

View Article Online View Journal

Dalton Transactions

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: Q. Ding and F. Wang, *Dalton Trans.*, 2016, DOI: 10.1039/C6DT00238B.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

A pillared-layer Framework with High Uptake and Selective Sorption of Light Hydrocarbons

Qing-Rong Ding and Fei Wang*

Received (in XXX, XXX) Xth XXXXXXXX 200X, Accepted Xth XXXXXXXX 200X 5 DOI: 10.1039/b000000x

A new pillared-layer Metal-Organic Framework $[Zn_2(NH_2-BTB)(2-nim)]$ (1) was successfully synthesized base on mixed ligands, where binuclear $[Zn_2(CO_2)_3]^+$ cluster-based cationic layers $[Zn_2(NH_2-BTB)]^+$ $(NH_2-H_3BTB = 1, 3, 5-$ (three-benzoic acid) aniline) are connected by 2-nitroimidazoles. Compound 1 shows high uptake and good adsorption selectivities of C_3/C_1 and C_2/C_1 . Especially, the C_2H_2 uptake capacity of 1 is up to 152 cm³ g⁻¹ at 273 K and the selectivity of C_3H_8/CH_4 is over 85 at room temperature.

Introduction

hydrocarbons.

In recent years, porous coordination polymers (PCPs) or metalorganic frameworks (MOFs) have attracted much attention not only for their fascinating architectures and intriguing ¹⁵ topologies,¹ but also for potential applications in selective gas storage and separation.² Light hydrocarbons are very important raw materials for chemical industry and global climate.³ Methane as the principal component of natural gas, is the priori alternative fuel. C2 hydrocarbons (C2s) play a crucial role in ²⁰ the industrial process. High purity hydrocarbon gas is a prerequisite for these chemical procedures.⁴ So it is necessary to explore materials for high-efficient storage and separation of

- Compared to distillation-based technologies, adsorptive ²⁵ separation is widely considered as a more environment-friendly and cost-efficient alternative.⁵ Up to date, a variety of porous adsorbents, such as zeolites, carbon materials, diatomite, have been investigated for hydrocarbon separations.⁶ A number of MOFs have been studied for applications in purification and
- ³⁰ storage of these C1, C2 and C3 light hydrocarbons.⁷ However, the application of these promising materials are limited by the separation ratio of C_3/C_1 or C_2/C_1 compared to the commercial materials.⁸ More efforts are needed to improve the selectivity of light hydrocarbons and enhance gas uptake capacity.
- Here, one pillared-layer MOF $[Zn_2(NH_2-BTB)(2-nim)]$ (1, NH₂-H₃BTB = 1, 3, 5-(three-benzoic acid) aniline, 2-nim = 2nitroimidazole) was designed and synthesized via the method of charge balance and mixd ligands. The rigid tritopic aromatic polycarboxylate ligands coordinate binuclear zinc ions to form
- ⁴⁰ a cationic layer [Zn₂(NH₂-BTB)]_n with special tritopic paddlewheel zinc clusters, then the layers are further connected to a 3D neutral pillared–layer framework by 2-nitroimidazole pillars. The porous material of **1** exhibit high CO₂ and light hydrocarbon storage capacity as well as good C₃H₈/CH₄, ⁴⁵ C₂H₆/CH₄, C₂H₄/CH₄ and C₂H₂/CH₄ selective separations.
- Especially, the selectivity of C_3H_8/CH_4 is over 85 at room temperature and the C_2H_2 uptake capacity of **1** is up to 152 cm³ g⁻¹ at 273 K, is the higher one ever reported.

Ualton Iransactions Accepted Manuscrip

Fig. 1 a) The coordination environment in compound 1; b) 3D pillaredlayer framework of 1 along the a axis (Blue pillar, 2-nitroimidazole; Gree hexahedron, $[Zn_2(CO_2)_3]^+$ cluster); c); 3D framework of 1 along the b axis; d) 2-fold interpenetrated (3,5)-connected **hms** net of 1.

50 Experimental section Material and instrumentation

All reagents and solvents used in this work were commercially available. 1,3,5-(tri-benzoic acid)aniline was synthesized via suzuki reaction.9 Powder X-ray diffraction (PXRD) patterns 55 were collected on a MiniFlex-II diffractometer using Cu (λ = 1.54178 Å) radiation with a speed of 1 °/min. Thermogravimetric analysis (TGA) was performed in nitrogen by using a Netzsch STA449C equipped with a platinum pan and heated at a rate of 10 °C per minute. Gas sorption 60 experiments were carried out with Accelerated Surface Area and Porosimetry (ASAP) 2020 system has good crystallinity after the removal of solvent molecules. The N2 sorption isotherms were acquired in the pressure rage of P/P_0 from 0.01 to 0.99 at 77 K in a liquid nitrogen bath. The gas sorption 65 experiments of CO₂, CH₄, C₂H₂, C₂H₄, C₂H₆, C₃H₈ and N₂ were conducted at 273 K in a ice-water bath or 297 K. Elemental analyses were performed on a Vario EL III elemental analyzer.

