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Abstract: New C2-glycosyl triazole derivatives 6a–l were 
synthesized by cyclization of glycosyl acylthiosemicar-
bazides 5 in refluxing 3  N sodium hydroxide aqueous 
solution. Substrates 5 were obtained by the reaction of 
glycosyl isothiocyanate 3 with various hydrazides. The 
acetylcholinesterase (AChE) inhibitory activities of com-
pounds 6 were tested by Ellman’s method. Compounds 
that exhibited over 85% inhibition were subsequently 
evaluated for the IC50 values. Compound 6f possesses the 
best acetylcholinesterase-inhibition activity with IC50 of 
1.46 ± 0.25 μg/mL.

Keywords: acetylcholinesterase; C2-glycosyl triazole 
derivatives; synthesis.

Introduction
Carbohydrates play an important role in biological and 
industrial applications [1–6]. D-Glucosamine is a naturally 
occurring amino sugar [7, 8] that has been widely used 
for the prevention and treatment of rheumatoid arthritis 
and osteoarthritis [9, 10]. It also exhibits a broad variety 

of bioactivities including anti-inflammatory [11], antioxi-
dant [12], antibacterial [13] and antitumor properties [14]. 
Modified naturally occurring amino sugars are used for 
the development of anti-proliferative [15], anti-acetylcho-
linesterase [16], anticandidal [17] and other active agents 
[18–21].

In recent years, triazoles and their fused heterocyclic 
derivatives have received considerable attention owing to 
their importance in drug discovery [22–24]. 1,2,4-Triazoles 
and their derivatives are commonly utilized heterocyclic 
pharmacophores, which are an important class of hetero-
cyclic molecules presenting numerous biological activities 
such as antimicrobial [25], antiproliferative [26], antiviral 
[27], anti-inflammatory [28] and anticonvulsant [29] activ-
ities. Recent studies have shown that many compounds 
containing the triazole skeleton act as choline esterase 
inhibitors for the treatment of Alzheimer’s disease [30–32].

Up to now, researchers have been interested in mole-
cular hybrid-based approaches to find some new com-
pounds of potential biological activities [33–35]. Based on 
these findings and our previous work, in an attempt to dis-
cover new potent acetylcholinesterase (AChE) inhibitors, 
we designed and synthesized a series of novel C2-glycosyl 
triazole derivatives. The synthesized compounds were 
screened by Ellman’s method to explore the influence of 
D-glucosamine for AChE-inhibition activity.

Results and discussion

Chemistry

The starting material, 1,3,4,6-tetra-O-benzyl-β-D-
glucosamine hydrochloride (1), was synthesized as per 
the literature [36, 37]. Treatment of compound 1 with tri-
ethylamine in acetonitrile followed by addition of carbon 
disulfide to the mixture and stirring for 2 h furnished dith-
iocarbamic acid salt 2. Subsequent reaction of 2 with tosyl 
chloride (TsCl) yielded the key glycosyl isothiocyanate 
product 3 (Scheme 1) [38].
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The glycosyl isothiocyanate 3 was treated with 
various hydrazides 4 to yield the glycosyl acylthiosemicar-
bazide derivatives 5a–l. Compounds 5 were cyclized in 3 N 
sodium hydroxide solution for 5 h to furnish the glycosyl 
triazoles 6a–l in high yield (Scheme 2) [39].

Biological activity

The AChE-inhibition activities of compounds 6 were 
evaluated in vitro by Ellman’s method [40], in which the 
AChE extracts from Electric eel were used. Their inhibi-
tory potency is defined as the inhibition rate and the half 
of maximal inhibitory concentration, IC50. The results are 
summarized in Table 1.

As shown in Table 1, all compounds are better inhibi-
tors of AChE than D-glucosamine hydrochloride (m). Eight 
of the 12 tested compounds that exhibited over 85% inhi-
bition were subsequently evaluated for the IC50 value with 
tacrine and galantamine used as reference drugs. The best 
compound 6f shows the IC50 value of 1.461 and inhibit AChE 
with a dose-dependent relationship (Figure 1). Other com-
pounds are much less active than tacrine and galantamine.

