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ABSTRACT: The Fe(III)-salen complex has been applied successfully as a catalyst for the novel, simple, efficient, and 
one-pot multi-component synthesis of benzoxazole derivatives from catechols, ammonium acetate as the nitrogen source 
and aldehydes (nontoxic and cheap alternatives of amines) for the first time. Using this procedure, a wide range of 
benzoxazoles was successfully synthesized in the presence of a catalyst in EtOH under mild conditions, and all products 
were obtained in excellent yields. To the best of our knowledge, this method is the first example of the multi-component 
synthesis of benzoxazole derivatives using these starting materials. The notable features such as the use of air that is 
considered the benign oxidant, EtOH as a green solvent, ease of product separation, readily available and inexpensive 
aldehydes, and mild conditions make our procedure more efficient and practical for organic synthesis. Moreover, the current 
protocol is successfully applied to synthesize desirable products in large scale.

Introduction
Multi-component reactions (MCRs) have emerged as 
useful synthetic tools in drug discovery, organic synthesis, 
and material science due to their advantages over 
conventional multistep synthesis. Being atom economical, 
efficient, time-saving and straightforward make this 
approach a powerful method in the synthesis of 
heterocyclic compounds in the field of industrial chemicals 
and pharmaceuticals.1-4

Between various kinds of heterocyclic compounds,5 
benzoxazoles occupy a significant place since they are the 
major elements of diverse natural compounds and 
functionalized products.6 Benzoxazole derivatives are vital 
structures in many compounds such as biologically active 
compounds,7 therapeutically active molecules,8 natural 
products,9 fluorescent probes,10 heat-resistant polymers,11 
and functional materials.12

There are several pathways for the preparation of 
benzoxazole derivatives. Often, 2-substituted benzoxazole 
derivatives are produced through the reaction of o-
aminophenols with carboxylic 
acids/aldehydes/alcohols/benzyl amines/toluene or 
carbon-carbon triple bonds and subsequent oxidative 
cyclization of the imine intermediate (Scheme 1, a-b).13-14 
Recently, general methods for the synthesis of 
benzoxazoles via intramolecular/intermolecular coupling 

reaction of ortho-substituted acyl anilides or ortho-
dihaloaromatic compounds were reported (Scheme 1, c-
d).15

Scheme 1. Different methods for the synthesis of benzoxazoles.
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C-H activation

Moreover, transition metal-catalyzed direct C-H bond 
activation of benzoxazoles has been described (Scheme 1, 

Page 1 of 13

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



e).16 Recently, Kerr et al., 2011; Chen et al., 2015; Meng 
et al., 2017; and Sharghi et al., 2019; have presented novel 
protocols for the efficient synthesis of benzoxazoles 
through the oxidative functionalization of catechol 
derivatives with amine derivatives in the presence of silver, 
copper or iron as catalyst (Scheme 1, f).17 However, 
drawbacks of these pathways include high temperatures, 
using strong acids or oxidizing agents, and using expensive 
and potentially toxic reactants, and reagents, which make 
them to have a limited substrate scope.

As a fact, metallo-salens have shown broad applicability as 
catalysts. These complexes are versatile systems and 
generally applied as effective catalysts in organic 
reactions.18 Due to the abundance, availability, 
inexpensiveness and low toxicity of many iron compounds 
and their salts they have been used by many organic 
chemists as a catalyst in the synthesis of different organic 
compounds.19

On the other hand, the development of new and efficient 
strategies by readily available starting materials under mild 
reaction conditions is strongly desired for the synthesis of 
benzoxazoles. In this research, for the first time we report 
a novel, efficient and multi-component Fe(III)-salen 
complex-catalyzed method for the synthesis of 
benzoxazole derivatives via catechols, ammonium acetate 
as the nitrogen source and aldehydes in EtOH as green 
solvent (Scheme 1).

The notable features of this approach including the use of 
air that is considered the benign oxidant and EtOH as a 
green solvent, ease of product separation, using readily 
available and inexpensive aldehydes, and performing the 
reaction under mild conditions make the current protocol 
practical, and eco-friendly for organic synthesis.

Results and Discussion

In continuation of our previous investigations on the 
application of metallo-salens as catalysts in organic 
synthesis,2, 13e, 20 and as a result of our interest in the 
preparation of organic compounds,21 we introduce the 
synthesis of benzoxazole derivatives in the presence of 
Fe(III)-salen complex. The metal-salen complexes were 
produced by previously reported procedures. 2, 13e, 20, 22 To 
find out the suitable condition for the novel multi-
component synthesis of benzoxazole derivatives, a series 
of experiments were performed with the model reaction of 
3,5-di-tert-butylbenzene-1,2-diol 1 (1.0 mmol), 
ammonium acetate as the nitrogen source (1.0 mmol), and 
4-chlorobenzaldehyde 2a (1.0 mmol) shown in Table 1. 
Under these reaction conditions, we exclusively obtained 
benzoxazole 3a, and no benzimidazole 4a was observed.

At first, a variety of metal-salen complexes were tested to 
find out the best catalyst for the synthesis of benzoxazole 
3a in EtOH at 25 oC. Among various metal-salen 
complexes (Cr, V, Cu, Mn, Mo, and Fe) (Table 1, entries 
1-6), Fe(III)-salen complex was found to give the best 
result in terms of yield and reaction time (Table 1, entry 6). 
No improvement in the yield of the final product was 
achieved by using other tested salen catalysts, including 

Cr, V, Cu, Mn, and Mo (Table 1, entries 1-5). Then, the 
effect of various solvents, such as EtOH, DMF, Toluene, 
DMSO, CH3CN, DCM, EtOAc, DCE, CHCl3, MeOH as 
well as solvent-free condition were explored on the model 
reaction in the presence of Fe(III)-salen complex at 25 oC 
(Table 1, entries 6-16). We found that EtOH is the best 
solvent for the synthesis of benzoxazole 3a (Table 1, entry 
6) not only it showed high reaction rate, and excellent yield 
of product, but also it is an environment-friendly solvent 
which makes the method more practical for different 
industries. Also, no product was obtained under the 
solvent-free and catalyst-free conditions, indicating that 
the presence of catalyst and solvent are necessary for this 
transformation (Table 1, entries 16-17). In continuous, 
FeCl3 and nano magnetic Fe3O4
were applied as catalyst and obtained 65% and 75% yield, 
respectively (Table 1, entries 18-19). The obtained results 
showed that the optimum amount of Fe(III)-salen complex 
loading was 3 mol% in EtOH for the best synthesis of 
product 3a (Table 1, entry 20). Increasing the amount of 
catalyst (10 mol %) did not improve the yield (Table 1, 
entry 21). The effect of temperature on the preparation of 
benzoxazole 3a using Fe(III)-salen complex in EtOH was 
investigated. This reaction was also accomplished at 50 oC, 
and 95 % isolated yield of product was obtained after 3 h 
(Table 1, entry 22). The role of increasing temperature to 
reflux was screened and as it is shown in Table 1, 
increasing the temperature did not have any effect on the 
reaction progress (Table 1, entry 23).

During our optimization studies, the optimal amount of 
ammonium acetate was examined (Table 1, entries 22, 24-
25). By using 1.0 mmol ammonium acetate as the nitrogen 
source, 95 % product was obtained. According to Table 1, 
the best results for the one-pot multi-component synthesis 
of product 3a from 3,5-di-tert-butylbenzene-1,2-diol 1, 
ammonium acetate as the nitrogen source, and 4-
chlorobenzaldehyde 2a were obtained in EtOH at 50 ˚C in 
the presence of Fe(III)-salen complex (3 mol%) as a 
catalyst (Table 1, entry 22). 