Dalton Transactions Accepted Manuscrip

Synthesis of $[Zn_2(NH_2-BTB)(2-nim)]$ (1). A mixture of 2nitroimidazole (2-nim, 0.0156 g, 0.14 mmol), NH₂-H₃BTB (0.0156 g, 0.036 mmol) and Zn(NO₃)₂·6H₂O (0.0416 g, 0.14 mmol), Tetraethylammonium bromide (0.075 mmol, 0.0156 g), ⁵ which was used to facilitate the crystallization of product, and DMF/H₂O (v:v = 3:0.5, 3.5 mL) was heated in a 20 mL scintillation vials at 100°C for 24 hours, followed by cooling to room temperature. The resulting mixture was washed with DMF and water, and colorless block crystal were collected and ¹⁰ dried in air. Calcd for [Zn₂(NH₂-BTB)][2-nim]·DMF·6H₂O: C, 45.32; H, 4.26; N, 8.04; found: C, 44.97; H, 4.54; N, 8.37.

X-ray diffraction analysis. Single-crystal x-ray structural measurement analysis was performed on a Agilent Super Nava X-ray diffractometer with Cu–K α radiation ($\lambda_{Cu-K\alpha} = 1.54178$ ¹⁵ Å) at 100 K. The structure was solved using the direct method and refined by full-matrix least-squares methods on F^2 by using the SHELX-97 program package.¹⁰ Non-hydrogen atoms were refined anisotropically. The hydrogen atoms of the ligands were generated theoretically onto the specific atoms and refined ²⁰ isotropically with fixed thermal factors. Part solvent molecules in the structure were randomly dispersed, and thus their positions were impossible to refine using conventional discrete-atom models. The SQUEEZE option of PLATON was used to eliminate the contribution of disordered guest molecules to the ²⁵ reflection intensities.¹¹ Crystallographic data for compound **1** is listed in Table S1.

Gas selectivity. The selectivities of C_3 , C_2 over CH_4 were calculated by the ideal adsorption solution theory (IAST).¹² IAST is a method for predicting the adsorption equilibria for ³⁰ components in a mixture using only single-component adsorption data at the same temperature and on the same adsorbent.

Results and Discussion

Compound 1 crystallizes in space group $P2_1/m$ and features a 35 3D neutral framework with dinuclear $Zn_2(CO_2)_3$ units. As shown in Figure 1, the asymmetric unit of 1 contains one Zinc atom, a half NH₂-BTB and a half 2-nitroimidazole molecule. Two Zinc cations are eight-coordinated by six carboxylate oxygen atoms from three NH₂-BTB³⁻ ligands and two nitrogen 40 atoms from two 2-nitroimidazoles ligands, forming a similar paddle-wheel building unit $Zn_2(CO_2)_3$. Compoud 1 is a typical

- layered-pillar structure, the axial coordination sites are ligated by μ_2 -im groups which acts as a pillar inter-connecting the Zn₂((NH₂-BTB)-layers in a axis direction to form a three ⁴⁵ dimension neutral framework [Zn₂(NH₂-BTB)(2-nim)] (Fig.
- 1b). Due to the large size of NH_2 -BTB³⁻ ligand, the pores are large enough for a second net, two such frameworks are mutually interpenetrated (Fig. 1c). From a topological point of view, the $[Zn_2(CO_2)_3]^+$ paddle-wheel-unit can be considered as
- ⁵⁰ a 5-connected node, the NH₂-BTB³⁻ anion ligand can be reduced as 3-connected node and the 2- nitroimidazole ligand can be reduced as line. Therefore, framework of **1** can be simplified as a 2-fold interpenetrated hexagon-planar (3,5)connected **hms** net with Point (Schläfli) symbol of (6³) (6⁹.8) ⁵⁵ (Fig. 1d).

