PHASEOLLIN FORMATION AND METABOLISM IN PHASEOLUS VULGARIS*

MICHAEL D. WOODWARD

Division of Plant Industry, CSIRO, P.O. Box 1600, Canberra City, A.C.T. 2601, Australia

(Revised received 28 August 1979)

Key Word Index—Phaseolus vulgaris; Leguminosae; French bean; isoflavanone; pterocarpan; isoflavan; phytoalexin.

Abstract—Following fungal-inoculation, P. vulgaris was found to produce small amounts of 7,4'-dihydroxyisoflavone (daidzein), 7,2',4'-trihydroxyisoflavone, 7,2',4'-trihydroxyisoflavanone, (6aR, 11aR)-3,9-dihydroxypterocarpan, and (3R)-7,2',4'-trihydroxyisoflavan. The structures of the latter four compounds were confirmed by synthesis. The principal pterocarpans isolated were phaseollidin and phaseollin and ORD spectra indicate that these compounds have the same (6aR, 11aR)-configuration as 3,9-dihydroxypterocarpan. A pathway leading to phaseollidin and phaseollin is proposed involving 2'-hydroxylation of daidzein, reduction to the isoflavanone, further reduction, dehydration and cyclization to the pterocarpan, and prenylation to give phaseollidin and then cyclization and dehydrogenation to give phaseollin. No evidence of prenylation at the isoflavone or isoflavanone stage was obtained. The phaseollin metabolite, (6aS, 11aS)-6a-hydroxyphaseollin, was also detected.

INTRODUCTION

The pterocarpan phaseollin (7) was the first postinfectionally formed antifungal isoflavonoid identified from *Phaseolus vulgaris* [1]. The related pterocarpan phaseollidin (6) was subsequently identified from inoculation droplets [2]. These pterocarpans together with kievitone and phaseollinisoflavan (10) constitute the major antifungal isoflavonoids produced by *P. vulgaris* following fungal inoculation [3].

Phaseollin is believed to play a primary role in host plant defense [4]. An examination of the biosynthesis of phaseollin is necessary as part of the elucidation of the mechanism of resistance and experiments with labelled substrates have indicated that phaseollin is formed from cinnamic acid and acetate via the isoflavone daidzein (1a) [5]. However, little else is known about the isoflavonoid portion of the pathway. As several alternative routes may be postulated for phaseollin biosynthesis, a detailed examination of the isoflavonoids produced by P. vulgaris was undertaken. The isoflavonoids of P. vulgaris occur in two distinct classes: those with and those without an oxygen at C-5 (isoflavone system). The 5-hydroxylated isoflavonoids (e.g. kievitone) obtained from the extracts have been described previously [6, 7]. This paper reports the isolation and characterization of the 5deoxyisoflavonoids 1a, 2a, 3a, 5a, and 9a from P. vulgaris and a pathway leading to phaseollin is proposed and discussed.

RESULTS

Pod cavities of P. vulgaris were inoculated with a spore suspension of Monilinia fructicola (Wint.)

identified by UV, MS, and ¹H NMR. The ¹H NMR spectrum (in CDCl₃ and (CD₃)₂CO) differs from the published spectrum of **8** (in CD₃CN) [8] in that the two C-6 protons are non-equivalent. Five minor components were identified as non-prenylated 5-deoxyisoflavonoids as described below. One of the minor components in the extract (component 1) was identified as daidzein (structure **1a**) by comparison (TLC, MS, UV) with synthetic daidzein. The UV spectrum of component 2 is similar to that of daidzein [9] indicating an isoflavone structure. The MS shows prominent ions at m/e 270 (M⁺) [C₁₅H₁₀O₅]⁺, 253 [C₁₅H₉O₄]⁺, 137 [C₇H₅O₃]⁺, and 134 [C₈H₆O₂]⁺. The fragment ions at m/e 134 and137 correspond to a retro Diels-Alder (RDA) cleavage and indicate that ring B is dihydroxylated (m/e 134) and ring A is

Honey and incubated for 20 hr. Subsequent analysis of the inoculation fluid showed the presence of numerous

5-deoxy- and 5-hydroxy-isoflavonoids. The amounts

of these compounds isolated and their behaviour on Si

gel and polyamide TLC are shown in Table 1. Among

the 5-deoxyisoflavonoids isolated were phaseollidin (6)

and phaseollin (7) which were identified by compari-

son with authentic samples (UV, MS, TLC) and 5-

deoxykievitone (11), an isoflavanone apparently uni-

que to P. vulgaris [7]. 6a-Hydroxyphaseollin (8) was

isolated from extracts of inoculated tissue and was

The UV spectrum of component 2 is similar to that of daidzein [9] indicating an isoflavone structure. The MS shows prominent ions at m/e 270 (M⁺) [C₁₅H₁₀O₅]⁺, 253 $[C_{15}H_9O_4]^+$, 137 $[C_7H_5O_3]^+$, and 134 $[C_8H_6O_2]^+$. The fragment ions at m/e 134 and 137 correspond to a retro Diels-Alder (RDA) cleavage and indicate that ring B is dihydroxylated (m/e 134) and ring A is monohydroxylated. The abundant fragment ion at m/e253 $[M-OH]^+$ is characteristic of simple 2'hydroxylated isoflavones [10]. On biogenetic grounds, C-7 and C-4' are also hydroxylated [11] and the ¹H NMR spectrum is consistent with structure 2a for component 2. The isoflavone C-2 proton appears at δ 8.14 and the six aromatic protons appear as two ABX systems with protons at 6.98 (d, C-6'), 6.36 (d, C-3'), and 6.27 (dd, C-5') assigned to ring B (compare the corresponding signals for 2'-hydroxygenistein (14) at 6.97, 6.36, and 6.25 [12]).

