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Abstract: Magnetically recyclable photocatalyst has drawn considerable research interest due to its 

importance for practical applications. Herein we demonstrate a facile hydrothermal process to fabricate 

magnetic core-shell microspheres of Fe3O4@ZnxCd1-xS successfully using Fe3O4@ZnS core-shell 

microspheres as sacrificed templates. The as-prepared magnetically recyclable photocatalysts show 

efficient photochemical reduction of Cr(VI) under irradiation of visible light. The photochemical 

reduction mechanism has been studied to illustrate the reduction-oxidation ability of the photo-generated 

electrons (e-) and holes (h+); which play an important role in reduction of Cr(VI) to Cr(III) and oxidation 

of organic dyes. The as-prepared Fe3O4@Zn0.55Cd0.45S core-shell microspheres show good chemical 

stability and only a slight decreasing in photocatalytic activity after four recycles. In particular, the as-

prepared photocatalysts could be easily recycled and reused by an external magnetic field. Therefore, 

this work would provide a facile chemical approach for controlled synthesis of magnetic nanostructures 

combining alloyed semiconductor photocatalysts for wastewater treatment. 
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1. Introduction  

Semiconductor photocatalysis is widely recognized as one of the most promising techniques, which 

can harness the solar energy directly for practical applications in solar fuels,1-9 waste water/air 

treatment10-19 and chemical synthesis.20-24 However, catalyst-recovery for semiconductor photocatalysts 

is a big obstacle for their practical application.25-26 Magnetic separation, known as the magnetic iron 

oxide–photocatalysts system, is widely concerned as an effective solution and it has drawn considerable 

research interest.27-29 Till now, much effort has been made to fabricate magnetic recyclable composite 

photocatalysts, for instance, magnetic iron oxide-noble metal system,30 including Fe3O4-Au,31-32 Fe3O4-

Ag,33-34 Fe3O4-Pt,35-36 magnetic iron oxide-graphene/graphene oxide system,37-41 magnetic iron oxide-

MOFs system,42-45 and the magnetic iron oxide–semiconductor photocatalysis system, including Fe3O4-

TiO2,
46-49 Fe3O4-WO3,

50 Fe3O4-CdS,51-52 Fe3O4-MoS2,
53 Fe3O4-g-C3N4

54-56 and so on. Recently, Huang 

and co-workers have successfully synthesized a unique CdS/C@Fe3O4 nanoreactor by the surface-

imprinting technique.57 Zuo et al have reported magnetic γ-Fe2O3@ZnO core-shell photocatalyst, which 

was firstly fabricated by hydrothermal and atomic layer deposition (ALD) method.58 More recently, 

templating approach has been developed to synthesize various Fe3O4@void@TiO2 yolk-shell 

microspheres.59  

However, it’s still a challenging work to compound incorporated magnetic nanoparticles and binary 

sulfide photocatalysts directly owing to large lattice mismatch between them. Additionally, single 

counterpart of ZnS and CdS has a weak resistance towards photo-corrosion, resulting into limiting their 

applications.60-62 Compared to binary sulfide, alloyed ZnxCd1-xS, especially for the alloys of Zn0.5Cd0.5S 

(mole ratio of Zn/Cd approximate 1.0) has been employed to be a superior substitute to avoid these 

drawbacks by enhancing the separated efficiency of photo-generated electrons (e-) and holes (h+).63-65 To 

the best of our knowledge, the iron oxide-ternary semiconductor sulfide composite photocatalysis 

system is rarely reported. 

Herein, a facile template strategy involved multi-steps has been proposed to synthesize 

Fe3O4@ZnxCd1-xS core-shell microspheres (mole ratio of Zn/Cd approximate 1.0) using Fe3O4@ZnS 
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core-shell microspheres as hard template, Cd(Ac)2 and thiourea used as reagents. Before that, 

Fe3O4@AA-[Zn(OH)4]
2- core-shell microspheres are prepared, which can be converted to Fe3O4@ZnS 

microspheres via a gaseous sulfidation process.66 The accurate chemical composition of the mole ratio 

of Cd/Zn and band structure has been investigated using UV-Vis diffuse reflectance spectroscopy (DRS) 

and atomic absorption spectroscopy (AAS), respectively. The photochemical reduction of Cr(VI) and 

oxidation of organic dyes have been demonstrated under irradiation of visible light. 