In order to confirm the crystal structures are truly representative of the crystal materials, the as-synthesized

Fig. 2 (a) Small hydrocarbons and CO₂ sorption isotherms of **1** at 273 K; (b) IAST-predicted adsorption selectivity of **1** at 273 K.

samples of **1** have been characterized by powder X-ray diffraction. As shown in Figure S2, the experimental PXRD pattern is in good agreement with the corresponding simulated one, implying that the synthesized materials and the measured single crystals are the same. The after-activated PXRD patterns also correspond well with the result simulated from the single crystal data (Fig. S2), indicating the structurally stable of **1**.

⁶⁵ Thermogravimetric analysis (TGA) in N₂ atmosphere with a heating rate of 10 °C/min was performed on polycrystalline sample to determine their thermal stability from 25 to 800 °C. The TGA curve of **1** indicated that a weight loss of 20% occurred in the temperature range of 100 - 200 °C, ⁷⁰ corresponding to the loss of H₂O and DMF guest molecules (expected 20.7%) and it began to decompose from 430 °C (Figure S3). The TGA curve of **1**-activated indicates that the host framework has no weight loss occurred before 410 °C, then the framework decomposed. The results show clearly that ⁷⁵ there is nothing remained in the framework after the activation.

The rigidity of these porous frameworks as well as the accessibility of guest molecules into the porous framework of **1** was assessed by solid–gas sorption experiments with N₂ and CO₂ as probe molecules. Prior to measurement, as-synthesized ⁸⁰ crystalline samples were activated as follows: immersing in methanol for three days (solvent was exchanged nine times), following by the thermal/vacuum activation at 303 K, 8 h to generate activated compound **1**. It has a larger pore void comprising ~37% of the cell volume as estimated by PLATON.¹¹ The N₂ sorption isotherms show type-I behaviors, characterized the typical of crystalline microporous materials

Published on 09 March 2016. Downloaded by Middle East Technical University (Orta Dogu Teknik U) on 10/03/2016 04:35:02

Fig. 3 (a) Small hydrocarbons and CO₂ sorption isotherms of **1** at 297 K; (b) IAST-predicted adsorption selectivity of **1** at 297 K.

(Fig. S4). The BET surface area is 893.83 m² g⁻¹ and the total pore volume is 0.450 cm³ g⁻¹ (Fig. S4). The CO₂ uptakes for **1** are 82.40 cm³ g⁻¹ at 273 K, and 37.55 cm³ g⁻¹ at 297 K, respectively (Fig. 2a, 3a).

- ⁵ Compound **1** exhibits different adsorption capacities upon response to C_3H_8 , C_2H_6 , C_2H_4 , C_2H_2 and CH_4 at 273 and 297 K (Fig. 2a, 3a). In general, MOFs have an adsorption capacity with the following trend: $C_3 > C_2 > C_1$. Nevertheless, the impressive C_2H_2 uptake of 152 cm³ g⁻¹ at 273 K in compound **1** ¹⁰ (Fig. 2a), surpassing those of the previously reported porous
- adsorbents, such as UMCM-150 (150),¹³ NOTT-102 (142),¹⁴ is a higher one ever reported.^{1c} More interestingly, a so-called gate-opening effect is observed in the C_3H_8 adsorption isotherm of **1**, which displays a tiny hysteresis phenomenon at 273 K ¹⁵ (Fig. 2a), indicating framework has some degree of flexibilty.
- As shown in Figure 1, 2-nitroimidazole ligand as pillar that plays a important role in the this framework. The pore property can be tuned via rotation of nitro group, thereby inducing gate-opening type adsorption.^{7, 15} However, other kinds of
- ²⁰ hydrocarbons are used as adsorptive probes, the phenomenon can not occur. Take many factors into consideration, the molecular polarizability and molecular size are the dominant effects.¹⁶ First, compared with CH₄, C₂H₂, C₂H₄, C₂H₆, the steep isotherm of C₃H₈ indicates that C₃H₈ has the highest
- ²⁵ affinity to the framework, consistent with the polarizability of this molecule. Second, the C_3H_8 molecule with the largest molecular size has more opportunities to interact with the 2-nim pillar, which can cause the rotation of 2-nim to generate the open effect. A typically example of the family of pillared-layer