^{*}Part 19 in the series "Studies on Phytoalexins". For Part 18 see Woodward, M. D. (1979) Phytochemistry 18, 2007.

Compound		TLC systems* $(R \times 100)$			Chromatography Fraction t	Amount isolated
		I	Π	°ш	Traction ((µ1101)+
5-Deoxyisoflavonoids						
Daidzein	1a	41	40	40	C4	1.1
7,2',4'-Trihydroxyisoflavone	2a	31	25	33	C5, D1	4.8
7,2',4'-Trihydroxyisoflavanone	3 a	23	17	38	C4	3.1
5-Deoxykievitone	11	28	23	40	B 1	3.9
3,9-Dihydroxypterocarpan	5a	67	73	48	B1	8.8
Phaseollidin	6	76	84	47	P2, A2, B1	73
Phaseollin	7	.87	89	59	P1, A1	450
6a-Hydroxyphaseollin	8	70	78	64	P1	ND
7,2',4'-Trihydroxyisoflavan	9a	43	36	37	B2, C3	5.8
Phaseollinisoflavan	10	76	84	44	-	
Coumestrol	12	54	50	9	Ε	ND
5-Hydroxyisoflavonoids						
Genistein	13	59	57	26	C6	1.6
2'-Hydroxygenistein	14	36	26	25	C6, D2, D3, D4, E	130
Dalbergioidin	15	33	20	29	C5, C6, D1, D2	37
Kievitone	16	41	29	30	B1, B2, B3	150
1",2"-Dehydrocyclokievitone	17	59	53	44	P3	0.43
Licoisoflavone A	18	61	58	24	C6, C7, D4	77
2.3-Dehydrokievitone	19	54	45	29	B3 , C5	6.4

Table 1. Chromatographic properties and quantitation of P. vulgaris isoflavonoids

*I: petrol (55-65°)-Et₂O-HOAc, 25:75:1 (0.1 mm Si gel, Eastman 13179, iodine vapour detection); II: petrol (55-65°)-EtOAc-MeOH, 10:10:1 (Si gel); III: MeOH-H₂O, 17:3 (0.05 mm polyamide, Cheng Chin Trading Co., Fast Blue Salt B detection [52]).

†P: petrol fraction; A-E: EtOAc fraction separated on a polyamide column in 85% EtOH; numbers following letters represent column fractions obtained from next purification step.

‡Quantities reported are the amounts isolated from 91. of inoculation droplets and are based on literature extinction coefficients (log ε in parentheses): **1a** (4.40) [53], **2a** (4.36) (this study), **6** (3.78) [52], **7** (3.97) [4], **13** (4.55) [53], **15** (4.31) [16], **16** (4.22) [3], and **18** (4.47) [54]. Values for other compounds are based on extinction coefficients for related compounds: **3a** and **11** based on **3b** (4.23) [26], **5a** based on homopterocarpin (3.89) [55], **8** based on **7** (3.97) [4], **9a** on **9b** 3.76 [23], **17** based on cajanone (4.30) [56], and **14** and **19** based on luteone (4.45) [57]. ND = Not determined. — = Not detectable.

The UV spectrum of component 3 shows a 55 nm bathochromic shift with both NaOH and NaOAc which is consistent with a 5-deoxyisoflavanone structure [13, 14]. The MS is simple showing mainly a medium intensity molecular ion at m/e 272 $[C_{15}H_{12}O_5]^+$ and major fragment ions at m/e 137 $[C_7H_5O_3]^+$ and 136 $[C_8H_8O_2]^+$ which result from a RDA fragmentation and indicate that ring A is monohydroxylated $(m/e \ 137)$ and ring B is dihydroxyl- ${}^{1}\mathbf{H}$ NMR spectrum confirms the The ated. isoflavanone nature of component 3 with signals for the three heterocyclic ring protons at δ 4.59 (t), 4.44 (dd), and 4.09 (dd). The pattern observed for protons at C-2 and C-3 in isoflavanones appears to vary with solvent [7] and with substitution. The spectra of the isoflavanones obtained from French bean all show the same pattern (in (CD₃)₂CO) as above with complete resolution of the two C-2 protons. Non-equivalence of the C-2 protons is indicative of C-2' substitution [15] although the C-2 protons of kievitone and dalbergioidin were not resolved at 100 MHz (in (CD₃)₂CO) [3, 16]. The aromatic protons in the spectrum of component 3 appear as two ABX systems with the protons at 7.74 (C-5), 6.56 (C-6), and 6.39 (C-8) assigned to ring A based on a comparison with the corresponding protons in the spectrum of 7,3'- dihydroxy-4'-methoxyisoflavanone [14]. The chemical shifts of the ring B protons of component 3 are nearly identical to those of dalbergioidin [16] indicating hydroxylation at C-2' and C-4' and that component 3 is 7,2',4'-trihydroxyisoflavanone.

The UV spectrum of component 4 is nearly superimposable on that of phaseollidin (6). The pterocarpan nature of the compound is indicated by the ¹H NMR spectrum which gives signals for six aromatic protons (two ABX systems) and for four protons in the heterocyclic ring which appear in a highly complex pattern characteristic of pterocarpans [17]. The MS shows a molecular ion at m/e 256 $[C_{15}H_{12}O_4]^+$ which is displaced to 258 in the presence of D₂O indicating that the only substituents are two hydroxyls. These can be assigned to C-3 and C-9 on biogenetic grounds [11] and the following 'H NMR data. The protons in one of the ABX systems appear at δ 7.39 (d), 6.56 (dd), and 6.42 (d) and these chemical shifts are almost identical to those for the protons at C-1, C-2, and C-4 in the spectrum of medicarpin (5b) [18]. The chemical shifts and coupling constants for the ring D protons are nearly equivalent to those reported for 5b [18] and homopterocarpin [17] indicating substitution at C-9 and that component 4 is 3,9-dihydroxypterocarpan.