Table 1. Optimization of the reaction conditions for synthesis of 
4,6-di-tert-butyl-2-(4-chlorophenyl)-1H-benzo[d]imidazolea, b 

not formedexclusive

OH

OH

t-Bu

t-Bu
+ +
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Solvent, Temp, Air
N

O
t-Bu

t-Bu N
H

N
t-Bu

t-Bu
+

CHO

Cl

Cl Cl

1 2a 3a 4a

NH4OAc

Entr

y

Catalyst / mol % Solvent Temp. Time 

(h)

Yiel

da %

1 Salen-Cr(Cl) / 5 EtOH 25 oC 16 20

2 Salen-V(Cl)2 / 5 EtOH 25 oC 16 30

3 Salen-Cu / 5 EtOH 25 oC 16 35

4 Salen-Mn(OAc) / 5 EtOH 25 oC 7 70

5 Salen-Mo(O) / 5 EtOH 25 oC 16 40

6 Salen-Fe(Cl) / 5 EtOH 25 oC 5 83
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7 Salen-Fe(Cl) / 5 DMF 25 oC 14 60

8 Salen-Fe(Cl) / 5 Toluene 25 oC 10 70

9 Salen-Fe(Cl) / 5 DMSO 25 oC 16 30

10 Salen-Fe(Cl) / 5 CH3CN 25 oC 8 73

11 Salen-Fe(Cl) / 5 DCM 25 oC 12 55

12 Salen-Fe(Cl) / 5 EtOAc 25 oC 14 52

13 Salen-Fe(Cl) / 5 DCE 25 oC 10 65

14 Salen-Fe(Cl) / 5 CHCl3 25 oC 16 35

15 Salen-Fe(Cl) / 5 MeOH 25 oC 7 75

16 Salen-Fe(Cl) / 5 - 25 oC 24 -

17 - EtOH 25 oC 24 -

18 FeCl3 / 5 EtOH 25 oC 8 65

19 NM-Fe3O4 EtOH 25 oC 6 75

20 Salen-Fe(Cl) / 3 EtOH 25 oC 5 90

21 Salen-Fe(Cl) / 10 EtOH 25 oC 5 75

22 Salen-Fe(Cl) / 3 EtOH 50 oC 3 95

23 Salen-Fe(Cl) / 3 EtOH reflux 3 83

24c Salen-Fe(Cl) / 3 EtOH 50 oC 3 89

25d Salen-Fe(Cl) / 3 EtOH 50 oC 3 80

aGeneral conditions: 3,5-di-tert-butylbenzene-1,2-diol (1.0 mmol), 
ammonium acetate (1.0 mmol), 4-chlorobenzaldehyde (1.0 mmol), 
solvent (5.0 mL), air. bIsolated yield. cAmmonium acetate (2.0 mmol). 
dAmmonium acetate (3.0 mmol).
After optimization of the reaction conditions for the 
synthesis of benzoxazole 3a, we screened the scope and 
generality of this method by varying the aldehydes and 
catechols under the optimized conditions. The results are 
shown in Scheme 2. All benzoxazole derivatives (3a-3ak) 
were characterized by the melting point, FT-IR, 1H NMR, 
13C NMR, and elemental analysis. 

As shown in Scheme 2, aryl aldehydes containing different 
electron-donating and electron-withdrawing groups 
afforded the desired benzoxazole derivatives in good to 
excellent yields. Halogen groups at the ortho, meta, and 
para position of benzaldehyde in reaction with 3,5-di-tert-
butylbenzene-1,2-diol worked well and gave good yields 
of benzoxazoles regardless of their electronic character 
(Scheme 2, 3a-e). Moreover, benzaldehyde with electron-
donating groups at the para position such as methoxy, 
hydroxyl, methyl, and isopropyl participated well in the 
reactions to achieve corresponding products in good to 
high yields under mild reaction conditions (Scheme 2, 3f-
i). In addition, benzoxazoles 3j, 3k, and 3l with methyl and 
methoxy groups in ortho and meta position of 
benzaldehyde were obtained in 92%, 91%, and 94% yields, 
respectively (Scheme 2, 3j-l). Moreover, benzaldehydes 
with two donor substitutes such as 3,4-
dimethoxybenzaldehyde and 4-hydroxy-3-
methoxybenzaldehyde were tested (Scheme 2, 3m-n).

Scheme 2. Scope of the reactiona, b 
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aGeneral conditions: 1 (1.0 mmol), NH4OAc (1.0 mmol) and 2 (1.0 
mmol), Fe(III)-salen complex (3 mol%), EtOH (5.0 mL), air, 50 ˚C. 
bIsolated yield.

For further investigation of the reaction scope, 
benzaldehyde with electron-withdrawing groups such as 
cyano and nitro reacted with 3,5-di-tert-butylbenzene-1,2-
diol to successfully form benzoxazoles in good to excellent 
yields under mild reaction conditions (Scheme 2, 3o-q). 
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According to Scheme 2, benzaldehydes with electron-
donating groups showed better reactivity than 
benzaldehyde bearing electron-withdrawing groups. 
Furthermore, sterically hindered 1-naphthaldehyde 
produced naphthyl-substituted benzoxazole in 84% yield 
(Scheme 2, 3r). Pleasingly, various N-heteroaryl 
aldehydes, such as, pyridine-2-carbaldehyde, pyridine-3-
carbaldehyde, pyridine-4-carbaldehyde, and 1H-indole-3-
carbaldehyde were converted to the corresponding 
benzoxazole derivatives in the presence of a catalytic 
amount of Fe(III)-salen complex with good to excellent 
yields (Scheme 2, 3t-w). S-heteroaryl aldehydes and O-
heteroaryl aldehydes such as thiophene-2-carbaldehyde, 
thiophene-3-carbaldehyde, and furan-2-carbaldehyde 
could also give the corresponding benzoxazoles in 92%, 
87% and 95% yields, respectively (Scheme 2, 3x-z). In 
continue, we turned our attention to the variation of 
catechols. Notably, when 4-tert-butylbenzene-1,2-diol and 
4-methyl-benzene-1,2-diol, 3-methyl-benzene-1,2-diol 
were employed as the substrate in the reaction with various 
functional groups (-Me, -Cl, and -OMe) on the 
benzaldeyde ring as well as heteroaryl aldehydes (pyridine-
2-carbaldehyde, and thiophene-2-carbaldehyde), related 
benzoxazoles were obtained in reasonable yields (Scheme 
2, 3aa-ai). We also applied this synthetic procedure for the 
preparation of 2-alkylbenzoxazole derivatives using 
aliphatic aldehydes such as isobutyraldehyde and 
acetaldehyde under the optimized reaction conditions in 
the presence of Fe(III)-salen complex (Scheme 2, 3aj-ak). 
However, ortho-dihydroxybenzenes such as catechol (1,2-
dihydroxybenzene), 4-nitrobenzene-1,2-diol, 3,4,5,6-
tetrabromobenzene-1,2-diol, 3,4-dihydroxybenzoic acid, 
7,8-dihydroxy-4-methyl-2H-chromen-2-one, and 
naphthalene-2,3-diol did not afford the desired products in 
the presented method. 

Importantly, aside from screening different substrates, to 
demonstrate the practicability of the current methodology, 
large scale synthesis of the 5,7-di-tert-butyl-2-(4-
chlorophenyl)benzo[d]oxazole (3a) was evaluated via the 
reaction between 3,5-di-tert-butylbenzene-1,2-diol (5.0 
mmol), NH4OAc (5.0 mmol) and 4-chlorobenzaldehyde 
(5.0 mmol). Based on the obtained result, the conducted 
reaction was successfully carried out on a large-scale, and 
no notable loss of yield was observed (Scheme 3).