- ³⁰ frameworks of type $[Zn_2(fu-bdc)_2(dabco)]_n$, which composed of two-dimensional square grids, consisting of paddle-wheel building units, then interconnected to 3D architecture by pillars with dangling different chemical side groups, shows the excellent effect and hysteresis adsorption on the affinity of CO₂
- $_{35}$ via an combination of functionalized linkers. 17 The isosteric enthalpy of adsorption (Qst) of light hydrocarbons were calculated based on the virial method at zero coverage. The Q_{st} values of CH₄, C₂H₂, C₂H₄, C₂H₆, C₃H₈ and CO₂ are 16.22, 19.72, 19.81, 21.52, 28.16 and 22.38 kJ/mol for **1** (Note: the $_{40}$ hysteresis of C₃H₈ adsorption isotherms is tiny, the

adsorption isotherms of C₃H₈ was fitted as type Icurve). To estimate the adsorption selectivity of light hydrocarbons, the adsorption selectivities of C_3/C_1 , C_2/C_1 and CO_2/CH_4 (equimolar binary mixtures) were calculated by the ideal 45 adsorption solution theory (IAST) at 273 and 297 K (Fig. 2b, 3b). The IAST calculations indicated that the hierarchy of adsorption capacity is commonly CH₄ < C₂H₄ < C₂H₆ < C₂H₂ < C₃H₈, making the feasibility of this material for the separation of light hydrocarbons. This framework display of great 50 separation ratio of C₂H₆/CH₄, exceeding 16 at 297 K, the values of **1** is higher than that for ZIF-8(10), 18 Mg-MOF-74(7), 19 while is close to C₂H₆/CH₄ selectivity of Fe-MOF-74(18).¹⁹ Noteworthily, the selectivity of C_3H_8/CH_4 for 1 is over 85 at room temperature, much higher than the very high values of 55 UTSA-35a (80).²⁰ Such high selectivities further confirm that this material has a great potential in separation application of light hydrocarbons.

Conclusion

In summary, we report a 2-fold interpenetrated pillared-layer ⁶⁰ compound by paddle-wheel building $[Zn_2(CO_2)_3]$ units and linear 2-nitroimidazole ligands. The adsorption and separation of the carbon dioxide and small hydrocarbons were characterized, the C₂H₂ uptake capacity of **1** is up to 152 cm³ g⁻¹ at 273 K and it also shows good adsorption selectivities of ⁶⁵ C₃/C₁ and C₂/C₁. Especially, the selectivity of C₃H₈/CH₄ is over 85 at room temperature. These results demonstrate that this compound may be of great value as a promising material for the fuel gas purification and the separation of light hydrocarbons.

70 Acknowledgements

This work is supported by NSFC (21573236).

Notes and references

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences,

- 75 Fuzhou, Fujian 350002, P. R. China. E-mail: wangfei04@fjirsm.ac.cn Electronic Supplementary Information (ESI) available: [addition figures, powder X-ray patterns, adsorption isotherms and cif files (CCDC-1440822)]. See DOI: 10.1039/b000000x/
- (a) J. P. Zhang, Y. B. Zhang, J. B. Lin and X. M. Chen, *Chem. Rev.*, 2012, **112**, 1001; (b) Z.-J. Lin, J. Lü, M. C. Hong and R. Cao, *Chem. Soc. Rev.*, 2014, **43**, 5867; (c) J. P. Pang, F. L. Jiang, M. Y. Wu, C. P. Liu, K. Z. Su, W. G. Lu and D. Q. Yuan, *Nat. Commun.*, 2015, **6**, 7575; (d) H.-X. Zhang, M. Liu, T. Wen and J. Zhang, *Coord. Chem. Rev.*, 2016, **307**, 255.