 

2. Experimental section 

All chemicals were of analytic grade and used as received. The Fe3O4 microspheres with average 

size of ca. 300 nm were synthesized by a typical solvothermal reaction.67 

Fabrication of Fe3O4@AA-[Zn(OH)4]
2-
 composite microspheres  

Fe3O4@AA-[Zn(OH)4]
2- microspheres with a tunable shell thickness have been prepared via a 

modified procedure according to the reported protocol.68-70 Typically, for the synthesis of Fe3O4@AA-

[Zn(OH)4]
2- microspheres with 40 nm in shell thickness, 0.12mmol L-Ascorbic acid (AA) and 

0.36mmol hexadecyltrimethylammonium bromide (CTAB) were dissolved using 40 mL deionized water 

in a flask. And then, 10mg Fe3O4 microspheres was added and kept stirring for 15 min. After that, 0.045 

mmol of Zn(NO3)2·6H2O and 0.045 mmol of hexadecyltrimethylammonium (HMTA) were added into 

the flask. Subsequently, the mixture solution was heated to 85 oC for 10h. Finally, the product was 

washed with deionized water and ethanol for several times. For comparison, Fe3O4@AA-[Zn(OH)4]
2- 

microspheres with shell thickness of 60 nm and 20 nm have been prepared by adding double or quarter 

of AA, Zn(NO3)2·6H2O and HMTA. The as-prepared Fe3O4@AA-[Zn(OH)4]
2- microspheres can be 

converted to Fe3O4@ZnS microspheres via a simple gaseous sulfidation process.66 

Synthesis of Fe3O4@ZnxCd1-xS core-shell microspheres  

Typically, 0.25 mmol cadmium acetate and 3.82 mmol thiourea and 10mg Fe3O4@ZnS 

microspheres with 40nm in shell thickness was added into 24 mL deionized water and stirred for 30 min. 

The mixture solution was transferred into a Teflon-lined stainless-steel autoclave (total volume is 30 
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mL), which was maintained at 140 oC for 1.5h. The final product was washed with deionized water and 

ethanol for several times and dried at 60 oC for 12h. And along with the changes of the shell thickness, 

the dosage was adjused to 0.11mmol cadmium acetate and 1.76 mmol thiourea for 20 nm in shell 

thickness and 0.37mmol cadmium acetate and 6.0 mmol thiourea for 60 nm while the other condition 

was kept at the same. 

Photocatalytic experiments 

The photocatalytic activities of as-prepared Fe3O4@ZnxCd1-xS core-shell microspheres were 

evaluated by photocatalytic reduction of Cr(VI) and degradation of methylene blue (MB). Briefly, 10 mg 

as-prepared magnetic composite microspheres and 50 mL of Cr(VI) aqueous solution (5 mg·L-1) were 

added into a 100 mL glass beaker and the mixed solution was shaked in dark for 1h to reach the 

adsorption/desorption equilibrium. Subsequently, the mixed solution was exposed to a Xe lamp (1500 

mW·cm2) with wavelength of 320–1100 nm for 35 min. 3 mL of the solution was taken out every 5 min 

and the catalysts were separated off by magnet. The concentration of Cr(VI) was measured by the 

diphenylcarbazide (DPC) method. The degradation experiments of MB were taken by the same 

procedure and characterized the concentration with the characteristic absorption peak at 663 nm of MB.  

 

3. Results and Discussion   

The synthetic protocol of Fe3O4@ZnxCd1-xS core-shell microspheres involves three steps, which is 

illustrated in Figure 1a. Figure 1b shows the TEM image of Fe3O4@AA-[Zn(OH)4]
2- core-shell 

composite microspheres with 40 nm in shell thickness and the core component is with ca. 400 nm in 

diameter consistent with the size of Fe3O4 microspheres shown in Figure S1a(in the supporting 

information).68-70 
Figure S1b (in the supporting information) shows the TEM image of the Fe3O4@ZnS 

complex composite microspheres after gas sulfidation of Fe3O4@AA-[Zn(OH)4]
2- composite 

microspheres. Figure 1c shows the TEM image of the sample obtained from Cd(Ac)2, thiourea and 

Fe3O4@ZnS microspheres at 140 oC for 4h; in which the product was comprised of microspheres with 

core-shell nanostructures. In addition, the shell component is consisted of small crystalline 
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nanoparticles, as revealed from the HRTEM image shown in Figure 1d. The lattice fringe of 3.16 Å 

taken from the small nanoparticle can be indexed to (101) crystal plane of ZnxCd1-xS with hexagonal 

phase.68 
Figure 1e-i, STEM image and the elemental distribution mapping images of the composite 

microspheres demonstrate that Fe distributes in the inner component and elements of S, Zn and Cd was 

incorporated into the shell layer homogeneously. The merge image incorporated Zn and Fe confirmed 

that the Fe3O4@ZnxCd1-xS core-shell nanostructures have been synthesized successfully.  