Scheme 3. Gram-Scale Synthesis of Product 3a.
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To obtain deep insight into the reaction mechanism, several 
different control experiments were performed (Scheme 4). 
As it is shown in Scheme 4, at the beginning of the study, 
a one-pot three-component reaction using 3,5-di-tert-
butylbenzene-1,2-diol 1a (1.0 mmol), ammonium acetate 
as the nitrogen source (1.0 mmol), and 4-
chlorobenzaldehyde 2a (1.0 mmol) in the presence of 3 
mol % Fe(III)-salen complex under the standard reaction 
conditions, gave 95% yield of 3a in only 3 h. Also, we 
applied different amounts of ammonium acetate, and 
benzoxazole 3a was exclusively obtained and no 

benzimidazole 4a was observed (Scheme 4, a). Moreover, 
4-chlorobenzaldehyde 2a was reacted with ammonium 
acetate using Fe(III)-salen complex as a catalyst in EtOH 
at 50 ˚C for 2 hours. Next, 3,5-di-tert-butylbenzene-1,2-
diol 1a was added to the reaction mixture and benzoxazole 
3a was just obtained with 90% yield (Scheme 4, b). 
According to the obtained results, it is speculated that the 
reaction pathway was going via 3,5-di-tert-butyl-o-
benzoquinone intermediate. Therefore, we used 3,5-di-
tert-butyl-o-benzoquinone 1aa as starting material to react 
with ammonium acetate and  4-chlorobenzaldehyde under 
the standard reaction conditions and  benzimidazole 
product (22%)  4a was obtained and benzoxazole 3a was 
not observed (Scheme 4, c). Furthermore, different 
loadings of ammonium acetate (2.0 mmol and 3.0 mmol) 
were tested and product 4a was obtained in 80% and 65% 
yields, respectively. Additionally, in the absence of the 
catalyst, 15% product 4a was just obtained (Scheme 4, c). 
According to the previous reports,23 homocoupling product 
(biphenyldiol 1ab) may be produced as an intermediate in 
the reaction pathway. For this purpose, the homocoupling 
product (biphenyldiol 1ab) was used as the starting 
material under the same conditions, however 1ab did not 
react smoothly with 4-chlorobenzaldehyde 2a and 
ammonium acetate to afford products 3a and 4a  (Scheme 
4, d). Notably, the phenylmethanimine 2aa was generated 
through the reaction between 2a and ammonium acetate in 
a significant amount when the reaction was quenched after 
2 h (Scheme 4, e). Additionally, when the compound 2aa 
reacted with 1a under the standard conditions, 96% yield 
of the desired product 3a was obtained (Scheme 4, f). Also, 
when the model reaction was carried out under N2, only 
12% of product 3a was detected; this result indicated that 
the atmosphere is necessary for this reaction (Scheme 4, g). 
When, 2.0 equivalents of the TEMPO (2,2,6,6-tetramethyl-
1-piperidinyloxyl, well-known radical-capturing agent) 
was added into the reaction system of 1a, 2a and 
ammonium acetate under the standard conditions, the 
formation of 3a was partially observed, then the reaction 
was quenched by simply increasing the amount of TEMPO 
to 4.0 equivalents (Scheme 4, h). This observation implies 
that the reaction may happen via a radical process. 
Experiment studies exhibited that the mechanism probably 
involves a radical intermediate. Based on these 
experimental studies, we propose the mechanism shown in 
Scheme 5.

First, ammonium acetate dissociates into ammonia in the 
reaction, which is needed for the initial condensation with 
aryl aldehyde. Ammonia reacts with aldehyde to give the 
phenylmethanimine intermediate I.24

Scheme 4. Control Experiments (a-h).
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Next, radical intermediate A is produced from 3,5-di-tert-
butylbenzene-1,2-diol 1 via an oxidation process.25 
Afterward, the nucleophilic attack of phenylmethanimine I 
to radical intermediate A lead to the formation of 
intermediate B.25 Subsequently, imine intermediate C is 
created by eliminating the hydroxyl radical of intermediate 
B. Phenoxyl radical intermediate D is generated through 
single-electron transfer (SET) from imine intermediate C 
and hydroxyl radical.16d Then, an intramolecular 
cyclization takes place to afford intermediate E.16d Finally 
the desired benzoxazole F is produced via SET and the 
oxidative dehydrogenation of intermediate E.13d, 16d, 20 
Regarding the role of the Fe(III)-salen complex, it may be 
considered to activate the aldehyde, help radical 
production and promote the cyclization and the oxidative 
aromatization.

Scheme 5. The proposed mechanism for the synthesis of 
benzoxazole derivatives from the reaction of 3,5-di-tert-
butylbenzene-1,2-diol, ammonium acetate, and aldehyde using 
Fe(III)-salen complex in EtOH (5.0 mL) at 50 ˚C.
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CONCLUSIONS
Fe(III)-salen complex was found as an efficient catalyst for 
the novel, simple, and one-pot multicomponent synthesis 
of benzoxazole derivatives from catechols, ammonium 
acetate as the nitrogen source and aldehydes (nontoxic and 
cheap alternatives of amines) for the first time under mild 
and simple conditions. The advantages of this procedure 
for the synthesis of benzoxazole derivatives, include high 
product yields, using environmentally safe solvent (EtOH), 
experimental simplicity, readily available and inexpensive 
aldehydes, applicability for large scale and short reaction 
times. The best of our knowledge, this method is the first 
report for the one-pot multi-component synthesis of 
benzoxazole derivatives via the reaction of catechols, 
ammonium acetate as the nitrogen source and aldehydes.

EXPERIMENTAL SECTION

General Information. All reagents and solvents were 
commercially obtained from Merck, Fluka, or Sigma-
Aldrich and used without further purification. Melting 
points were measured in capillary tubes in a Büchi B-545 
apparatus. All the reactions were conducted in an oil bath 
and monitored by thin-layer chromatography on 0.25 mm 
silica gel (60 F254 in aluminum foil, Merck) visualizing 
with UV light.  All known compounds were identified by 
comparison of their melting points and proton nuclear 
magnetic resonance (1H NMR) data with those in the 
authentic samples. IR spectra were obtained using a 
Shimadzu FT-IR 8300 spectrophotometer. 1H and 13C 
NMR spectra were recorded in CDCl3 or DMSO-d6 
solvents using Bruker spectrometer (1H NMR: 250, 300, 
and 400 MHz; 13C NMR (62.5, 75 and 100 MHz). Proton 
chemical shifts are given as δ values against 
tetramethylsilane (TMS) as the internal standard and 
coupling constants (J) are given in hertz (Hz). Chemical 
shift multiplicities are represented as follows: (s = singlet, 
d = doublet, t = triple, sep = septet, m = multiplet, dd = 
double of doublet, td = triple of doublet). The elemental 
analysis was performed on a Perkin-Elmer 240-B 
microanalyzer.

General procedure for the synthesis of Schiff-Base 
(Salen)
To a solution of ethylenediamine (0.6 g, 10.0 mmol) in 
MeOH (20 mL) was added salicylaldehyde (2.44 g, 20.0 

Page 5 of 13

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



mmol). The reaction mixture was stirred at reflux for 2 h. 
After completion of the reaction, the precipitate was 
filtered off and washed by additional MeOH. Then, the 
residue was recrystallized from MeOH for further 
purification to give pure product in high yield.

Synthesis of iron salen complex 

The salen (268 mg, 1.0 mmol) was dissolved in EtOH (15 
mL) and slowly added drop wise to a suspension of FeCl3 
anhydrous (162 mg, 1.0 mmol) in the same solvent (10 
mL). The homogeneous solution was stirred under nitrogen 
atmosphere at room temperature for 4 h. The brown Fe(III) 
salen complex was filtered off, washed with water, ethanol, 
and diethyl ether. Finally, the solid products dried at room 
temperature. Fe(III) salen complex was obtained in 85% 
(274 mg) yields.

General procedure for the Synthesis of 
Benzoxazoles Derivatives

A solution of catechol (1.0 mmol), aldehyde (1.0 mmol), 
NH4OAc (77 mg, 1.0 mmol) and Fe(III)-salen complex (10 
mg ≈ 3.0 mol%) in EtOH (5.0 mL) were stirred in an open 
tube under the air atmosphere at 50 ˚C in an oil bath for the 
required time. After completion of the reaction (monitoring 
by TLC), EtOH was removed under reduced pressure. The 
reaction mixture was diluted with EtOAc (4 × 5 mL). The 
combined organic layers were dried over anhydrous 
Na2SO4 and concentrated under vacuum. The resulting 
residue was purified by column chromatography on silica 
using a mixture of petroleum ether / EtOAc as eluent to 
achieve the pure product.