Conclusion

New C2-glycosyl triazole derivatives were designed, syn-
thesized and subjected to biological evaluation. The AChE 
inhibitor activity data revealed that most of the synthesized 
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Scheme 2 Synthesis of products 6.
Reagents and conditions: (i) ArCONHNH2 (4a–l), acetonitrile, reflux; (ii) 3 N NaOH, reflux.
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Scheme 1 Synthesis of 1,3,4,6-tetra-O-benzyl-2-deoxy-β-D-glucopyranose-2-isothiocyanate (3).
Reagents and conditions: (i) NaOH, p-methoxybenzaldehyde, H2O, rt; (ii) NaH, BnBr, DMF, 0°C – rt; (iii) 5 N HCl, acetone, reflux; (iv) Et3N, CS2, 
0°C, 1.5 h; (v) TsCl, 0.5 h.
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compounds are active against acetyl cholinesterase 
enzymes. The present study finds that it is ineffective to 
remove the benzyl group by catalytic hydrogenation using 
Pd/C or Pd(OH)2/C due to the poisoning of the catalyst by 
the sulfur atom in the molecule. In the following work, we 
will be searching for other methods to solve this problem.

Experimental
Chemistry

All chemicals were purchased from commercial sources and used 
without further purification. All reactions were monitored by thin 

layer chromatography (TLC) using plates and visualized with 254 nm 
ultra violet (UV) light. Melting points were determined on a Yanaco 
melting point apparatus and are uncorrected. Infra red (IR) spectra 
were recorded on a Bruker Tensor 27 spectrometer with KBr pellets. 
1H NMR spectra were recorded with a Bruker Avance spectrometer 
at 500  Hz using tetramethylsilane (TMS) as an internal standard 
and DMSO-d6 as a solvent. ESI-HRMS analysis was performed on an 
Agilent 6500 mass spectrometer. Flash column chromatography was 
performed using a silica gel 200–300 mesh.

Preparation of 2-amino-1,3,4,6-tetra-O-benzyl-2-deoxy-
β-D-glucopyranose hydrochloride (1)

Sodium hydroxide (1.86 g, 46.5  mmol) was added to a solution of 
D-glucosamine hydrochloride (10 g, 46.4  mmol) in water (70  mL) 
at room temperature with stirring followed by dropwise addition 
of p-methoxybezaldehyde (5.7  mL, 46.6  mmol) 15  min later. The 
mixture was stirred at ambient temperature for an additional 24 h, 
after which time the resulting white solid was filtrated and washed 
with 500  mL water to afford 2-(4-methoxy benzylidene)-2-deoxy-
β-D-glucopyranose (11.4 g, 83%). A mixture of this product (6.6 g, 
22.2 mmol) and BnBr (14 mL, 117.9 mmol) in DMF (50 mL) was treated 
portion-wise at 0°C with NaH (60%, 5 g, 125 mmol) and then stirred at 
room temperature for 12 h. After addition of a large amount of water, 
the mixture was extracted with dichloromethane (3 × 50  mL). The 
extract was concentrated under reduced pressure and the resultant 
yellow viscous liquid was dissolved in acetone (100 mL). Treatment 
of this solution with hydrochloric acid (7 mL, 5 N) and heating under 
reflux for 1 h afforded a white solid of 1. The product was filtered off 
and washed with acetone: yield 7.9 g, (62%).