 

Figure 1. (a) Schematic illustration of the synthetic strategy of Fe3O4@ZnxCd1-xS core-shell 
microspheres; (b) TEM image of Fe3O4@AA-[Zn(OH)4]

2- core-shell microspheres; (c,d) TEM and 
HRTEM images of Zn0.51Cd0.49S core-shell microspheres; (e) STEM image of the Fe3O4@Zn0.51Cd0.59S 
core-shell microspheres; (f-i) STEM elemental mapping images of S, Zn, Cd, Fe and merged image of 
the elements of Zn and Fe. 

 

The phase and chemical composition of the Fe3O4@ZnxCd1-xS composites have been investigated 

using XRD, AAS and XPS, respectively. The sharp diffraction peaks in XRD pattern shown in Figure 

2a can be assigned to spinel ferrite (Fe3O4, JCPDS No. 75-1609).71 The three wide and weak diffraction 

peaks are derived from the shell component. As shown in Figure S2( in the supporting information), 
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the three Gaussian peaks located at 25.90, 26.92 and 28.22o are very fitted to the wide diffraction peaks 

located at 27.5o, slightly higher than that of the pure CdS, demonstrating alloyed ZnxCd1-xS 

nanostructures formed in this work. The chemical composition calculated from EDX spectra has been 

shown in Table S1 (in the supporting information). The atomic ratio of Zn/Cd in Fe3O4@ZnxCd1-xS is 

0.51/0.49 using atomic absorption spectroscopy (AAS) (Table S2, in the supporting information). 

Thus, the Fe3O4@Zn0.51Cd0.49S core-shell microspheres have been synthesized successfully via the 

present synthetic protocol. Moreover, the shell thickness of the as-prepared Fe3O4@Zn0.51Cd0.49S core-

shell microspheres can be tunable by using the Fe3O4@AA-[Zn(OH)4]
2- complex composite 

microspheres with different shell thickness (Figure S3, in the supporting information). 
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Figure 2. (a) XRD patterns of the Fe3O4@Zn0.51Cd0.49S core-shell microspheres; (b) magnetic 
hysteresis loops of Fe3O4 and Fe3O4@Zn0.51Cd0.49S microspheres at 300K, inset pictures showing 
Fe3O4 and Fe3O4@Zn0.51Cd0.49S core-shell microspheres can be recycled from aqueous solution by an 
external magnetic field. 

 

Figure 2b is the magnetic hysteresis loops of Fe3O4 and Fe3O4@Zn0.51Cd0.49S microspheres, the 

Fe3O4@Zn0.51Cd0.49S core-shell microspheres exhibit paramagnetic performance and the saturation 

magnetization reaches up to 30.15 emu/g at 300K, which is accordance with that of spinel ferrite 

previously reported.71 Figure 3a shows a general survey of the X-ray photoelectron spectroscopy 

(XPS) of the Fe3O4@Zn0.51Cd0.49S microspheres, verifying the co-existence of the elements including 

Fe, Zn, Cd, S and O elements. As shown in Figure 3b,c, the binding energies centered at 1044.98, 

1021.98, 411.78, and 405.08 eV can be assigned to the binding energies of Zn 2p of Zn2+ and Cd 3d of 
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Cd2+, respectively. The weak peaks centered at 732.08, 724.39, and 710.50 eV can be fitted to four 

Gaussian peaks located at 732.08, 724.39, 711.39 and 710.23 eV (Figure 3d), which can be assigned to 

the binding energy of Fe2+ and Fe3+, confirming that the Spinel phase of Fe3O4 have been prepared and 

used in the present study.71 
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Figure 3. XPS of Fe3O4@Zn0.51Cd0.49S core-shell microspheres: (a) a general survey; (b) Zn 2p; (c) Cd 
3d; (d) Fe 2p; respectively. 
 