2,2’-[1,2-Ethanediylbis (nitrilomethylidyne)]-bis-phenol 
(Salen).18d

Purified by MeOH solvent. Isolated yield: (2.63 g, 98%). 
Yellow solid; mp: 123-124 °C; FT-IR (KBr cm-1): 3431 
(br, OH), 1634 (s, C=N); 1H NMR (CDCl3, 300 MHz): δ 
(ppm) 3.90 (s, 4H), 6.88 (t, J= 7.5 Hz, 2H), 6.98 (d, J= 9.0 
Hz, 2H), 7.25 (dd, J1= 9.0 Hz, J2= 3.0 Hz, 2H), 7.29-7.35 
(m, 2H), 8.34 (s, 2H), 13.30 (br, 2H); 13C{H} NMR 
(CDCl3, 75.0 MHz): δ (ppm) 59.7, 116.9, 118.6, 118.7, 
131.5, 132.4, 161.0, 166.5. 

5,7-Di-tert-butyl-2-(4-chlorophenyl)benzo[d]oxazole 
(3a).17a

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (324 mg, 95%). Colorless liquid (lit. Colorless 
liquid); 1H NMR (250 MHz, DMSO-d6): δ (ppm) 1.33 (s, 
9H), 1.48 (s, 9H), 7.29 (d, J= 2.5 Hz, 1H), 7.60 (d, J= 2.5 
Hz, 1H), 7.67 (d, J= 7.5 Hz, 2H), 8.16 (d, J= 7.5 Hz, 2H); 
13C{H} NMR (100 MHz, DMSO-d6): δ (ppm) 29.7, 31.5, 
34.0, 34.7, 114.1, 119.5, 125.4, 128.7, 129.5, 133.3, 136.4, 
141.8, 146.3, 147.5, 160.8. Anal. Calcd for C21H24ClNO: 
C, 73.78; H, 7.08; N, 4.10; Found: C, 73.72; H, 7.00; N, 
4.14.

5,7-Di-tert-butyl-2-(4-fluorophenyl)benzo[d]oxazole 
(3b).17b

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (292 mg, 90%). Colorless liquid (lit. Colorless 
liquid); 1H NMR (250 MHz, CDCl3): δ (ppm) 1.32 (s, 9H), 
1.47 (s, 9H), 7.13 (t, J= 7.5 Hz, 2H), 7.24 (t, J= 2.5 Hz, 
1H), 7.57 (d, J= 2.5 Hz, 1H), 8.17 (dd, J= 5.0, 7.5 Hz, 2H); 
13C{H} NMR (100 MHz, CDCl3): δ (ppm) 30.0, 31.8, 34.5, 
35.1, 114.2, 116.0, 116.2, 119.6, 123.8, 123.9, 129.5, 
129.6, 133.7, 133.9, 142.2, 146.9, 147.8, 161.6, 163.3, 
165.8. Anal. Calcd for C21H24FNO: C, 77.51; H, 7.43; N, 
4.30; Found: C, 77.40; H, 7.36; N, 4.32.

5,7-Di-tert-butyl-2-(2-chlorophenyl)benzo[d]oxazole 
(3c).17c

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (321 mg, 94%). Colorless liquid (lit. Colorless 
liquid); 1H NMR (250 MHz, CDCl3): δ (ppm) 1.32 (s, 9H), 
1.47 (s, 9H), 7.27 (d, J= 2.5 Hz, 1H), 7.32-7.36 (m, 2H), 
7.46-7.50 (m, 1H), 7.64 (d, J= 2.5 Hz, 1H), 8.08-8.11 (m, 
1H); 13C{H} NMR (75 MHz, CDCl3): δ (ppm) 29.9, 31.8, 
34.4, 35.1, 114.5, 119.9, 126.6, 126.9, 131.3, 131.6, 131.7, 
133.2, 134.0, 141.8, 146.9, 147.8, 160.5. Anal. Calcd for 
C21H24ClNO: C, 73.78; H, 7.08; N, 4.10; Found: C, 73.72; 
H, 7,06; N, 4.06.

2-(3-Bromophenyl)-5,7-di-tert-butylbenzo[d]oxazole 
(3d).

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (308 mg, 80%). Pale green solid, mp: 103-104 oC; 
1H NMR (250 MHz, DMSO-d6): δ (ppm) 1.33 (s, 9H), 1.48 
(s, 9H), 7.31 (s, 1H), 7.61 (s, 2H), 7.81 (s, 1H), 8.14-8.24 
(m, 2H); 13C{H} NMR (100 MHz, DMSO-d6): δ (ppm) 
29.7, 31.4, 34.0, 34.7, 114.1, 119.6, 122.3, 125.9, 128.7, 
129.1, 131.5, 133.4, 134.3, 141.6, 146.4, 147.6, 160.1. 
Anal. Calcd for C21H24BrNO: C, 65.29; H, 6.26; N, 3.63; 
Found: C, 64.66; H, 5.92; N, 3.30.

5,7-Di-tert-butyl-2-(2,6-dichlorophenyl)benzo[d]oxazole 
(3e).

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (323 mg, 86%). Colorless liquid; 1H NMR (250 
MHz, DMSO-d6): δ (ppm) 1.33 (s, 9H), 1.40 (s, 9H), 7.34 
(d, J= 2.5 Hz, 1H), 7.67-7.71 (m, 4H); 13C{H} NMR (100 
MHz, DMSO-d6): δ (ppm) 29.5, 31.4, 34.0, 34.7, 114.5, 
119.8, 126.9, 128.7, 133.6, 133.7, 134.9, 140.9, 146.4, 
147.6, 156.7. Anal. Calcd for C21H23Cl2NO: C, 67.03; H, 
6.16; N, 3.72; Found: C, 67.00; H, 6.12; N, 3.74.

5,7-Di-tert-butyl-2-(4-methoxyphenyl)benzo[d]oxazole 
(3f).17c

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (327 mg, 97%). Colorless liquid (lit. Colorless 
liquid); 1H NMR (300 MHz, CDCl3): δ (ppm) 1.43 (s, 9H), 
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1.58 (s, 9H), 3.90 (s, 3H), 7.05 (d, J= 9.0 Hz, 2H), 7.31 (s, 
1H), 7.66 (s, 1H), 8.22 (d, J= 9.0 Hz, 2H); 13C{H} NMR 
(75 MHz, CDCl3): δ (ppm) 30.0, 31.8, 34.4, 35.0, 55.4, 
113.9, 114.3, 119.0, 120.0, 129.1, 133.5, 142.4, 146.8, 
147.5, 162.0, 162.6. Anal. Calcd for C22H27NO2: C, 78.30; 
H, 8.06; N, 4.15; Found: C, 78.24; H, 8.01; N, 4.13.

4-(5,7-Di-tert-butylbenzo[d]oxazol-2-yl)phenol (3g).17a

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:10). Isolated 
yield: (288 mg, 89%). Colorless liquid (lit. Colorless 
liquid); 1H NMR (250 MHz, DMSO-d6): δ (ppm) 1.32 (s, 
9H), 1.47 (s, 9H), 6.95 (d, J= 10.0 Hz, 2H), 7.21 (d, J= 2.5 
Hz, 1H), 7.52 (d, J= 2.5 Hz, 1H), 7.99 (d, J= 10.0 Hz, 2H), 
10.53 (s, OH); 13C{H} NMR (100 MHz, DMSO-d6): δ 
(ppm) 29.7, 31.5, 34.0, 34.6, 113.5, 116.1, 117.1, 118.3, 
128.9, 132.8, 142.1, 146.0, 147.0, 161.1, 162.3. Anal. 
Calcd for C21H25NO2: C, 77.98; H, 7.79; N, 4.33; Found: 
C, 77.95; H, 7.77; N, 4.35.