ORD spectra of 3,9-dihydroxypterocarpan and

phaseollidin are nearly identical in the 240-350 nm region with each compound showing a positive Cotton effect near 294 nm. These spectra are similar to the spectrum of (-)-homopterocarpin [19] and therefore these pterocarpans are assigned the (6aR, 11aR)configuration (5a and 6). The ORD spectra of phaseollin and 6a-hydroxyphaseollin are also nearly identical and each shows a positive Cotton effect in the 335 nm region. Tuberosin, an isomer of 6ahydroxyphaseollin, shows a negative Cotton effect in this region [20]. The spectra of both phaseollin and 6a-hydroxyphaseollin show large negative troughs in the 240 nm region as do 3,9-dihydroxypterocarpan and phaseollidin, and from this it is concluded that phaseollin has the (6aR, 11aR)-configuration 7. 6a-Hydroxyphaseollin is assigned the (6aS, 11aS)configuration 8 (opposite to the other pterocarpans which lack the 6a hydroxyl). No rotation was observed in the ORD spectra of any isoflavanone (dalbergioidin, 7,2',4'-trihydroxyisoflavanone, and 5kievitone, deoxykievitone) and this is probably the result of the formation of keto-enol tautomers [21].

remaining non-prenylated isoflavonoid The $(C_{15}H_{14}O_4)$ was shown to be an isoflavan by the presence of a CH₂-CH-CH₂ group in the ¹H NMR spectrum which is characteristic of isoflavans [19, 22]. These protons appear at & 4.21 (ddd, C-2a), 3.93 (t, C-2b), 3.49 (m, C-3), 2.94 (dd, C-4a), and 2.76 (ddd, C-4b) and these shifts are nearly identical to those of the corresponding protons in the spectrum of phaseollinisoflavan dimethylether [3]. Long range coupling was observed between C-2a and C-4b. The molecular ion in the mass spectrum at m/e 258 was displaced to m/e 261 after D_2O exchange indicating the presence of 3 hydroxyls and prominent fragment ions at $m/e \ 136 [C_8 H_8 O_2]^+$ and $123 [C_7 H_7 O_2]^+$ are the result of a RDA fragmentation with ring B $(m/e \ 136)$ being dihydroxylated. The aromatic protons appear as two ABX systems with coupling constants similar to those of the isoflavone 2a and the isoflavanone 3a indicating that the compound is 7.2',4',-trihydroxvisoflavan. The chemical shift for each of the six aromatic protons is nearly equivalent to the shift of the corresponding proton in the spectrum of vestitol (9b) [23]. The ORD spectrum of 7,2',4'-trihydroxyisoflavan has a positive Cotton effect at 293 nm and a large negative trough at 239 nm and is assigned the (3R)configuration (structure 9a) based on the similarity of the spectrum with that of 2'-hydroxy-7,4'-dimethoxyisoflavan [19].

The structures of the natural products 2a, 3a, 5a, and 9a have been confirmed by synthesis. 7,2',4'-Trihydroxyisoflavone (2a) was prepared from 2,4,4'tribenzyloxy-2'-hydroxychalcone by oxidative rearrangement with thallium nitrate [24, 25]. Catalytic hydrogenation of the isoflavone triacetate in EtOAc gave racemic 7,2',4'-triacetoxyisoflavanone from which racemic 3a was obtained by treatment with base [26]. Racemic pterocarpan 5a was prepared from 2a by NaBH₄ reduction [26] and racemic isoflavan 9a was obtained from 2a by catalytic hydrogenation in HOAc.

DISCUSSION

 $i \in$

Daidzein has been reported from several legume species but not from *P. vulgaris* [27]. The pterocarpan

5a has been observed previously as a fungal-mediated demethylation product of medicarpin (**5b**) [28] and as a constituent of the heartwood of Albizzia procera [29]. The A. procera pterocarpan appears to have the (6aS, 11aS)-configuration. Pterocarpan 8 has been reported as a fungal-mediated hydroxylation product of phaseollin (7) [8]. 7,2',4'-Trihydroxylation product of phaseollin (7) [8]. The metabolite of Anthyllis vulneraria, Lotus corniculatus, L. uliginosus, and 5 species of Tetragonolobus [30]. However, the configuration of the isoflavan was not reported. Neither the isoflavone **2a** nor the isoflavanone **3a** has been reported as naturally occurring.

With the exception of 9a, the non-prenylated 5deoxyisoflavonoids which have now been characterized from P. vulgaris probably constitute the isoflavonoid intermediates involved in phaseollidin and phaseollin biosynthesis. This indicates that the sequence of reactions $1a \rightarrow 2a \rightarrow 3a \rightarrow 4a \rightarrow 5a \rightarrow 6 \rightarrow 7$ (Scheme 1) probably occurs during phaseollin formation. Other than 5-deoxykievitone (11) and 6a-hydroxyphaseollin (8), no additional 5-deoxyisoflavonoids were identified from the extracts. These observations are consistent with the postulate that non-prenylated isoflavonoids are intermediates in phaseollin biosynthesis. The sequence shown in Scheme 1 for phaseollin formation (isoflavone formation, 2'-hydroxylation, reduction to an isoflavanone and then to an isoflavanol followed by dehydration and cyclization to a pterocarpan) is the same as that proposed for medicarpin biosynthesis (Scheme 1, R = methyl) based on an elegant set of experiments using labelled substrates [26, 31-33]. Isolated 7,2',4'-trihydroxyisoflavanone and 5-deoxykievitone were optically inactive probably as a result of the formation of keto-enol tautomers [21]; however, they are depicted in Scheme 1 (structures 3a and 11) with the same configuration (3R) as found for the pterocarpans. The isoflavanol 4b has been proposed as an intermediate in medicarpin biosynthesis [26]. The isoflavanol 4a was not isolated in this study but this was not unexpected as such compounds readily undergo cyclization to give pterocarpans [34]. The interconversion of the isoflavan vestitol (9b) and the pterocarpan medicarpin (5b) has been demonstrated in Medicago sativa [35, 36] and this observation led to a postulation that these compounds were formed from a common intermediate. A similar system may exist in P. vulgaris as both the isoflavan 9a and the pterocarpan 5a were isolated.