Synthesis of 2-isothiocyanato-1,3,4,6-tetra-O-benzyl-2-
deoxy-β-D-glucopyranose (3)

To a solution of 1,3,4,6-tetra-O-benzyl-β-D-glucosamine hydrochlo-
ride (1,1  mmol) in acetonitrile (15  mL) was added triethylamine 
(3 mmol). The mixture was cooled in an ice bath, treated dropwise 
via a syringe pump with carbon disulfide (1  mmol) and stirred for 
2 h. Then tosyl chloride (TsCl) (1 mmol) was added and the mixture 
was stirred for an additional 0.5 h. Product 3 was crystallized from 
ethanol; yield 90%, white amorphous powder; mp 55–56°C; IR: v 
3433, 3030, 2873, 2078, 1454, 1359, 1313, 1068 cm−1; 1H NMR: δ 7.48–7.19 
(m, 20H), 4.81 (dd, J = 10.0  Hz and 5.0  Hz, 4H), 4.74–4.63 (m, 2H),  
4.61–4.48 (m, 3H), 3.94–3.86 (m, 2H), 3.68–3.47 (m, 3H), 3.54 (t, 
J = 9.0  Hz, 1H). ESI-HRMS. Calcd for C35H35NNaO5S, [M + Na]+: m/z 
604.2128. Found: m/z 604.2130.

General procedure for the preparation of compounds 
6a–l

Glycosyl isothiocyanate 3 (0.581 g, 1  mmol) was added in one por-
tion to a stirred solution of hydrazide 4a–l (1 mmol) in MeCN (10 mL). 
The mixture was heated under reflux for 3–4 h and then concentrated 
under reduced pressure to give 5a–l. Without purification, 5a–l 
was added to 3 N sodium hydroxide aqueous solution (20 mL). The 

Table 1 In vitro inhibitory activities of glycosyl triazoles against 
AchE.

Compound Ar Inhibition
(%)a

IC50 (μg/mL)

6a C6H5 94.07 ± 1.36 5.64 ± 0.86
6b 2-C5H3S 92.43 ± 1.05 4.51 ± 0.49
6c 2-FC6H4 92.11 ± 0.99 2.16 ± 0.20
6d 2-ClC6H4 85.51 ± 0.48 9.14 ± 0.41
6e 4-OHC6H4 79.01 ± 0.83 –
6f 4-CH3C6H4 94.43 ± 1.60 1.46 ± 0.25
6g 4-NO2C6H4 64.41 ± 3.41 –
6h 4-4-(N,N-di-Me)-C6H4 69.39 ± 2.42 –
6i 4-FC6H4 98.38 ± 1.05 3.41 ± 0.54

6j 4-ClC6H4 93.96 ± 0.86 1.99 ± 0.13
6k 4-BrC6H5 87.23 ± 0.89 9.68 ± 0.89
6l 4-IC6H5 74.42 ± 1.55 –
mb – 14.46 ± 1.49 –
nc – 19.80 ± 1.84 –
Tacrine 98.46 ± 0.13 0.0533 ± 0.0008
Galantamine 92.17 ± 0.17 0.767 ± 0.043

aThe inhibition activities at the concentration of 50 μg/mL.
bm stands for D-glucosamine hydrochloride.
cn stands for 5-(4-methylphenyl)-1,2,4-triazole-3-thione.
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Figure 1 Dose-dependent inhibition of AChE by compound 6f. 
Values are means ± SD, n = 3.

Brought to you by | Stockholm University Library
Authenticated

Download Date | 9/3/17 3:30 PM



234      L. Yin et al.: C2-Glycosyl triazole derivatives as acetylcholinesterase inhibitors

mixture was heated under reflux for 5–6 h and then extracted with 
dichloromethane (3 × 10  mL). The extract was washed with water, 
dried over anhydrous sodium sulfate and concentrated. Compound 
6a–l was purified by silica gel column chromatography eluting with 
AcOEt/petroleum ether.