5,7-Di-tert-butyl-2-(p-tolyl)benzo[d]oxazole (3h).

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (308 mg, 96%). Cream solid, mp: 94-95 oC; 1H NMR 
(400 MHz, CDCl3): δ (ppm) 1.33 (s, 9H), 1.48 (s, 9H), 2.37 
(s, 3H), 7.23 (d, J= 4.0 Hz, 1H), 7.26 (d, J= 8.0 Hz, 2H), 
7.58 (d, J= 4.0 Hz, 1H), 8.07 (d, J= 8.0 Hz, 2H); 13C{H} 
NMR (100 MHz, CDCl3): δ (ppm) 21.6, 30.0, 31.8, 34.5, 
35.0, 114.0, 119.3, 124.8, 127.3, 129.6, 133.6, 141.6, 
142.3, 146.8, 147.6, 162.7. Anal. Calcd for C22H27NO: C, 
82.20; H, 8.47; N, 4.36; Found: C, 82.31; H, 8.54.18; N, 
4.45.

5,7-Di-tert-butyl-2-(4-isopropylphenyl)benzo[d]oxazole 
(3i).

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (321 mg, 92%). Colorless liquid; 1H NMR (250 
MHz, CDCl3): δ (ppm) 1.30 (s, 3H), 1.32 (s, 3H), 1.40 (s, 
9H), 1.55 (s, 9H), 2.92-3.08 (m, 1H), 7.30 (d, J= 2.5 Hz, 
1H), 7.39 (d, J= 10.0 Hz, 2H), 7.66 (d, J= 2.5 Hz, 1H), 8.19 
(d, J= 7.5 Hz, 2H); 13C{H} NMR (100 MHz, CDCl3): δ 
(ppm) 23.8, 29.0, 30.0, 31.8, 34.2, 34.4, 35.1, 114.1, 119.3, 
125.1, 127.0, 127.5, 133.6, 142.3, 146.8, 147.6, 152.5, 
162.7. Anal. Calcd for C24H31NO: C, 82.47; H, 8.94; N, 
4.01; Found: C, 82.20; H, 8.80; N, 3.92.

5,7-Di-tert-butyl-2-(o-tolyl)benzo[d]oxazole (3j).17c

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (295 mg, 92%). Colorless liquid (lit. Colorless 
liquid); 1H NMR (300 MHz, CDCl3): δ (ppm) 1.44 (s, 9H), 
1.58 (s, 9H), 2.85 (s, 3H), 7.35 (d, J= 3.0 Hz, 1H), 7.39-
7.47 (m, 3H), 7.73 (s, 1H), 8.21 (d, J= 6.0 Hz, 1H); 13C{H} 
NMR (75 MHz, CDCl3): δ (ppm) 22.3, 30.0, 31.8, 34.4, 
35.1, 114.3, 119.4, 126.1, 126.6, 129.9, 130.6, 131.7, 
133.6, 138.3, 142.2, 146.5, 147.5, 163.0. Anal. Calcd for 
C22H27NO: C, 82.20; H, 8.47; N, 4.36; Found: C, 82.02; H, 
8.36; N, 4.31.

5,7-Di-tert-butyl-2-(3-methoxyphenyl)benzo[d]oxazole 
(3k).17a

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (307 mg, 91%). Colorless liquid (lit. Colorless 
liquid); 1H NMR (250 MHz, DMSO-d6): δ (ppm) 1.33 (s, 
9H), 1.48(s, 9H), 3.85 (s, 3H), 7.16-7.21 (m, 1H), 7.29 (d, 
J= 2.5 Hz, 1H), 7.52 (t, J= 7.5 Hz, 1H), 7.60 (d, J= 2.5 Hz, 
1H), 7.63-7.65 (m, 1H), 7.72-7.76 (m, 1H); 13C{H} NMR 
(100 MHz, CDCl3): δ (ppm) 30.0, 31.8, 34.5, 35.1, 55.5, 
112.0, 114.2, 117.6, 119.6, 119.8, 128.7, 129.9, 133.7, 
142.2, 146.9, 147.7, 159.9, 162.3. Anal. Calcd for 
C22H27NO2: C, 78.30; H, 8.06; N, 4.15; Found: C, 78.28; 
H, 8.05; N, 4.20.

5,7-Di-tert-butyl-2-(2-methoxyphenyl)benzo[d]oxazole 
(3l).17c

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (317 mg, 94%). Colorless liquid (lit. Colorless 
liquid); 1H NMR (400 MHz, CDCl3): δ (ppm) 1.45 (s, 9H), 
1.52 (s, 9H), 3.91 (s, 3H), 6.99-7.05 (m, 2H), 7.06 (d, J= 
4.0 Hz, 2H), 7.38-7.43 (m, 1H), 8.11 (d, J= 8.0 Hz, 1H); 
13C{H} NMR (100 MHz, DMSO-d6): δ (ppm) 29.5, 31.5, 
33.9, 34.7, 56.0, 112.9, 113.8, 115.6, 118.7, 120.7, 130.6, 
133.0, 133.1, 141.5, 146.1, 147.0, 157.9, 160.8. Anal. 
Calcd for C22H27NO2: C, 78.30; H, 8.06; N, 4.15; Found: 
C, 78.33; H, 8.11; N, 4.21.

5,7-Di-tert-butyl-2-(3,4-
dimethoxyphenyl)benzo[d]oxazole (3m).

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:50). Isolated 
yield: (330 mg, 90%). Colorless liquid; 1H NMR (250 
MHz, DMSO-d6): δ (ppm) 1.32 (s, 9H), 1.47 (s, 9H), 3.83 
(s, 3H), 3.86 (s, 3H), 7.15 (d, J= 10.0 Hz, 1H), 7.23 (d, J= 
2.5 Hz, 1H), 7.56 (d, J= 2.5 Hz, 1H), 7.64 (d, J= 2.5 Hz, 
1H), 7.73 (dd, J= 2.5, 7.5 Hz, 1H); 13C{H} NMR (100 
MHz, CDCl3): δ (ppm) 30.0, 31.8, 34.4, 35.0, 56.0, 56.1, 
109.9, 110.9, 113.9, 119.1, 120.2, 120.8, 133.4, 142.3, 
146.8, 147.6, 149.2, 151.7, 162.5. Anal. Calcd for 
C23H29NO3: C, 75.17; H, 7.95; N, 3.81; Found: C, 75.03; 
H, 7.85; N, 3.68.

4-(5,7-Di-tert-butylbenzo[d]oxazol-2-yl)-2-
methoxyphenol (3n).

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:10). Isolated 
yield: (293 mg, 83%). Colorless liquid; 1H NMR (250 
MHz, DMSO-d6): δ (ppm) 1.33 (s, 9H), 1.47 (s, 9H), 3.87 
(s, 3H), 6.98 (d, J= 7.5 Hz, 1H), 7.22 (d, J= 2.5 Hz, 1H), 
7.53 (d, J= 2.5 Hz, 1H), 7.60-7.64 (m, 2H), 9.98 (s, OH); 
13C{H} NMR (100 MHz, DMSO-d6): δ (ppm) 29.7, 31.5, 
34.0, 34.6, 55.6, 110.3, 113.5, 115.9, 117.5, 118.5, 120.7, 
132.9, 142.0, 146.1, 147.1, 148.0, 150.3, 162.2. Anal. 
Calcd for C22H27NO3: C, 74.76; H, 7.70; N, 3.96; Found: 
C, 74.22; H, 7.35; N, 3.47.
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5,7-Di-tert-butyl-2-(4-nitrophenyl)benzo[d]oxazole 
(3o).17a

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:30). Isolated 
yield: (299 mg, 85%). Pale yellow solid, mp: 198-200 oC 
(lit. White solid, mp: 194-196 oC); 1H NMR (250 MHz, 
CDCl3): δ (ppm) 1.33 (s, 9H), 1.49 (s, 9H), 7.31 (d, J= 2.5 
Hz, 1H), 7.62 (d, J= 2.5 Hz, 1H), 8.32-8.35 (m, 4H); 
13C{H} NMR (100 MHz, CDCl3): δ (ppm) 30.0, 31.7, 34.5, 
35.1, 114.7, 120.9, 124.2, 128.0, 133.1, 134.1, 142.2, 
148.5, 149.1. Anal. Calcd for C21H24N2O3: C, 71.57; H, 
6.86; N, 7.95; Found: C, 71.33; H, 6.51; N, 7.65.