The ultimate step in the formation of phaseollidin (6) appears to be prenylation of the pterocarpan **5a**. This proposal is based on the absence of prenylated isoflavones and isoflavanones which could serve as precursors. The biosynthesis of other prenylated pterocarpans may be similar, as for example, in the case of Glycine max where the principal phytoalexin is the prenylated pterocarpan glyceollin [37]. 3,6a,9-Trihydroxypterocarpan has been isolated from CuCl₂-treated G. max cotyledons [38] and recently an enzyme has been obtained from G. max which prenylates the pterocarpan [39]. It seems very probable that both the non-prenylated pterocarpan and the prenylated product are precursors of glyceollin.

The enzymes responsible for hydroxylation and prenylation of the French bean isoflavonoids appear to have a high level of specificity. Hydroxylation appears

Scheme 1. Proposed pathway for the biosynthesis of phaseollin and related 5-deoxyisoflavonoids in P, vulgaris (R = H).

to occur specifically at the 2'-position of the isoflavones genistein and daidzein. Of the ten compounds isolated from French bean showing prenylation, only positions C-8 and C-3' (C-10 for pterocarpans) are prenylated. The formation of 5-deoxykievitone probably follows the sequence $1a \rightarrow 2a \rightarrow 3a \rightarrow 11$ (Scheme 1). Although a specific enzyme may exist for the prenylation of 3a, it is likely that if an enzyme exists that prenylates 5,7,2',4'-tetrahydroxyisoflavanone (dalbergioidin) in position C-8 to give kievitone this enzyme could probably prenylate 3a with lower efficiency resulting in the accumulation of 11.

Phaseollinisoflavan (10) was not isolated from the inoculation fluid in this study. Formation of phaseollinisoflavan has been reported from P. vulgaris cell suspension cultures in response to the addition of phaseollin to the medium [40], from filtrates of fungal cultures grown in the presence of phaseollin [41], and from several cultivars of P. vulgaris including Red Kidney following inoculation with bean pathogens [42-47]. The absence of 10 in the inoculation fluid from the interaction of P. vulgaris with M. fructicola, a non-pathogen of beans, could be due to the short incubation period used, or to the fungal species used, or, if 10 was present, it was either in amounts below the level of detection or was lost during the isolation procedures. Formation of 10 in the plant could occur directly from 7 [40] or from 9a via the intermediate phaseollidinisoflavan. However, this latter compound has not been reported from French beans.

The coumestan, coumestrol, has been reported to

occur in *P. vulgaris* after treatment with culture filtrates of *Penicillium expansum* [48] and with bacteria [49]. Chromatographic evidence (co-chromatography on polyamide, Si gel, and cellulose with detection by fluorescence) was obtained in this study for the presence of a coumestrol-like compound in inoculated bean tissue and in the inoculation fluid; however, no attempt was made to purify the material.

EXPERIMENTAL

Low resolution MS was obtained using a direct insertion probe (ionization voltage 70 eV; accelerating voltage 4 kV) and precise mass measurements were obtained using an on-line computer. All ¹H NMR spectra were recorded at 270 MHz using TMS as internal standard. ORD spectra were recorded in MeOH at 25° and concentrations used are based on ε values reported in Table 1.

Isolation of isoflavonoids from inoculation droplets. Inoculation of P. vulgaris L. cv. Red Kidney pod cavities (ca 40 000) with a conidial suspension (ca 0.4×10^6 spores/ml) of Monilinia fructicola (Wint.) Honey [4] gave 9.5.1 of inoculation fluid after a 20 hr incubation period and the processing and sequential extraction of this material with petrol and EtOAc has been described [7]. Five fractions were obtained after chromatography of the EtOAc-extractable material on a column of polyamide eluted with 85% EtOH and the distribution of the compounds is shown in Table 1. Fraction A was chromatographed on a column of Si gel eluted with CHCl₃ to obtain phaseollin and phaseollidin. Fraction B was rechromatographed on polyamide in 85%

EtOH. Fraction B-1 contained all of 5n which was purified by chromatography on polyamide (70% MeOH) then Si gel CHCl₃ using a 0-3% MeOH gradient. Fraction C-4 con-(95% EtOH). Fraction C was chromatographed on a column of polyamide eluted with 85% MeOH and each of the 7 fractions was then chromatographed on Si gel eluted with CHCl₃ using a 0-3% MeOH gradient. Fraction C-4, contained 1a and 3a which were separated on the Si gel column (1a at ca 2% MeOH, 3a at 3% MeOH) and each compound was further purified by chromatography on an LH-20 column in 95% EtOH. Fraction B-2 and fraction C-3 contained 9a and were combined and chromatographed on an LH-20 column in 95% EtOH. Fraction D was chromatographed on polyamide in 85% MeOH and all 4 fractions obtained were chromatographed on Si gel columns in CHCl₃ and eluted with a 0-3% MeOH gradient in CHCl₃. Compound 2a was obtained from fractions C-5 and D-1 at ca 2% MeOH. The appropriate fractions were pooled and chromatographed on an LH-20 column in 95% EtOH to give 2a. All other compounds listed in Table 1 were isolated using columns of polyamide (70-85% MeOH), Si gel (CHCl3-MeOH gradient), and LH-20 (95% EtOH) and then pooling the appropriate fractions. Compounds 6, 7, and 17 were obtained from the petrol fraction by chromatography on columns of polyamide (70% MeOH) and LH-20 (95% EtOH) [7].