Figure 4a shows the UV-Vis diffuse reflectance spectra (DRS) of the Fe3O4@Zn0.51Cd0.49S core-

shell microspheres, in which a wide absorption peak located at 470 nm has been clearly observed, 

which is a obviously blue-shift compared to pure CdS, indicating the formation of alloyed ZnxCd1-xS.69 

The band-gap energy of the Fe3O4@Zn0.51Cd0.49S core-shell microspheres has been evaluated from the 

DRS according to the Kubelka-Munk function [F(R)hν]2 versus photon energy (hν) (Figure 4b).72 

Thus, Fe3O4@ZnxCd1-xS core-shell microspheres has been prepared successfully via the present 

protocol. As expected, the as-prepared Fe3O4@ZnxCd1-xS composite microspheres with magnetic 

recyclability can be widely applied in wastewater treatment in the near future. 
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Figure 4. (a) UV–Vis diffuse reflectance spectra (DRS) of the Fe3O4@Zn0.51Cd0.49S microspheres; (b) 
Kubelka-Munk plots used to estimate the band gap energy for the Fe3O4@Zn0.51Cd0.49S microspheres. 
(Eg=1.83 eV). 

Alloyed ZnxCd1-xS nanostructures has been widely used in photocatalytic reduction or oxidation 

towards inorganic ions or organic dyes.63-65 Herein Cr(VI) and methylene blue (MB) have been selected 

as model for investigation of the photocatalytic performance. Diphenylcarbazide (DPC) method has 

been widely used to analyze the concentration of Cr(VI) and evaluate the photocatalytic reduction 

ability for the as-prepared photocatalyst.73-74  Figure 5a-d show the UV-Vis absorbance spectra of 

Cr(VI)-complex and digital photos of the Cr(VI) aqueous solution, demonstrating that the reduction of 

Cr(VI) has been efficiently realized in presence of Fe3O4@Zn0.55Cd0.45S core-shell microspheres under 

irradiation of 1500 mW Xe lamp. In addition, the composite microspheres can be reused and recycled 

by a magnet. As shown in Figure 5e, f, more than 90 % of Cr(VI) in 50 mL aqueous solution (5 mg·L-

1) can be reduced to Cr(III) using 10 mg Fe3O4@Zn0.55Cd0.45S microspheres after irradiation for 35 

min. As expected, the Fe3O4@Zn0.55Cd0.45S microspheres obtained from Fe3O4@AA-[Zn(OH)4]
2- core-

shell microspheres with 60 nm in shell thickness show the best photochemical reduction ability 

towards Cr(VI) than that of Fe3O4@Zn0.51Cd0.49S and Fe3O4@Zn0.55Cd0.45S core-shell microspheres 

with thinner shell thickness. Particularly, the Fe3O4@ZnxCd1-xS composite microsphere show excellent 

chemical stability. As shown in Figure 5g, only a slight loss in photocatalytic ability for the as-

prepared Fe3O4@Zn0.51Cd0.49S core-shell microspheres and more than 85% of Cr(VI) was still photo-

chemically reduced after four successive recycling photocatalytic experiments. Furthermore, the as-
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prepared Fe3O4@ZnxCd1-xS composite microspheres also show excellent photo-degradation towards 

organic dyes in aqueous solution. As shown in Figure S4 (in the supporting information), 92% of 

methylene blue (50 mL, 3.0 mg/L) in aqueous solution can be photo-oxidized in 35 min using 5 mg 

Fe3O4@Zn0.55Cd0.45S core-shell microspheres under irradiation of the lamp after four successive 

recycling photocatalytic experiments. The as-prepared Fe3O4@Zn0.55Cd0.45S core-shell microspheres 

with thicker shell thickness exhibit excellent photo-reduction and photo-oxidation ability, which may 

be attributed to the increasement of the photocatalyst (Zn0.55Cd0.45S) with thicker shell component. The 

photocurrent responses and impedance spectroscopy (EIS) of the as-prepared samples have been 

operated and shown in Figure 6, which demonstrate and confirm that the Fe3O4@Zn0.55Cd0.45S core-

shell microspheres possess producing more photo-generated electrons (e-) and higher separation and 

migration of photo-induced charge carriers. In addition, the fluorescence spectra of 2-hydroxyl 

terephthalic acid shown in Figure S5 (in the supporting information) also show that a considerable 

amount of hydroxyl radical (·OH) produced excited using a Xe lamp and the as-prepared 