4-(5,7-Di-tert-butylbenzo[d]oxazol-2-yl)benzonitrile 
(3p).17b

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (286 mg, 86%). Colorless liquid (lit. Colorless 
liquid); 1H NMR (300 MHz, CDCl3): δ (ppm) 1.42 (s, 9H), 
1.57 (s, 9H), 7.39 (d, J= 3.0 Hz, 1H), 7.70 (d, J= 3.0 Hz, 
1H), 7.85 (d, J= 9.0 Hz, 2H), 8.37 (d, J= 6.0 Hz, 2H); 
13C{H} NMR (75 MHz, CDCl3): δ (ppm) 30.0, 31.7, 34.5, 
35.1, 114.3, 114.6, 118.3, 120.7, 127.7, 131.4, 132.7, 
134.0, 142.1, 147.1, 148.4, 160.3. Anal. Calcd for 
C22H24N2O: C, 79.48; H, 7.28; N, 8.43; Found: C, 79.25; 
H, 7.04; N, 8.27.

5,7-Di-tert-butyl-2-(3-nitrophenyl)benzo[d]oxazole (3q).

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:40). Isolated 
yield: (285 mg, 81%). White solid, mp: 146-147 oC; 1H 
NMR (250 MHz, DMSO-d6): δ (ppm) 1.34 (s, 9H), 1.50 (s, 
9H), 7.34 (d, J= 2.5 Hz, 1H), 7.65 (d, J= 2.5 Hz, 1H), 7.90 
(t, J= 7.5 Hz, 1H), 8.43 (d, J= 10.0 Hz, 1H), 8.56 (d, J= 
10.0 Hz, 1H), 8.80 (s, 1H); 13C{H} NMR (100 MHz, 
DMSO-d6): δ (ppm) 35.0, 36.7, 39.3, 40.0, 119.6, 125.3, 
126.5, 131.2, 133.2, 136.5, 138.1, 138.8, 146.8, 151.7, 
153.1, 153.5, 165.0. Anal. Calcd for C21H24N2O3: C, 71.57; 
H, 6.86; N, 7.95; Found: C, 71.51; H, 6.79; N, 7.92.

5,7-Di-tert-butyl-2-(naphthalen-1-yl)benzo[d]oxazole 
(3r).17a

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (300 mg, 84%). Colorless liquid (lit. Colorless 
liquid); 1H NMR (250 MHz, DMSO-d6): δ (ppm) 1.37 (s, 
9H), 1.53 (s, 9H), 7.34 (d, J= 2.5 Hz, 1H), 7.62-7.77 (m, 
4H), 8.08 (d, J= 10.0 Hz, 1H), 8.21 (d, J= 7.5 Hz, 1H), 8.41 
(d, J= 7.5 Hz, 1H), 9.43 (d, J= 10.0 Hz, 1H); 13C{H} NMR 
(100 MHz, DMSO-d6): δ (ppm) 29.7, 31.5, 34.1, 34.8, 
114.3, 119.5, 122.7, 125.4, 125.6, 126.6, 127.9, 128.8, 
128.9, 129.7, 132.3, 133.2, 133.5, 142.0, 145.5, 147.4, 
161.4. Anal. Calcd for C25H27NO: C, 83.99; H, 7.61; N, 
3.92; Found: C, 83.95; H, 7.60; N, 3.94.

5,7-Di-tert-butyl-2-phenylbenzo[d]oxazole (3s).17b

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 

yield: (276 mg, 90%). Brown liquid (lit. Brown liquid); 1H 
NMR (300 MHz, CDCl3): δ (ppm) 1.43 (s, 9H), 1.58 (s, 
9H), 7.34 (s, 1H), 7.56 (s, 3H), 7.70 (s, 1H), 8.29 (s, 2H); 
13C{H} NMR (75 MHz, CDCl3): δ (ppm) 30.0, 31.8, 34.5, 
35.1, 114.2, 119.6, 127.3, 127.5, 128.9, 131.2, 133.7, 
142.2, 146.9, 147.7, 162.4. Anal. Calcd for C21H25NO: C, 
82.04; H, 8.20; N, 4.56; Found: C, 81.90; H, 8.05; N, 4.51.

5,7-Di-tert-butyl-2-(pyridin-2-yl)benzo[d]oxazole (3t).17b

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (283 mg, 92%). Colorless liquid (lit. Colorless 
liquid); 1H NMR (250 MHz, DMSO-d6): δ (ppm) 1.35 (s, 
9H), 1.50 (s, 9H), 7.34 (d, J= 2.5 Hz, 1H), 7.59-7.64 (m, 
1H), 7.67 (d, J= 2.5 Hz, 1H), 8.04 (td, J=  7.7, 1.7 Hz, 1H), 
8.31 (d, J= 7.7 Hz, 1H), 8.81 (dd, J= 4.7, 1.7 Hz, 1H); 
13C{H} NMR (100 MHz, DMSO-d6): δ (ppm) 29.6, 31.5, 
34.1, 34.8, 114.4, 119.9, 123.3, 125.9, 133.7, 137.6, 141.6, 
145.4, 146.6, 147.6, 150.2, 160.9. Anal. Calcd for 
C20H24N2O: C, 77.89; H, 7.84; N, 9.08; Found: C, 77.87; 
H, 7.80; N, 9.11.

5,7-Di-tert-butyl-2-(pyridin-3-yl)benzo[d]oxazole (3u).17a

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (246 mg, 80%). White solid, mp: 99-100 oC (lit. 
White solid, mp: 99-101 oC); 1H NMR (250 MHz, DMSO-
d6): δ (ppm) 1.34 (s, 9H), 1.49 (s, 9H), 7.32 (d, J= 2.5 Hz, 
1H), 7.62-7.67 (m, 2H), 8.47-8.52 (m, 1H), 8.78 (d, J= 5.0 
Hz, 1H), 9.32 (s, 1H); 13C{H} NMR (100 MHz, DMSO-
d6): δ (ppm) 29.7, 31.4, 34.0, 34.7, 114.1, 119.6, 122.9, 
124.2, 133.4, 134.4, 141.6, 146.3, 147.6, 147.7, 152.0, 
159.7. Anal. Calcd for C20H24N2O: C, 77.89; H, 7.84; N, 
9.08; Found: C, 77.84; H, 7.76; N, 9.06.

5,7-Di-tert-butyl-2-(pyridin-4-yl)benzo[d]oxazole (3v).

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (293 mg, 95%). White solid, mp: 102-103 oC; 1H 
NMR (400 MHz, DMSO-d6): δ (ppm) 1.29 (s, 9H), 1.44 (s, 
9H), 7.31 (d, J= 4.0 Hz, 1H), 7.61 (d, J= 4.0 Hz, 1H), 8.02 
(d, J= 4.0 Hz, 2H), 8.79 (d, J= 8.0 Hz, 2H); 13C{H} NMR 
(100 MHz, DMSO-d6): δ (ppm) 34.9, 36.7, 39.3, 40.0, 
119.7, 125.6, 125.8, 138.8, 138.9, 146.8, 151.7, 153.2, 
156.1, 164.9. Anal. Calcd for C20H24N2O: C, 77.89; H, 
7.84; N, 9.08; Found: C, 77.83; H, 7.78; N, 9.10.