7,2',4'-Trihydroxyisoflavone (2a). UV λ_{max}^{MeOH} nm; 241 (sh), 248, 258 (sh), 290. ¹H NMR ((CD₃)₂SO): δ 8.14 (1H, s, C-2); 7.93 (1H, d, J = 8.8 Hz, C-5); 6.98 (1H, d, J = 8.3 Hz, C-6'); 6.93 (1H, dd, J = 8.8, 2.2 Hz, C-6); 6.86 (1H, d, J = 2.2 Hz, C-8); 6.36 (1H, d, J = 2.4 Hz, C-3'); 6.27 (1H, dd, J = 8.3, 2.4 Hz, C-5'). MS, M⁺ 270.0527, C₁₅H₁₀O₅ requires 270.0528, m/e (rel. int.): 270 (100), 269 (18), 253 (41), 137 (68), 135 (11), 134 (40).

Synthesis of 2a. 2,4-Dibenzyloxybenzaldehyde (6.36 g) and 2-hydroxy-4-benzyloxyacetophenone (4.84 g) were dissolved in EtOH (60 ml), 10 ml 50% NaOH was added, and the mixture was heated on a steam bath for 20 min and then filtered [24]. The product was washed with 0.1 N HCl and then H₂O until neutral. Crystallization from HOAc gave 2,4,4'-tribenzyloxy-2'-hydroxychalcone (5.60 g, 52%, mp 127-130°, lit. 141-142° [25]). MS m/e (rel. int.): 542 (M⁺ 75), 452 (31), 451 (85), 435 (62), 434 (100), 253 (46), 227 (79), 181 (32). The chalcone (2.71 g) was added to MeOH (1 l.), stirred and heated to 50°, Tl(NO₃)₃·3H₂O (2.44 g) was added, and stirring continued for 2.5 hr. Then 30 ml 3N HCl was added, the mixture was heated under reflux on a steam bath for 7 hr, filtered hot, and concd under red. pres. [24]. H₂O was added, the mixture was stirred at 4° for 3 hr, and then filtered. The crude product from two such syntheses was pooled and crystallized from CHCl3-MeOH to give 7,2',4'tribenzyloxyisoflavone (4.04 g, 75%, mp 156-158°, lit. 154-157° [25]). MS m/e (rel. int.): 540 (M⁺, 97), 450 (50), 449 (100), 359 (13), 181 (22), 120 (64), 119 (33), 118 (69), 117 (36). Catalytic hydrogenation of the above isoflavone (3.78 g) with Pd-charcoal (5%, 0.5 g) in 150 ml Me₂CO at room temp. and 3 atm for 12 hr gave 2a which was crystallized from aq. MeOH (1.19 g, 63%). The colourless isoflavone was obtained by chromatography on Si gel using a 0-4% MeOH gradient in CHCl₃ and crystallization from CHCl₃-MeOH gave the desired product (mp 275° dec., lit. 272° dec. [50], lit. 284° dec. [51]). (Found: C, 66.45; H, 3.75. Calc. for C₁₅H₁₀O₅: C, 66.65; H, 3.73%.) MS and ¹H NMR as for isolated material. UV λ_{max}^{MeOH} nm (log ϵ): 241 (4.33), 249 (4.36), 259 (sh) (4.27), 289 (4.15). The synthetic compound was indistinguishable from the natural product by TLC (8 solvent systems).

7,2',4'-Trihydroxyisoflavanone (±) (3a). UV λ_{max}^{MeOH} (nm): 278, 308 (sh); NaOH 246, 333; AlCl₃ 277, 309; AlCl₃-HCl 277, 305 (sh); NaOAc 254, 289, 333; NaOAc-H₃BO₃ 279, 313. ¹H NMR ((CD₃)₂CO): δ 7.74 (1H, d, J = 8.8 Hz, C-5); 6.81 (1H, d, J = 8.3 Hz, C-6'); 6.56 (1H, dd, J = 8.8, 2.2 Hz, C-6); 6.45 (1H, d, J = 2.5 Hz, C-3'); 6.39 (1H, d, J = 2.2 Hz, C-8); 6.24 (1H, dd, J = 8.3, 2.5 Hz, C-5'); 4.59 (1H, t, J = 10.7 Hz, (C-2a); 4.44 (1H, dd, J = 10.8, 5.4 Hz, C-2b); 4.09 (1H, dd, J = 10.6, 5.4 Hz, C-3). MS, M⁺ 272.0690, C₁₅H₁₂O₅ requires 272.0685; *m/e* (rel. int.): 272 (31), 137 (100), 136 (36), 135 (8).

