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Abstract

When 4-¯uorophenol was re¯uxed with excess of t-butyl chloride in the presence of various catalysts, e.g. Envirocat EPZG, EPZ10,

EPIC, sulfated zirconia, natural kaolinitic clay, zirconium nitrate, zinc chloride and bismuth nitrate, the product obtained was 2,5,di-t-butyl

4-¯uorophenol in excellent yield. # 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

Synthesis of 2,5- and 2,6-di-t-butylated phenols is of great

importance because of their usefulness as an antioxidants

[1]. Generally t-butylation of phenols has been carried out

using either Lewis acid [1] or Bronsted acid catalyst [2].

Recently synthesis of 2, 5-di-t-butyl-4-¯uorophenol has

been reported in very poor yield (10.2%) using 4-¯uoro-

phenol and t-BuCl in the presence of AlCl3 as a catalyst [1].

The synthesis of 2,6-di-t-butyl-4-¯uorophenol using expen-

sive xenon di¯uoride is also described in the literature [3].

We now report a high yielding synthesis of 2,5-di-t-butyl-4-

¯uorophenol using some novel environmentally friendly

catalysts.

2. Results and discussion

When 4-¯uorophenol was re¯uxed with excess of t-butyl

chloride in the presence of heterogenous catalysts like

Envirocat EPZG, EPZ10, EPIC [4±7] and sulfated zirconia

[8,9] and

natural kaolinitic clay [10,11], the product formed was only

2,5-di-t-butyl-4-¯uorophenol in excellent yield (Table 1,

entries 1±5) compared with reported results [3]. Use of

Lewis acid catalysts like zirconium nitrate, bismuth nitrate

and anhydrous zinc chloride also gave 2,5-di-t-butyl-

4-¯uorophenol in excellent yield (entries 6±8). No mono-

t-butylated compound was observed. 2-6-Di-t-butyl-4-

chlorophenol (IV), 2,6 di-t-butyl-4-bromophenol (VI) and

2,6-di-t-butyl-4-iodophenol (VIII) were formed when

4-chlorophenol (III), 4-bromophenol (V) and 4-iodophenol

(VII) were t-butylated [12]. The steric hindrance of bulky

4-chloro, 4-bromo and 4-iodo substituents did not allow

substitution in the 5-position.
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The reaction of 4-methoxyphenol (IX) with t-butyl chlor-

ide gave both the 2-6-di-t-butyl-4-methoxyphenol (X) and

2,5-di-t-butyl-4-methoxyphenol (XI) [3]. Although the

methoxy group is not as strong a donor as the hydroxy

group, the in¯uence of the t-butyl in 2-t-butyl-4-methox-

yphenol, the reaction intermediate, is suf®cient to direct the

second t-butyl to the 5-position.

The ¯uorine 2p orbital of 4-¯uorophenol can overlap with

the aromatic carbon better than the 3p orbital of chlorine in

4-chlorophenol, 4p orbital of bromine in 4-bromophenol or

5p orbital of iodine in 4-iodophenol. Therefore, ¯uorine is a

more activating group than chlorine, bromine and iodine

[13,14]. But the more electron withdrawing inductive effect

of ¯uorine makes it a less activating group than hydrogen

[13,14]. The orientation of the alkyl group in 4-¯uorophenol

is due to ¯uorine groups whereas the orientation of alkyl

group in 4-chlorophenol, 4-bromophenol and 4-iodophenol

is due to phenolic-OH groups. The alkylation of 4-¯uor-

ophenol gives exclusively 2,5-dialkylated product because

of the small size of ¯uorine, the �-donor effect of ¯uorine

and intermediate, 2-t-butyl directing effect.

3. Experimental details

1H NMR spectra were obtained from a 90 MHz Varian

FT-NMR instrument whereas IR spectra were recorded on a

Bomem MB 104 FT-IR spectrometer. Envirocat EPZG,

EPZ10, EPIC and sulfated zirconia were procured from

Contract Chemicals, England and MEL Chemicals, Eng-

land, respectively. Natural kaolinitic clay was obtained from

the Padappakara mine of Quilon District, Kerala, India and

was puri®ed and supplied by Dr. Lalithambika, RRL, Tri-

vandrum. EPZG, EPZ10, EPIC, sulfated zirconia and nat-

ural kaolinitic clay were used as supplied without activation/

calcination. Zirconium nitrate, bismuth nitrate and anhy-

drous ZnCl2 were of analytical grade. 4-Fluorophenol, 4-

chlorophenol, 4-bromophenol, 4-iodophenol and 4-methox-

yphenol were purchased from Lancaster Chemicals, Eng-

land.

3.1. Preparation of 2,5-di-t-butyl-4-fluorophenol

A mixture of 4-¯uorophenol (5 mmol), t-butyl chloride

(10 ml) and catalyst (100 mg) was re¯uxed for speci®ed

time (table) and the reaction was monitored by TLC. After

completion of the reaction, the catalyst was ®ltered off and

washed with diethyl ether (3 � 10 ml). The solvent was

removed under vacuum and the crude product obtained was

puri®ed by column chromatography (petroleum

ether:ethylacetate � 9:1 as an eluent). Physical constant,

IR, 1H NMR and 13C NMR values of the product II match

with the reported data [3].
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Table 1

Synthesis of 2,6- and 2,5-di-t-butyl-4-substituted phenols

Entry Phenol Catalyst Product Reaction time (min) Yield (%)

1 I EPZG II 10 95

2 I EPZ10 II 10 94

3 I EPIC II 10 98

4 I Sulphated zirconia II 180 85

5 I Natural clay II 10 85

6 I Zirconium nitrate II 240 85

7 I Zinc chloride II 10 90

8 I Bismuth nitrate II 10 77

9 III Natural clay IV 10 72

10 III EPZ10 IV 10 70

11 V Natural clay VI 10 64

12 V EPZ10 VI 10 67

13 VII Natural clay VIII 10 60

14 VII EPZ10 VIII 10 65

15 IX Natural clay X � XI (3:2) 20 63

16 IX EPZ10 X � XI (3:2) 10 71
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