5,7-Di-tert-butyl-2-(3a,7a-dihydro-1H-indol-3-
yl)benzo[d]oxazole (3w).

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:60). Isolated 
yield: (296 mg, 85%). Cream solid, mp: 206-208 oC;  1H 
NMR (250 MHz, DMSO-d6): δ (ppm) 1.34 (s, 9H), 1.51 (s, 
9H), 7.19 (d, J= 2.5 Hz, 1H), 7.23-7.26 (m, 2H), 7.53 (d, 
J= 2.5 Hz, 1H), 7.56 (d, J= 2.5 Hz, 1H), 8.27 (t, J= 5.0 Hz, 
2H), 12.10 (s, NH); 13C{H} NMR (100 MHz, DMSO-d6): 
δ (ppm) 29.7, 31.6, 33.9, 34.6, 103.0, 112.5, 113.0, 117.5, 
120.1, 121.1, 122.6, 124.6, 128.9, 132.4, 136.6, 142.3, 

Page 8 of 13

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



145.2, 146.7, 160.4. Anal. Calcd for C23H28N2O: C, 79.27; 
H, 8.10; N, 8.04; Found: C, 79.17; H, 7.95; N, 8.00.

5,7-Di-tert-butyl-2-(thiophen-2-yl)benzo[d]oxazole 
(3x).17a

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (288 mg, 92%). Colorless liquid (lit. Colorless 
liquid); 1H NMR (250 MHz, CDCl3): δ (ppm) 1.30 (s, 9H), 
1.45 (s, 9H), 7.08-7.12 (m, 1H), 7.21 (t, J= 2.5 Hz, 1H), 
7.45 (dd, J= 2.5, 5.0 Hz, 1H), 7.54 (d, J= 2.5 Hz, 1H), 7.80-
7.82 (m, 1H); 13C{H} NMR (100 MHz, CDCl3): δ (ppm) 
30.0, 31.8, 34.4, 35.1, 114.0, 119.5, 128.1, 129.3, 129.7, 
130.1, 133.6, 142.1, 146.6, 147.8, 158.5. Anal. Calcd for 
C19H23NOS: C, 72.80; H, 7.40; N, 4.47; Found: C, 72.75; 
H, 7.37; N, 4.40.

5,7-Di-tert-butyl-2-(thiophen-3-yl)benzo[d]oxazole (3y).

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (272 mg, 87%). Pale yellow liquid; 1H NMR (250 
MHz, DMSO-d6): δ (ppm) 1.33 (s, 9H), 1.48 (s, 9H), 7.27 
(d, J= 2.5 Hz, 1H), 7.57 (d, J= 2.5 Hz, 1H), 7.71 (d, J= 5.0 
Hz, 1H), 7.78-7.81 (m, 1H), 8.43-8.45 (m, 1H); 13C{H} 
NMR (100 MHz, CDCl3): δ (ppm) 29.55, 31.36, 34.00, 
34.60, 113.66, 118.97, 126.10, 126.39, 126.89, 129.19, 
133.12, 141.64, 146.02, 147.23, 158.71. Anal. Calcd for 
C19H23NOS: C, 72.80; H, 7.40; N, 4.47; Found: C, 72.75; 
H, 7.32; N, 4.39.

5,7-Di-tert-butyl-2-(furan-2-yl)benzo[d]oxazole (3z).17b

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (282 mg, 95%). Colorless liquid (lit. Colorless 
liquid); 1H NMR (250 MHz, CDCl3): δ (ppm) 1.39 (s, 9H), 
1.53 (s, 9H), 6.60 (dd, J= 1.7, 3.5 Hz, 1H), 7.25 (dd, J= 0.8, 
3.5 Hz, 1H), 7.31 (d, J= 2.0 Hz, 1H), 7.62 (d, J= 2.0 Hz, 
1H), 7.65-7.66 (m, 1H); 13C{H} NMR (100 MHz, CDCl3): 
δ (ppm) 29.4, 31.3, 33.9, 34.5, 111.5, 113.0, 113.8, 119.2, 
133.2, 141.3, 142.5, 144.8, 145.8, 147.5, 154.3. Anal. 
Calcd for C19H23NO2: C, 76.74; H, 7.80; N, 4.71; Found: 
C, 76.68; H, 7.76; N, 4.68.

5-(tert-Butyl)-2-(p-tolyl)benzo[d]oxazole (3aa).17c

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (244 mg, 92%). Colorless liquid (lit. Colorless 
liquid); 1H NMR (300 MHz, CDCl3): δ (ppm) 1.33 (s, 9H), 
2.37 (s, 3H), 7.26 (d, J= 9.0 Hz, 2H), 7.34 (dd, J= 3.0 Hz, 
J= 6.0 Hz, 1H), 7.52 (d, J= 3.0 Hz, 1H), 7.60 (d, J= 9.0 Hz, 
1H), 8.06 (d, J= 6.0 Hz, 2H); 13C{H} NMR (75 MHz, 
CDCl3): δ (ppm) 21.6, 31.7, 35.1, 107.2, 118.8, 122.2, 
124.5, 127.4, 129.6, 139.6, 141.8, 149.0, 150.8, 163.1. 
Calcd for C18H19NO: C, 81.47; H, 7.22; N, 5.28; Found: C, 
81.18; H, 7.01; N, 5.41.
5-(tert-Butyl)-2-(4-chlorophenyl)benzo[d]oxazole 
(3ab).17a

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 

yield: (256 mg, 90%). Colorless liquid (lit. Colorless 
liquid); 1H NMR (300 MHz, CDCl3): δ (ppm) 1.33 (s, 9H), 
7.36 (dd, J= 3.0 Hz, J= 9.0 Hz, 1H), 7.42 (d, J= 9.0 Hz, 
2H), 7.53 (d, J= 3.0 Hz, 1H), 7.60 (d, J= 9.0 Hz, 1H), 8.10 
(d, J= 9.0 Hz, 2H); 13C{H} NMR (75 MHz, CDCl3): δ 
(ppm) 31.6, 35.2, 107.3, 119.1, 122.4, 125.8, 128.6, 129.2, 
137.4, 139.5, 149.5, 151.0, 161.9. Calcd for C17H16ClNO: 
C, 71.45; H, 5.64; N, 4.90; Found: C, 71.29; H, 5.47; N, 
5.06.

5-(tert-Butyl)-2-(2-chlorophenyl)benzo[d]oxazole 
(3ac).17c

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (251 mg, 88%). Colorless liquid (lit. Colorless 
liquid); 1H NMR (300 MHz, CDCl3): δ (ppm) 1.43 (s, 9H), 
7.41-7.49 (m, 3H), 7.58 (d, J= 9.0 Hz, 1H), 7.67 (s, 1H), 
7.79 (d, J= 9.0 Hz, 1H), 8.15 (d, J= 9.0 Hz, 1H); 13C{H} 
NMR (75 MHz, CDCl3): δ (ppm) 31.7, 35.2, 107.4, 119.5, 
122.4, 126.4, 126.9, 131.3, 131.7, 133.3, 139.2, 149.8, 
150.8, 160.8. Calcd for C17H16ClNO: C, 71.45; H, 5.64; N, 
4.90; Found: C, 71.33; H, 5.51; N, 4.98.

5-Methyl-2-phenylbenzo[d]oxazole (3ad).14d

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (169 mg, 81%). Colorless liquid (lit. Colorless oil); 
1H NMR (300 MHz, CDCl3): δ (ppm) 2.50 (s, 3H), 7.16 (d, 
J= 9.0 Hz, 1H), 7.46 (d, J= 9.0 Hz, 1H), 7.51-7.55 (m, 3H), 
7.59 (s, 1H), 8.26-8.29 (m, 2H); 13C{H} NMR (75 MHz, 
CDCl3): δ (ppm) 21.5, 109.9, 119.9, 126.2, 127.3, 127.5, 
128.8, 131.3, 134.3, 142.3, 149.0, 163.0. Calcd for 
C14H11NO: C, 80.36; H, 5.30; N, 6.69; Found: C, 80.19; H, 
5.14; N, 6.52.