Synthesis of (\pm) 3a. Isoflavone 2a (1.08 g) in C₅H₅N (3 ml) was treated with Ac₂O (3 ml) at 70° for 90 min, poured into H_2O , and the product filtered to give 7,2',4'-triacetoxyisoflavone (1.41 g, 89%). A portion was chromatographed on Si gel in CHCl₃ and recrystallized from MeOH (mp 149-151°, lit. 148-150° [50]). (Found: C, 63.33; H, 4.25. Calc. for C₂₁H₁₆O₈: C, 63.62; H, 4.07%). MS m/e (rel. int.): 396 (M⁺, 24), 354 (53), 312 (100), 270 (96), 269 (15), 253 (16), 137 (26), 134 (17). The acetylated isoflavone (79 mg) was hydrogenated using Pd-charcoal (5%, 100 mg) in EtOAc (20 ml) at room temp. for 16 hr [26]. After filtration, the crude product from four such reactions was chromatographed on Si gel in CHCl₃ to give 7,2',4'-triacetoxyisoflavanone which crystallized from EtOH (125 mg, 39%, mp 118-119°). (Found: C, 63.52; H, 4.35. C₂₁H₁₈O₈ requires: C, 63.30; H, 4.56%). MS m/e (rel. int.): 398 (M⁺, 1.4), 356 (24), 338 (26), 314 (17), 179 (68), 178 (24), 137 (100), 136 (71), 135 (12). The above isoflavanone (27 mg) was treated with 0.5 g KOH in 10 ml EtOH for 3 hr [26]. The reaction mixture was poured into H₂O (140 ml), neutralized with 2 N HCl, and extracted with EtOAc (150 ml, $2\times$). The product 3a was purified on Si gel eluted with a 0-4% MeOH gradient in CHCl₃ (ca 18 mg, 97%). UV λ^{MeOH}_{max} (nm): 277, 309; MS and ¹H NMR as for natural product. The isolated and synthetic materials were indistinguishable by TLC (10 solvent systems).

(6a R, 11a R)-3,9-Dihydroxypterocarpan (5a). UV λ_{max}^{Med} (nm): 286, 282 (sh). ¹H NMR (CDCl₃): δ 7.39 (1H, d, J = 8.4Hz, C-1); 7.08 (1H, d, J = 8.0 Hz, C-7); 6.56 (1H, dd, J = 8.4, 2.4 Hz, C-2); 6.42 (1H, d, J = 2.4 Hz, C-4); 6.40 (1H, dd, J = 8.0, 2.0 Hz, C-8); 6.37 (1H, d, J = 2.0 Hz, C-10); 5.49 (1H, d, $J \sim 6.2$ Hz, C-11a); 4.23 (1H, m, C-6eq); 3.62 (1H, t, $J \sim 10.6$ Hz, C-6ax); 3.49 (1H, m, C-6a). MS, M⁺ 256.0737, C₁₅H₁₂O₄ requires 256.0736; m/e (rel. int.): 256 (100), 255 (49), 239 (7), 147 (23), 134 (21), 128 (11), 123 (7). ORD (c 0.10 mM, l 2 cm): $[\phi]_{312}$ 0°, $[\phi]_{295} + 11000^\circ$, $[\phi]_{288}$ 0°, $[\phi]_{278} - 21000^\circ$, $[\phi]_{267} - 19000^\circ$, $[\phi]_{242} - 49000^\circ$. Treatment of **5a** with CH₂N₂ gave a dimethylether which was identical to homopterocarpin by MS. MS m/e (rel. int.): 284 (100), 283 (38), 269 (29), 161 (19), 142 (13).

Synthesis of (\pm) 5a. Isoflavone 2a (108 mg) in dry THF was stirred and NaBH₄ (0.15 g) suspended in EtOH was added slowly. The mixture was stirred for 2 days, Me₂CO was added, and the solvents were evapd [26]. The residue was treated with 3 N HCl (20 ml) and extracted 3× with EtOAc (20 ml). The product was obtained in low yield [50] and was separated from the unreacted starting material by chromatography on polyamide (85% MeOH) and on LH-20 in 95% EtOH (ca 15 mg, 14%). UV, ¹H NMR (in CDCl₃), and MS as for natural product. ¹H NMR ((CD₃)₂CO): δ 7.32 (1H, d, J = 8.3 Hz, C-1); 7.13 (1H, d, J = 8.0 Hz, C-7); 6.56 (1H, dd, J = 8.3, 2.4 Hz, C-2); 6.37 (1H, dd, J = 8.1, 2.2 Hz, C-8); 6.36 (1H, d, J = 2.4 Hz, C-4); 6.29 (1H, d, J = 2.2 Hz, C-10); 5.46 (1H, d, J = 5.9 Hz, C-11a), 4.24 (1H, m, C-6eq); 3.56 (2H, m, C-6a, C-6ax). The synthetic material was indistinguishable from the natural product from French beans and from the fungal demethylation product of medicarpin [28] by TLC in 6 solvent systems.

(6a R, 11a R)-Phaseollidin (6). UV and MS as literature [2]. ORD (c 0.10 mM, l 2 cm): $[\phi]_{312} 0^{\circ}, [\phi]_{292} + 14 000^{\circ}, [\phi]_{287} 0^{\circ}, [\phi]_{276} - 19 000^{\circ}, [\phi]_{268} - 18 000^{\circ}, [\phi]_{244} - 33 000^{\circ}.$

(6aR,11aR)-Phaseollin (7). UV and MS as literature [2]. ORD (c 0.06 mM, l 2 cm): $[\phi]_{336} + 4400^{\circ}$, $[\phi]_{322} 0^{\circ}$, $[\phi]_{303} - 5200^{\circ}$, $[\phi]_{291} - 2000^{\circ}$, $[\phi]_{272} - 18000^{\circ}$, $[\phi]_{240} - 41000^{\circ}$.