5-Phenyl-4-(1,3,4,6-tetra-O-benzyl-2-deoxy-β-D-glucopyranose-
2-yl)-1,2,4-triazole-3-thione (6a) Yield 88%, white solid; mp 139–
140°C; IR: v 3431 (NH), 3088 (C-H, Ph), 2927 (CH2-Ph), 1557 (C=N), 1359 
(C=S), 1048  cm−1 (C-O-C); 1H NMR: δ 14.08 (s, 1H), 7.57–7.44 (m, 5H, 
Ar-H), 7.36–7.24 (m, 14H, Ar-H), 7.23–7.19 (m, 2H, Ar-H), 7.18–7.12 (m, 
2H, Ar-H), 7.07–7.03 (m, 2H, Ar-H), 6.21 (d, J = 8.0 Hz, 1H, HGlu-1), 5.65 
(dd, J = 10.0 Hz and 8.0 Hz, 1H, HGlu-3), 4.82 (d, J = 12.0 Hz, 1H, PhCH2), 
4.71 (dd, J = 11.0 Hz and 4.0 Hz, 2H, PhCH2), 4.59–4.48 (m, 4H, PhCH2), 
4.41 (d, J = 11.0 Hz, 1H, PhCH2), 3.93 (t, J = 9.0 Hz, 1H, HGlu-4), 3.75–3.63 
(m, 3H, HGlu-5,6,6), 3.50 (t, J = 8.0 Hz, 1H, HGlu-2). ESI-HRMS. Calcd for 
C42H42N3O5S, [M + H]+: m/z 700.2840. Found: m/z 700.2832.

5-(2-Thienyl)-4-(1,3,4,6-tetra-O-benzyl-2-deoxy-β-D-gluco
pyranose-2-yl)-1,2,4-triazole-3-thione (6b) Yield 93%, pale yellow 
solid; mp 145–146°C; IR: v 3447 (NH), 3073 (C-H, Ph), 2929 (CH2-Ph), 
1582 (C=N), 1359 (C=S), 1076 cm−1 (C-O-C); 1H NMR: δ 14.13 (s, 1H, -NH), 
7.86 (d, J = 5.0 Hz, 1H, thiophene), 7.46 (d, J = 5.0 Hz, 1H, thiophene), 
7.39–7.31 (m, 7H, Ar-H), 7.30–7.20 (m, 10 H, Ar-H), 7.15–7.10 (m, 2H, 
Ar-H, thiophene ), 7.02 (s, 2H, Ar-H), 6.18 (d, J = 8.5 Hz, 1H, HGlu-1), 5.59 
(t, J = 9.0 Hz, 1H, HGlu-3), 4.82 (d, J = 12.0 Hz, 1H, PhCH2), 4.74–4.68 (m, 
2H, PhCH2), 4.60–4.51 (m, 4H, PhCH2), 4.39 (d, J = 11.5 Hz, 1H, PhCH2), 
4.15 (t, J = 9.0  Hz, 1H, HGlu-4 ), 3.77–3.64 (m, 4H, HGlu-5,6,6′), 3.58 (t, 
J = 9.0 Hz, 1H, HGlu-2). ESI-HRMS. Calcd for C40H40N3O5S2, [M + H]+: m/z 
706.2406. Found: m/z 706.2405.

5-(2-Fluorophenyl)-4-(1,3,4,6-tetra-O-benzyl-2-deoxy-β-D-
glucopyranose-2-yl)-1,2,4-triazole-3-thione (6c) Yield 91%, 
white solid; mp 112–113°C; IR: v 3433 (NH), 3089 (C-H, Ph), 2925 (CH2-
Ph), 1560 (C=N), 1359 (C=S), 1059 cm−1 (C-O-C); 1H NMR: δ 14.25 (s, 1H, 
-NH), 7.68–7.60 (m, 1H, Ar-H), 7.42 (t, J = 9.0 Hz, 1H, Ar-H), 7.38–7.25 (m, 
16H, Ar-H), 7.20 (d, J = 7.0 Hz, 2H, Ar-H), 7.15 (d, J = 7.0 Hz, 2H, Ar-H), 
7.10 (d, J = 4.5  Hz, 2H, Ar-H), 6.12 (d, J = 8.0  Hz, 1H, HGlu-1), 5.61 (t, 
J = 9.0 Hz, 1H, HGlu-3), 4.80 (d, J = 12.5 Hz, 1H, PhCH2), 4.73–4.65 (m, 2H, 
PhCH2), 4.58–4.43 (m, 5H, PhCH2), 3.73–3.58 (m, 4H, HGlu-4,5,6,6′), 3.47 
(t, J = 9.0 Hz, 1H, HGlu-2). ESI-HRMS. Calcd for C42H41FN3O5S, [M + H]+: 
m/z 718.2745. Found: m/z 718.2744.