2-(4-Methoxyphenyl)-5-methylbenzo[d]oxazole (3ae).14b

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (208 mg, 87%). White solid, mp: 106-108 oC (lit. 
White solid, mp: 107-109 oC); 1H NMR (300 MHz, 
CDCl3): δ (ppm) 2.48 (s, 3H), 3.84 (s, 3H), 7.00 (d, J= 9.0 
Hz, 2H), 7.11 (d, J= 9.0 Hz, 1H), 7.40 (d, J= 9.0 Hz, 1H), 
7.53 (s, 1H), 8.18 (d, J= 9.0 Hz, 2H); 13C{H} NMR (75 
MHz, CDCl3): δ (ppm) 21.5, 55.3, 109.7, 114.2, 119.5, 
119.8, 125.6, 129.2, 134.1, 142.4, 148.8, 162.1, 163.2. 
Calcd for C15H13NO2: C, 75.30; H, 5.48; N, 5.85; Found: 
C, 75.18; H, 5.41; N, 7.87.

2-(4-Chlorophenyl)-5-methylbenzo[d]oxazole (3af).14f

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (206 mg, 85%). White solid, mp: 151-153 oC (lit. 
White solid, mp: 149-151 oC); 1H NMR (300 MHz, 
CDCl3): δ (ppm) 2.48 (s, 3H), 7.14 (d, J= 6.0 Hz, 1H), 7.41 
(d, J= 9.0 Hz, 1H), 7.45 (d, J= 6.0 Hz, 2H), 7.53 (s, 1H), 
8.12 (d, J= 6.0 Hz, 2H); 13C{H} NMR (75 MHz, CDCl3): 
δ (ppm) 21.5, 109.9, 119.9, 125.7, 126.4, 128.6, 129.1, 
134.4, 137.4, 142.1, 148.9, 162.0. Calcd for C14H10ClNO: 
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C, 69.00; H, 4.14; N, 5.75; Found: C, 68.71; H, 4.02; N, 
5.68.

5-Methyl-2-(pyridin-2-yl)benzo[d]oxazole (3ag).16h

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (183 mg, 87%). Yellow solid, mp: 87-88 oC (lit. 
Yellow solid, mp: 89.5-89.7 oC); 1H NMR (300 MHz, 
CDCl3): δ (ppm) 2.40 (s, 3H), 7.11 (d, J= 9.0 Hz, 1H), 7.32 
(t, J= 6.0 Hz, 1H), 7.44 (d, J= 9.0 Hz, 1H), 7.52 (s, 1H), 
7.76 (t, J= 7.5 Hz, 1H), 8.23 (d, J= 9.0 Hz, 1H), 8.72 (d, J= 
6.0 Hz, 1H); 13C{H} NMR (75 MHz, CDCl3): δ (ppm) 
21.4, 110.4, 120.3, 123.2, 125.3, 127.1, 134.6, 136.9, 
141.9, 146.0, 149.2, 150.1, 161.4. Calcd for C13H10N2O: C, 
74.27; H, 4.79; N, 13.33; Found: C, 74.35; H, 4.82; N, 
13.47.

5-Methyl-2-(thiophen-2-yl)benzo[d]oxazole (3ah).13f

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (165 mg, 77%). Yellow solid, mp: 90-92 oC (lit. 
Yellow solid, mp: 89-91 oC); 1H NMR (300 MHz, CDCl3): 
δ (ppm) 2.47 (s, 3H), 7.11-7.17 (m, 2H), 7.39 (d, J= 8.1 Hz, 
1H), 7.51-7.53 (m, 2H), 7.88 (dd, J= 1.2, 3.9 Hz, 1H); 
13C{H} NMR (75 MHz, CDCl3): δ (ppm) 21.5, 109.7, 
119.7, 126.1, 128.1, 129.7, 129.8, 130.0, 134.5, 142.1, 
148.6, 159.0. Calcd for C12H9NOS: C, 66.95; H, 4.21; N, 
6.51; Found: C, 6.90; H, 4.09; N, 6.42.

4-methyl-2-phenylbenzo[d]oxazole (3ai).17b

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (156 mg, 75%). White solid, mp: 81-83 °C; 1H NMR 
(250 MHz, DMSO-d6): δ (ppm) 2.52 (s, 3H), 6.95 (d, J= 
5.0 Hz, 1H), 7.07 (t, J= 7.5 Hz, 1H), 7.39-7.52 (m, 4H), 
8.15 (d, J= 7.5 Hz, 2H); 13C{H} NMR (75 MHz, DMSO-
d6): δ (ppm) 16.8, 112.4, 122.4, 122.8, 124.9, 126.5, 128.9, 
129.6, 129.9, 138.4, 144.7, 150.9. Calcd for C14H11NO: C, 
80.36; H, 5.30; N, 6.69; Found: C, 80.21; H, 5.08; N, 6.58.

5,7-Di-tert-butyl-2-isopropylbenzo[d]oxazole (3aj).17a

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (115 mg, 42%). Brown liquid (lit. Brownness 
liquid); 1H NMR (300 MHz, CDCl3): δ (ppm) 1.39 (s, 9H), 
1.47 (s, 3H), 1.49 (s, 3H), 1.50 (s, 9H), 3.27 (sep, 1H), 7.26 
(d, J= 3.0 Hz, 1H), 7.60 (d, J= 3.0 Hz, 1H); 13C{H} NMR 
(75 MHz, CDCl3): δ (ppm) 20.4, 28.8, 29.9, 31.8, 34.3, 
35.0, 113.8, 118.6, 133.4, 141.3, 146.9, 147.1, 170.7. Anal. 
Calcd for C18H27NO: C, 79.07; H, 9.95; N, 5.12; Found: C, 
79.18; H, 10.15; N, 4.91.

5,7-Di-tert-butyl-2-methylbenzo[d]oxazole (3ak).17b

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (1:100). Isolated 
yield: (73 mg, 30%). Brown liquid (lit. Brown liquid); 1H 
NMR (300 MHz, CDCl3): δ (ppm) 1.39 (s, 9H), 1.49 (s, 
9H), 2.65 (s, 3H), 7.25 (d, J= 3.0 Hz, 1H), 7.53 (d, J= 3.0 
Hz, 1H); 13C{H} NMR (75 MHz, CDCl3): δ (ppm) 14.6, 

29.9, 31.8, 34.4, 35.0, 113.6, 118.6, 133.3, 141.7, 147.1, 
147.2, 163.1. Anal. Calcd for C16H23NO: C, 78.32; H, 9.45; 
N, 5.71; Found: C, 78.15; H, 9.60; N, 5.84.

4,6-Di-tert-butyl-2-(4-chlorophenyl)-1H-
benzo[d]imidazole (4a). 

Purified by column chromatography on silica gel and 
eluted with ethyl acetate/petroleum ether (5:100). Isolated 
yield: (316 mg, 93%). Colorless liquid; 1H NMR (250 
MHz, DMSO-d6): δ (ppm) 1.33 (s, 9H), 1.55 (s, 9H), 7.09 
(d, J= 2.5 Hz, 1H), 7.28 (s, 1H), 7.60 (d, J= 10.0 Hz, 2H), 
8.15 (d, J= 7.5 Hz, 2H), 12.78 (s, NH); 13C{H} NMR (100 
MHz, DMSO-d6): δ (ppm) 30.2, 31.6, 34.6, 35.2, 105.2, 
115.2, 127.8, 128.9, 129.4, 133.9, 135.4, 139.8, 140.2, 
145.0, 147.7. Anal. Calcd for C21H25ClN2: C, 73.99; H, 
7.39; N, 8.22; Found: C, 73.81; H, 7.30; N, 8.18.
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