(3R)-7,2',4'-Trihydroxyisoflavan (9a). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 283. ¹H NMR ((CD₃)₂CO): δ 6.91 (1H, d, A), 6.47 (1H, d, X), 6.30 (1H, dd, B), $J_{AB} = 8.4$, $J_{BX} = 2.4$ Hz; 6.87 (1H, d, A'), 6.35 (1H, dd, B'), 6.27 (1H, d, X'), $J_{A'B'} = 8.3$ Hz, $J_{B'X'} = 2.4$ Hz; 4.21 (1H, ddd, J = 10.2, 3.8, 2.2 Hz, C-2a); 3.93 (1H, t, J = 10.2 Hz, C-2b); 3.49 (1H, m, C-3); 2.94 (1H, dd, J = 15.4, 11.0 Hz, C-4a); 2.76 (1H, ddd, J = 15.4, 5.2, 2.2 Hz, C-4b). MS, M⁺ 258.0880, $C_{15}H_{14}O_4$ requires 258.0892; m/e (rel. int.): 258 (59), 147 (9), 137 (15), 136 (100), 135 (39), 134 (23), 124 (21), 123 (73), 107 (14). ORD (c 0.15 mM, l 2 cm): $[\phi]_{293} + 1800^{\circ}, [\phi]_{289} 0^{\circ}, [\phi]_{278} - 2700^{\circ},$ $[\phi]_{263} - 1200^{\circ}, [\phi]_{239} - 5600^{\circ}.$

Synthesis of (\pm) **9a**. Isoflavone **2a** (108 mg) was hydrogenated in HOAc (40 ml) using Pd-charcoal (5%, 200 mg) at room temp. for 65 hr at 3 atm. The product was purified by chromatography on Si gel using a 0-4% MeOH gradient in CHCl₃ and then on LH-20 in 95% EtOH to give 7,2',4'-trihydroxyisoflavan (*ca* 13 mg, 13%). UV, ¹H NMR, and MS as for isolated material and the two compounds were identical by TLC (8 solvent systems).

Isolation of (6aS,11aS)-6a-hydroxyphaseollin (8) from inoculated tissue. P. vulgaris endocarp tissue (3.75 kg) under the inoculation droplets was handled as described previously [6]. The methanolic soln obtained was chromatographed on a column of polyamide in 85% MeOH and 8 was eluted with 6 and 7. Subsequent separation on a column of polyamide eluted with 60% MeOH gave 8 as the first peak to elute followed by 7 and then 6. Further purification of the fraction containing 8 was performed by chromatography on an LH-20 column in 95% EtOH. UV λ_{max}^{MeOH} (nm): 280, 285 (sh), 311 (sh). ¹H NMR ((CD₃)₂CO): δ 7.34 (1H, d, J = 8.5 Hz, C-1); 7.14 (1H, d, J = 8.2 Hz, C-7); 6.56 (1H, dd, J = 8.5 2.4 Hz, C-2); 6.42 (1H, d, J = 9.8 Hz, C-12); 6.34 (1H, d, J = 8.2 Hz, C-8); 6.33 (1H, d, J = 2.2 Hz, C-4); 5.67 (1H, d, J = 10.0 Hz, C-13); 5.34 (1H, s, C-11a); 4.13 (1H, d, J = 11.4 Hz, C-6); 4.06 (1H, d, J = 11.4 Hz, C-6); 1.39 (3H, s, methyl); 1.35 (3H, s, methyl). MS, M⁺ 338.1155, C₂₀H₁₈O₅ requires 338.1154; m/e (rel. int.): 338 (41), 323 (100), 320 (18), 305 (29), 295 (25), 185 (11), 161 (33). ORD (c 0.06 mM, l, 2 cm): $[\phi]_{343}$ 0°, $[\phi]_{332}$ +2200°, $[\phi]_{322}$ 0°, $[\phi]_{304}$ ~4300°, $[\phi]_{291} = -2400, \ [\phi]_{270} = -19\ 000^{\circ}, \ [\phi]_{243} = -43\ 000^{\circ}.$

Acknowledgements—The author thanks Mr. I. Pavelic of the Division of Entomology, CSIRO, for low resolution mass spectra, Mr. T. Davies of the Research School of Chemistry, Australian National University for precise mass measurements, Mr. P. Hanish of the National NMR Centre for ¹H NMR spectra, Dr. R. Frier of the Department of Physical Biochemistry, John Curtin School of Medical Research, Australian National University for ORD spectra, the following for reference samples, Dr. N. T. Keen of the University of California—Riverside (daidzein), Dr. J. A. Bailey of the Long Ashton Research Station—Bristol (phaseollinisoflavan), and Dr. J. L. Ingham of the University of Reading (3,9dihydroxypterocarpan), and Mrs. N. J. Shoring for technical assistance.

