. Finally the Schotten-Baumann condensation of Xa and benzoyl chloride yielded Xc, $C_{30}H_{46}O_2N\cdot 1/2H_2O$, m.p. $290-293^\circ$, $\left[\alpha\right]_D$ +19 $^\circ$. This compound was shown to be identical with natural epipachysandrine-A (Xc) in all respects.

Thus pachysandrine-A, B, C and epipachysandrine-A were synthesized from ergosterol.

No.21

ACKNOWLEDGEMENT; The authors express their deep gratitude to Emeritus Professor M. Tomita and Prof. Y. Inubushi of this faculty for their guidances and hearty encouragements.

REFERENCES

- * All compounds given by formulas in this communication gave satisfactory elementary analyses. All melting points were determined on a Kofler type microscopic hot stage and are uncorrected. Optical rotation were taken at 20-30°C in CHCl₃ and NMR spectra in CDCl₃ with SiMe₄ as the internal standard. Mass spectra were taken on a Hitachi Mass Spectrometer Model RMU-6D equipped with a direct inlet system (Model MG-150).
- 1) M. Tomita, S. Uyeo, Jr., and T. Kikuchi, Chem. Pharm. Bull., 15, 193 (1967) and references cited therein.
- 2) T. Kikuchi, S. Uyeo, Jr., and T. Nishinaga, <u>Ibid.</u>, <u>15</u>, 577 (1967).
- 3) <u>Idem.</u>, <u>Ibid.</u>, <u>15</u>, 316 (1967).
- 4) Recently Goutarel et al. reported the syntheses of four stereoisomeric 3-dimethylamino-4-hydroxy-pregnanes; P. Longevialle and R. Goutarel, <u>Bull</u>. soc. chim. France., 3225 (1965).
- 5) H. B. Henbest and W. R. Jackson, J. Chem. Soc., 954 (1962).
- 6) S. M. Kupchan, P. Slade, R. J. Young, and G. W. A. Milne, <u>Tetrahedron</u>, <u>18</u>, 499 (1962).
- P.-L. Chien, W. E. McEwen, A. W. Burgstahler, and N. T. Iyer, <u>J. Org. Chem.</u>
 29, 315 (1964).
- 8) T. Kikuchi and S. Uyeo, Jr., Chem. Pharm. Bull., 15, 549 (1967).