5-(2-Chlorophenyl)-4-(1,3,4,6-tetra-O-benzyl-2-deoxy-β-D-
glucopyranose-2-yl)-1,2,4-triazole-3-thione (6d) Yield 84%, 
white solid; mp 106–107°C; IR: v 3421 (NH), 3063 (C-H, Ph), 2926 (CH2-
Ph), 1604 (C=N), 1361 (C=S), 1061 cm−1 (C-O-C); 1H NMR: δ 14.18 (s, 1H, 
-NH), 7.62–7.34 (m, 3H, Ar-H), 7.33–7.24 (m, 15H, Ar-H), 7.23–7.16 (m, 
4H, Ar-H), 7.15–7.13 (m, 2H, Ar-H), 6.11 (d, J = 8.0 Hz, 1H, HGlu-1), 5.63 
(t, J = 9.0 Hz, 1H, HGlu-3), 4.88–4.73 (m, 2H, PhCH2), 4.71–4.61 (m, 1H, 
PhCH2), 4.56–4.45 (m, 5H, PhCH2), 3.69 (t, J = 9.0 Hz, 1H, HGlu-4), 3.68–
3.47 (m, 3H, HGlu-5,6,6′), 3.45 (t, J = 9.0 Hz, 1H, HGlu-2). ESI-HRMS. Calcd 
for C42H40ClN3NaO5S, [M + Na]+: m/z 756.2269. Found: m/z 756.2265.

5-(4-Hydroxyphenyl)-4-(1,3,4,6-tetra-O-benzyl-2-deoxy-β-D-
glucopyranose-2-yl)-1,2,4-triazole-3-thione (6e) Yield 82%, 
white solid; mp 96–97°C; IR: v 3418 (NH), 3201 (O-H), 3062 (C-H, Ph), 
2924 (CH2-Ph), 1513 (C=N), 1386 (C=S), 1053 cm−1 (C-O-C); 1H NMR: δ 
13.92 (s, 1H, -NH), 10.07 (s, 1H, OH), 7.38–7.24 (m, 16H, Ar-H), 7.21 (d, 
J = 7.0 Hz, 2H, Ar-H), 7.14 (d, J = 7.0 Hz, 2H, Ar-H), 7.03 (d, J = 7.0 Hz, 

2H, Ar-H), 6.83 (d, J = 8.0 Hz, 2H, Ar-H), 6.20 (d, J = 8.0 Hz, 1H, HGlu-
1), 5.62 (t, J = 9.0 Hz, 1H, HGlu-3), 4.81 (d, J = 12.5 Hz, 1H, PhCH2), 4.68 
(dd, J = 11.0, 7.5  Hz, 2H, PhCH2), 4.59–4.49 (m, 4H, PhCH2), 4.38 (d, 
J = 11.0  Hz, 1H, PhCH2), 3.95 (t, J = 9.0  Hz, 1H, HGlu-4), 3.75–3.62 (m, 
3H, HGlu-5,6,6′), 3.50 (t, J = 9.0  Hz, 1H, HGlu-2). ESI-HRMS. Calcd for 
C42H42N3O6S, [M + H]+: m/z 716.2789. Found: m/z 716.2785.