REFERENCES

- 1. Perrin, D. R. (1964) Tetrahedron Letters 29.
- 2. Perrin, D. R., Whittle, C. P. and Batterham, T. J. (1972) Tetrahedron Letters 1673.
- 3. Burden, R. S., Bailey, J. A. and Dawson, G. W. (1972) Tetrahedron Letters 4175.
- 4. Cruickshank, I. A. M. and Perrin, D. R. (1971) Phytopathol. Z. 70, 209.
- 5. Hess, S. L., Hadwiger, L. A. and Schwochau, M. E. (1971) Phytopathology 61, 79.
- 6. Woodward, M. D. (1979) Phytochemistry 18, 363.
- 7. Woodward, M. D. (1979) Phytochemistry 18, 2007.
- Burden, R. S., Bailey, J. A. and Vincent, G. G. (1974) Phytochemistry 13, 1789.
- Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) The Systematic Identification of Flavonoids, p. 179. Springer, New York.
- Eguchi, S., Haze, M., Nakayama, M. and Hayashi, S. (1977) Org. Mass Spectrom. 12, 51.
- 11. Wong, E. (1970) Fortschr. Chem. Org. Naturst. 28, 1.
- 12. Biggs, R. (1975) Aust. J. Chem. 28, 1389.
- 13. Ingham, J. L. (1978) Z. Naturforsch. Teil C 33, 146.
- 14. Oliveira, A. B. de, Iracema, M., Madruga, L. M. and Gottlieb, O. R. (1978) Phytochemistry 17, 593.
- Donnelly, D. M. X., Thompson, J. C., Whalley, W. B. and Ahmad, S. (1973) J. Chem. Soc. Perkin Trans. 1, 1737.
- Farkas, L., Gottsegen, A., Nogradi, M. and Antus, S. (1971) J. Chem. Soc. C 1994.
- 17. Pachler, K. G. R. and Underwood, W. G. E. (1967) Tetrahedron 23, 1817.
- Smith, D. G., McInnes, A. G., Higgins, V. J. and Millar, R. L. (1971) Physiol. Plant Pathol. 1, 41.
- Pelter, A. and Amenechi, P. I. (1969) J. Chem. Soc. C 887.
- Joshi, B. S. and Kamat, V. N. (1973) J. Chem. Soc. Perkin Trans. 1, 907.
- 21. Clark-Lewis, J. W. (1962) Rev. Pure Appl. Chem. 12, 96.
- Kurosawa, K., Ollis, W. D., Redman, B. T., Sutherland, I. O., Oliveira, A. B. de, Gottlieb, O. R. and Alves, H. M. (1968) Chem. Commun. 1263.
- Kurosawa, K., Ollis, W. D., Redman, B. T., Sutherland, I. O. and Gottlieb, O. R. (1978) Phytochemistry 17, 1413.
- Farkas, L., Gottsegen, A., Nogradi, M. and Antus, S. (1974) J. Chem. Soc. Perkin Trans. 1, 305.
- Ingham, J. L. and Dewick, P. M. (1978) Phytochemistry 17, 535.
- 26. Dewick, P. M. (1977) Phytochemistry 16, 93.
- Wong, E. (1975) The Flavonoids (Harborne, J. B., Mabry, T. J. and Mabry, H., eds.) p. 743. Chapman & Hall, London.
- 28. Ingham, J. L. (1976) Phytochemistry 15, 1489.
- Deshpande, V. H. and Shastri, R. K. (1977) Indian J. Chem. 15B, 201.
- 30. Ingham, J. L. (1977) Phytochemistry 16, 1279.
- 31. Dewick, P. M. (1975) Phytochemistry 14, 979.
- Dewick, P. M. (1975) J. Chem. Soc. Chem. Commun. 656.
- Dewick, P. M. and Ward, D. (1977) J. Chem. Soc. Chem. Commun. 338.
- 34. Merwe, P. J. van der, Rall, G. J. H. and Roux, D. G. (1978) J. Chem. Soc. Chem. Commun. 224.
- 35. Dewick, P. M. and Martin, M. (1976) J. Chem. Soc. Chem. Commun. 637.

- 36. Martin, M. and Dewick, P. M. (1978) Tetrahedron Letters 2341.
- 37. Partridge, J. E. and Keen, N. T. (1977) *Phytopathology* 67, 50.
- 38. Lyne, R. L. and Mulheirn, L. J. (1978) Tetrahedron Letters 3127.
- 39. Zahringer, U., Ebel, J., Mulheirn, L. J., Lyne, R. L. and Grisebach, H. (1979) FEBS Letters 101, 90.
- 40. Hargreaves, J. A. and Selby, C. (1978) *Phytochemistry* 17, 1099.
- 41. Higgins, V. J., Stoessl, A. and Heath, M. C. (1974) Phytopathology 64, 105.
- 42. Bailey, J. A. and Burden, R. S. (1973) Physiol. Plant Pathol. 3, 171.
- VanEtten, H. D. and Smith, D. A. (1975) Physiol. Plant Pathol. 5, 225.
- 44. Smith, D. A., VanEtten, H. D. and Bateman, D. F. (1975) Physiol. Plant Pathol. 5, 51.
- 45. Elnaghy, M. A. and Heitefuss, R. (1976) Physiol. Plant Pathol. 8, 269.

- 46. Heuvel, J. van den and Grootveld, D. (1978) Neth. J. Plant Pathol. 84, 37.
- 47. Garcia-Arenal, F., Fraile, A. and M. -Sagasta, E. (1978) Physiol. Plant Pathol. 13, 151.
- Rathmell, W. G. and Bendall, D. S. (1971) Physiol. Plant Pathol. 1, 351.
- 49. Lyon, F. M. and Wood, R. K. S. (1975) Physiol. Plant Pathol. 6, 117.
- Suginome, H. and Iwadare, T. (1966) Bull. Chem. Soc. Jpn. 39, 1535.
- 51. Aghoramurthy, K., Kukla, A. S. and Seshadri, T. R. (1961) J. Indian Chem. Soc. 38, 914.
- Perrin, D. R., Biggs, D. R. and Cruickshank, I. A. M. (1974) Aust. J. Chem. 27, 1607.
- 53. Wong, E. (1962) J. Sci. Food Agric. 13, 304.
- 54. Kinoshita, T., Saitoh, T. and Shibata, S. (1978) Chem. Pharm. Bull. 26, 141.
- Harper, S. H., Kemp, A. D., Underwood, W. G. E. and Campbell, R. V. M. (1969) J. Chem. Soc. C 1109.
- 56. Preston, N. W. (1977) Phytochemistry 16, 143.
- 57. Fukui, H., Egawa, H., Koshimizu, K. and Mitsui, T. (1973) Agric. Biol. Chem. 37, 417.