- (a) S. Xiang, Y. He, Z. Zhang, H. Wu, W. Zhou, R. Krishna and B. Chen, *Nat. Commun.*, 2012, **3**, 954; (b) Z. X. Kang, Y. W. Peng, Z. G. Hu, Y. H. Qian, C. L. Chi, L. Y. Yeo, L. Tee and D. Zhao, *J. Mater. Chem. A*, 2015, **3**, 20801; (c) P. Q. Liao, W. X. Zhang, J. P.
 Zhang and X.-M. Chen, *Nat. Commun.*, 2015, **6**, 8697; (d) S. J. Bao, R. Krishna, Y. B. He, J. S. Qin, Z. M. Su, S. L. Li, W. Xie, D. Y. Du, W. W. He, S. R. Zhang and Y. Q. Lan, *J. Mater. Chem. A*, 2015, **3**, 7361.
- (a) T. A. Makal, J.-R. Li, W. G. Lu and H.-C. Zhou, *Chem. Soc. Rev.*, 2012, **41**, 7761; (b) Y. B. He, W. Zhou, G. D. Qian and B. L. Chen, *Chem. Soc. Rev.*, 2014, **43**, 5657; (c) N. Linares, A. M. Silvestre-Albero, E. Serrano, J. Silvestre-Albero and J. García-Martínez, *Chem. Soc. Rev.*, 2014, **43**, 7681.
- 4. (a) J. Fermoso, F. Rubiera and D. Chen, *Energy Environ. Sci.*, 2012,
 5, 6358; (b) P. Mochalski, J. L. King, M. Klieber, K. Unterkofler, H. Hinterhuber, M. Baumann and A. Amann, *Analyst*, 2013, 138, 2134.
- (a) K. H. Li, D. H. Olson, J. Seidel, T. J. Emge, H. W. Gong, P. P. Zeng and J. Li, J. Am. Chem. Soc., 2009, **131**, 10368; (b) C. A. Grande, J. Gascon, F. Kapteijn and A. E. Rodrigues, Chem. Eng. J., 2010, **160**, 207; (c) Z. R. Herm, E. D. Bloch and J. R. Long, Chem.
- 2010, 160, 207; (c) Z. R. Herm, E. D. Bloch and J. R. Long. Chem. Mater., 2014, 26, 323.
 6. (a) P. Verma, X. F. Xu and D. G. Truhlar, J. Phys. Chem. C, 2013, 117,
- (a) F. Verma, A. F. Au and D. G. Fruniar, J. Phys. Chem. C, 2013, 117 12648; (b) H. M. Cheng, Q. H. Yang and C. Liu, *Carbon*, 2001, 39, 1447; (c) C. E. Holland, S. A. Al-Muhtaseb and J. A. Ritter, *Ind. Eng. Chem. Res.*, 2001, 40, 338.
- (a) M. C. Das, H. Xu, S. C. Xiang, Z. J. Zhang, H. D. Arman, G. D. Qian and B. L Chen, *Chem. Eur. J.*, 2011, **17**, 7817; (b) N. Nijem, H. H. Wu, P. Canepa, A. Marti, K. J. B. Jr, T. Thonhauser, J. Li and Y. J. Chabal, *J. Am. Chem. Soc.*, 2012, **134**, 15201.
- ³⁰ 8. (a) D. Wang, T. Zhao, Y. Cao, S. Yao, G. Li, Q. Huo and Y. Liu, *Chem. Commun.*, 2014, **50**, 8648; (b) D. M. Wang, B. Liu, S. Yao, T. Wang, G. H. Li, Q. S. Huo and Y. L. Liu, *Chem. Commun.*, 2015, **51**, 15287.
 - 9. H. R. Fu, F. Wang and J. Zhang, *Dalton Trans.*, 2014, 43, 4668.
- 35 10. G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112.
 - 11. A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7.
 - 12. J. Chen, L. S. Loo and K. Wang, J. Chem. Eng. Data., 2011, 56, 1209.
 - 13. Y. He, R. Krishna and B. Chen, Energy Environ. Sci., 2012, 5, 9107.
- ⁴⁰ 14. W. B. Yang, A. J. Davies, X. Lin, M. Suyetin, R. Matsuda, A. J. Blake, C. Wilson, W. Lewis, J. E. Parker, C. C. Tang, M. W. George, P. Hubberstey, S. Kitagawa, H. Sakamoto, E. Bichoutskaia, N. R. Champness, S. H. Yang and M. Schröder. *Chem. Sci.*, 2012, **3**, 2993.
- 15. J. Seo, R. Matsuda, H. Sakamoto, C. Bonneau and S. Kitagawa, J.
- Am. Chem. Soc., 2009, 131, 12792.
 16. (a) J. Li, R. J. Kuppler and H. C. Zhou, Chem. Soc. Rev., 2009, 38, 1477; (b) Y. Belmabkhout, H. Mouttaki, J. F. Eubank, V. Guillerm and M. Eddaoudi, RSC Adv., 2014, 4, 63855.
- 17. S. Henke, A. Schneemann, A. Wütscher and R. A. Fischer, J. Am. 50 Chem. Soc., 2012, **134**, 9464.
- 18. Y. He, Z. Zhang, S. Xiang, F. R. Fronczek, R. Krishna and B. Chen, *Chem.–Eur. J.*, 2012, **18**, 613.
- Y. B. He, W. Zhou, R. Krishna and B. L. Chen, *Chem. Commun.*, 2012, 48, 11813.
- 55 20. Y. He, Z. Zhang, S. Xiang, F. R. Fronczek, R. Krishna and B. L. Chen, *Chem. Commun.*, 2012, **48**, 6493.

A pillared-layer Metal-Organic Framework was successfully synthesized, which shows high storage capacity for C_2 light hydrocarbons and good adsorption selectivity of C_3/C_1 and C_2/C_1 at room temperature.