5-(4-Methylphenyl)-4-(1,3,4,6-tetra-O-benzyl-2-deoxy-β-D-
glucopyranose-2-yl)-1,2,4-triazole-3-thione (6f) Yield 88%, 
white solid; mp 136–137°C; IR: v 3439 (NH), 3089 (C-H, Ph), 2948 
(CH2-Ph), 1516 (C=N), 1360 (C=S), 1057 cm−1 (C-O-C); 1H NMR: δ 14.02 
(s, 1H, NH), 7.39–7.32 (m, 7H, Ar-H), 7.31–7.25 (m, 11H, Ar-H), 7.24–7.20 
(m, 2H, Ar-H), 7.17–7.12 (m, 2H, Ar-H), 7.07–7.02 (m, 2H, Ar-H), 6.20 (d, 
J = 8.0 Hz, 1H, HGlu-1 ), 5.63 (t, J = 8.5 Hz, 1H, HGlu-3), 4.82 (d, J = 12.0 Hz, 
1H, PhCH2), 4.71 (d, J = 11.0 Hz, 2H, PhCH2), 4.58–4.48 (m, 4H, PhCH2), 
4.40 (d, J = 11.0 Hz, 1H, PhCH2), 3.92 (t, J = 8.5 Hz, 1H, HGlu-4), 3.75–3.63 
(m, 3H, HGlu-5,6,6′), 3.49 (t, J = 8.0  Hz, 1H, HGlu-2), 3.30 (s, 3H, CH3). 
ESI-HRMS. Calcd for C43H44N3O5S, [M + H]+: m/z 714.2996. Found: m/z 
714.2999.

5-(4-Nitrophenyl)-4-(1,3,4,6-tetra-O-benzyl-2-deoxy-β-D-
glucopyranose-2-yl)-1,2,4-triazole-3-thione (6g) Yield 79%, 
yellow solid; mp 103–104°C; IR: v 3424 (NH), 3090 (C-H, Ph), 2924 
(CH2-Ph), 1559 (C=N), 1347 (C=S), 1057 cm−1 (C-O-C); 1H NMR: δ 14.28 
(s, 1H, -NH), 8.41–8.31 (m, 2H, Ar-H), 7.82–7.69 (m, 2H, Ar-H), 7.44–6.99 
(m, 20H, Ar-H), 6.19 (t, J = 8.0 Hz, 1H, HGlu-1), 5.63 (t, J = 8.5 Hz, 1H, 
HGlu-3), 4.81 (t, J = 11.0 Hz, 1H, PhCH2), 4.77–4.67 (m, 2H, PhCH2), 4.60–
4.48 (m, 4H, PhCH2), 4.41 (t, J = 10.0 Hz, 1H, PhCH2), 3.89 (t, J = 8.5 Hz, 
1H, HGlu-4), 3.75–3.63 (m, 3H, HGlu-5,6,6), 3.56 (t, J = 8.5 Hz, 1H, HGlu-2). 
ESI-HRMS. Calcd for C42H41N4O7S, [M + H]+: m/z 745.2690. Found: m/z 
745.2694.

5-(4-N,N-Dimethylphenyl)-4-(1,3,4,6-tetra-O-benzyl-2-deoxy-β-
D-glucopyranose-2-yl)-1,2,4-triazole-3-thione (6h) Yield 81%, 
pale yellow solid; mp 131–132°C; IR: v 3423 (NH), 3087 (C-H, Ph), 2868 
(CH2-Ph), 1614 (C=N), 1362 (C=S), 1058 cm−1 (C-O-C); 1H NMR: δ 13.87 
(s, 1H), 7.37–7.25 (m, 16H, Ar-H), 7.25–7.21 (m, 2H, Ar-H), 7.17–7.13 (m, 
2H, Ar-H), 7.06–7.02 (m, 2H, Ar-H), 6.75 (d, J = 9.0 Hz, 2H, Ar-H), 6.22 
(d, J = 8.0 Hz, 1H, HGlu-1), 5.64 (dd, J = 10.5 Hz and 8.0 Hz, 1H, HGlu-3), 
4.83 (d, J = 12.5 Hz, 1H, PhCH2), 4.69 (t, J = 10.0 Hz, 2H, PhCH2), 4.59–
4.49 (m, 4H, PhCH2), 4.40 (d, J = 11.0 Hz, 1H, PhCH2), 4.03 (dd, J = 10.5, 
8.5  Hz, 1H, HGlu-4), 3.75–3.63 (m, 3H, HGlu-5,6,6′), 3.49 (t, J = 8.0  Hz, 
1H, HGlu-2), 2.95 (s, 6H, -CH3). ESI-HRMS. Calcd for C44H45N4NaO5S, 
[M + Na]+: m/z 765.3081. Found: m/z 765.3072.