Fe3O4@Zn0.55Cd0.45S core-shell microspheres shows stronger production ability of hydroxyl radicals.75 

All of these indicate that a considerable amount of photo-generated electrons and holes produced when 

the core-shell microspheres under irradiation. As discussed previously, the photo-generated electrons 

can reduce the Cr(VI) to Cr(III) and the h+ can oxidize H2O/O2 to reactive oxygen species (ROS) which 

have strong oxidative ability and take crucial role in the photodegradation reactions and as-generated 

ROS can oxidize the organic dyes to carbon oxides and water.76-79 The reaction formulas can be 

illustrated and summarized as follows: 
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Figure 5. (a-c) Digital photos of Cr(VI) aqueous solution with Fe3O4@Zn0.55Cd0.45S after irradiation of 
NIR light for 0, 10 and 35 min; (d) UV-Vis absorbance spectra of Cr(VI)-complex in presence of 
Fe3O4@Zn0.55Cd0.45S microspheres under irradiation of 1500 mW Xe lamp for different time; (e, f) 
photochemical reduction and kinetic curves of Cr(VI) in presence of different Fe3O4@ZnxCd1-xS under 
irradiation, C0: the concentration of initial solution, Ct: the concentration at the irradiation time; (g) five 
recycling tests of photoreduction of Cr(VI) under irradiation for 35 min using 10 mg 
Fe3O4@Zn0.55Cd0.45S.  

In fact, the photo-generated e- as the sole reductive species, it can also react with Fe(III) in the interface 

of Fe3O4@ZnxCd1-xS core-shell and also reduce O2 to obtain·O2-. To clarify the competitive relationship 

between the two reactions and some comparative experiments have been carried out to evaluate the 

influence of the reduction of Cr(VI) and the reduction between Fe(III) and e-. As shown in Fig. S6, 7(in 
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the supporting information), the photochemical reduction and kinetic curves of Cr(VI) in presence of 10 

mg Fe3O4, 10 mg Zn0.43Cd0.57S as well as their mixture under irradiation show that Zn0.55Cd0.45S
 

microspheres exhibit excellent photocatalytic performance towards reduction of Cr(VI) and the catalytic 

efficiency of the photocatalysts has a slightly weaken in presence of Fe3O4, which can be attributed to 

possible reduction of Fe(III) by the photo-generated e- 
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Figure 6. (a) Photocurrent responses and (b) impedance spectroscopy (EIS) of the as-prepared samples 
in dark. 

 

4. Conclusions 

In summary, magnetic recyclable Fe3O4@ZnxCd1-xS core-shell microspheres have been prepared via 

the facile sacrificed-template technique under hydrothermal condition. The magnetic core-shell 

microspheres with tunable shell thickness have been obtained by adding different amount of Cd(Ac)2 

and thiourea in presence of Fe3O4@ZnS microspheres with different shell thickness. The as-prepared 

Fe3O4@ZnxCd1-xS core-shell microspheres show good photochemical reduction ability towards Cr(VI) 

and oxidation photo-degradation ability towards of methylene blue dyes under irradiation of visible 

light. In addition, successive recycling experiments demonstrate that the as-prepared composite 

microspheres exhibit excellent chemical stability and recyclability, which is of great importance for 

practical applications.  
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Supporting Information 

The Supporting Information is available free of charge on the ACS Publications website at DOI:     . 

Experimental procedure for hydroxyl radical (·OH) detection, fabrication of Zn0.43Cd0.57S hollow 

microspheres and characterizations, TEM images (Figure S1, S3, S6), high-resolution XRD patterns 

(Figure S2), photo-oxidation of MB (Figure S4), fluorescence spectra (Figure S5), photochemical 

oxidation and removal kinetic curves (Figure S5), element composition and accurate mole ratio of 

Zn/Cd (Table S1, S2). 
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Graphic abstract:  

Magnetically recyclable Fe3O4@ZnxCd1-xS core-shell microspheres have been fabricated successfully 

via a facile sacrificed-template assisted hydrothermal approach for photochemical reduction of Cr(VI) 

and oxidation of organic dyes under irradiation of visible light.  
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