5-(4-Fluorophenyl)-4-(1,3,4,6-tetra-O-benzyl-2-deoxy-β-D-
glucopyranose-2-yl)-1,2,4-triazole-3-thione (6i) Yield 87%, white 
solid; mp 127–128°C; IR: v 3429 (NH), 3063 (C-H, Ph), 2869 (CH2-Ph), 
1611 (C=N), 1361 (C=S), 1058 cm−1 (C-O-C); 1H NMR: δ 14.25 (s, 1H, -NH), 
7.68–7.60 (m, 1H, Ar-H), 7.42–7.25 (m, 17H, Ar-H), 7.20–7.10 (m, 6H, 
Ar-H), 6.12 (d, J = 8.0 Hz, 1H, HGlu-1), 5.61 (dd, J = 10.0, 8.5 Hz, 1H, HGlu-
3), 4.80 (d, J = 12.0 Hz, 1H, PhCH2), 4.73–4.65 (m, 2H, PhCH2), 4.58–
4.43 (m, 5H, PhCH2), 3.75–3.58 (m, 4H, HGlu-4,5,6,6′), 3.47 (t, J = 8.0 Hz, 
1H, HGlu-2). ESI-HRMS. Calcd for C42H41FN3O5S, [M + H]+: m/z 718.2745. 
Found: m/z 718.2748.

5-(4-Chlorophenyl)-4-(1,3,4,6-tetra-O-benzyl-2-deoxy-β-D-
glucopyranose-2-yl)-1,2,4-triazole-3-thione (6j) Yield 85%, white 
solid; mp 123–124°C. IR: v 3446 (NH), 3088 (C-H, Ph), 2941 (CH2-Ph), 
1606 (C=N), 1361 (C=S), 1057 cm−1 (C-O-C); 1H NMR: δ 14.12 (s, 1H, -NH), 
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7.53–7.48 (m, 2H, Ar-H), 7.38–7.26 (m, 16H, Ar-H), 7.25–7.21 (m, 2H, 
Ar-H), 7.17–7.12 (m, 2H, Ar-H), 7.07–7.03 (m, 2H, Ar-H), 6.19 (d, J = 8.0 Hz, 
1H, HGlu-1), 5.63 (dd, J = 10.0, 8.0 Hz, 1H, HGlu-3), 4.82 (d, J = 12.5 Hz, 1H, 
PhCH2), 4.71 (dd, J = 11.0  Hz and 5.0  Hz, 2H, PhCH2), 4.60–4.48 (m, 
4H, PhCH2), 4.40 (d, 1H, J = 11.0 Hz, PhCH2), 3.87 (dd, J = 10.5, 8.0 Hz, 
1H, HGlu-4), 3.75–3.63 (m, 3H, HGlu-5,6,6), 3.52 (t, J = 8.0 Hz, 1H, HGlu-2). 
ESI-HRMS. Calcd for C42H41ClN3O5S, [M + H]+: m/z 734.2450. Found: 
m/z 734.2447.

5-(4-Bromophenyl)-4-(1,3,4,6-tetra-O-benzyl-2-deoxy-β-D-
glucopyranose-2-yl)-1,2,4-triazole-3-thione (6k) Yield 90%, 
white solid; mp 132–133°C. IR: v 3427 (NH), 3086 (C-H, Ph), 2941 (CH2-
Ph), 1602 (C=N), 1357 (C=S), 1058 cm−1 (C-O-C); 1H NMR: δ 14.17 (s, 1H, 
NH), 7.75 (d, J = 7.0 Hz, 2H, Ar-H), 7.40–7.24 (m, 18H, Ar-H), 7.16–6.95 
(m, 4H, Ar-H), 6.19 (d, J = 7.0 Hz, 1H, HGlu-1), 5.62 (t, J = 8.5 Hz, 1H, HGlu-
3), 4.82 (d, J = 11.5 Hz, 1H, PhCH2), 4.76–4.64 (m, 2H, PhCH2), 4.57–4.47 
(m, 4H, PhCH2), 4.40 (d, J = 10.5  Hz, 1H, PhCH2), 3.88 (t, J = 8.0  Hz, 
1H, HGlu-4), 3.71–3.65 (m, 3H, HGlu-5,6,6′), 3.54 (t, J = 8.0 Hz, 1H, HGlu-
2). ESI-HRMS. Calcd for C42H41BrN3O5S, [M + H]+: m/z 778.1945. Found: 
m/z 778.1942.

5-(4-Iodophenyl)-4-(1,3,4,6-tetra-O-benzyl-2-deoxy-β-D-
glucopyranose-2-yl)-1,2,4-triazole-3-thione (6l) Yield 77%; pale 
yellow solid; mp 127–128°C; IR: v 3428 (NH), 3087 (C-H, Ph), 2928 
(CH2-Ph), 1600 (C=N), 1360 (C=S), 1027  cm−1 cm−1 (C-O-C); 1H NMR: 
δ 14.12 (s, 1H, NH), 7.90 (d, J = 7.5  Hz, 2H, Ar-H), 7.40–7.21 (m, 18H, 
Ar-H), 7.14 (d, J = 7.5  Hz, 2H, Ar-H), 7.04 (d, J = 7.0  Hz, 2H, Ar-H), 
6.19 (d, J = 8.0 Hz, 1H, HGlu-1), 5.61 (t, J = 8.5 Hz, 1H, HGlu-3), 4.81 (d, 
J = 12.5 Hz, 1H, PhCH2), 4.70 (d, J = 11.0 Hz, 2H, PhCH2), 4.60–4.47 (m, 
4H, PhCH2), 4.39 (d, J = 11.0  Hz, 1H, PhCH2), 3.88 (t, J = 9.0  Hz, 1H, 
HGlu-4), 3.75–3.60 (m, 3H, HGlu-5,6,6), 3.54 (t, J = 8.5 Hz, 1H, HGlu-2). ESI-
HRMS. Calcd for C42H4IN3NaO5S, [M + Na]+: m/z 848.1626. Found: m/z 
848.1621.

In vitro cholinesterase activity assay

Acetylcholinesterase (AChE), acetylthiocholine iodide (ATCI), 
5,5-dithiobis-(2-nitrobenzoic acid) (DTNB), galantamine and 
tacrine were purchased from Sigma-Aldrich (USA). AChE activities 
were measured using Ellman’s colorimetric method with a slight 
modification [38] with galantamine and tacrine as the reference 
compounds. An electric eel AChE was dissolved in 0.1 m phosphate-
buffered saline (PBS, pH 8.0) to obtain a solution of 0.35 U/mL. 
In assays, 20 μL of AChE was incubated with 10 μL of tested com-
pounds and 130 μL of 0.1 m PBS (pH 8.0) for 10 min in 96-well micro-
plates before the addition of 20 μL of 3.33 mm DTNB solution and 
20 μL of 5.30  mm ATCI solution. After the addition of DTNB and 
ATCI, the 96-well microplates were read at 412 nm with a microplate 
reader (Spectrafluor, Austria) for 15 min. One triplicate sample with-
out inhibitors was always present to yield 100% of AChE activity. 
The reaction rates were compared and the percentage inhibition 
due to the presence of tested compounds was calculated. Galan-
tamine and tacrine were applied as positive controls. All samples 
were assayed in triplicate. The 50% inhibitory concentration (IC50) 
was calculated from a dose-response curve obtained by plotting the 
percentage of inhibition vs. the log concentration with the use of 
Origin 8.0 software. The results were described as the mean ± stand-
ard deviation.
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