

Accepted Article

Title: Formation of Acetylene in the Reaction of Methane with Iron-Carbide Cluster Anions FeC3- under High-Temperature Conditions

Authors: Hai-Fang Li, Li-Xue Jiang, Yan-Xia Zhao, Qing-Yu Liu, Ting Zhang, and Sheng-Gui He

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201712463 Angew. Chem. 10.1002/ange.201712463

Link to VoR: http://dx.doi.org/10.1002/anie.201712463 http://dx.doi.org/10.1002/ange.201712463

WILEY-VCH

Formation of Acetylene in the Reaction of Methane with Iron-Carbide Cluster Anions FeC₃⁻ under High-Temperature Conditions

Hai-Fang Li, Li-Xue Jiang, Yan-Xia Zhao,* Qing-Yu Liu, Ting Zhang, and Sheng-Gui He*

Abstract: The underlying mechanism for non-oxidative methane aromatization remains controversial due to the lack of experimental evidence for the formation of the first C–C bond. For the first time, the elementary reaction of methane with atomic clusters (FeC₃⁻) under high-temperature conditions to produce C–C coupling product has been characterized by mass spectrometry. With the elevation of temperature from 300 K to 610 K, the production of acetylene, the important intermediate proposed in a monofunctional mechanism of methane aromatization, was significantly enhanced, which can be well rationalized by quantum chemistry calculations. This study narrows the gap between gas phase and condensed phase studies on methane conversion and suggests that the monofunctional mechanism probably operates in non-oxidative methane aromatization.

Methane aromatization has received significant attention spurred by the increasing demand of aromatics in chemical industry and the high availability of methane from natural gas, shale gas, and gas hydrate.^[1] A variety of silica-alumina zeolites modified with transition metal species, such as Mo, Fe, and Zn have been identified as promising catalysts for non-oxidative aromatization of methane to benzene^[2] under high-temperature conditions (typically more than 973 K). Considerable efforts have been devoted to uncovering the detailed mechanism of benzene formation. However, the reaction intermediates and active phase responsible for the cyclization to produce benzene remain controversial.^[3] Some researchers emphasized a bifunctional mechanism that the transition-metal carbide $(M_x C_y)$ sites formed in the induction period activate methane and convert the resulting CH_x intermediates into ethylene,^[4] which reacts further to produce benzene at the Brønsted acid sites in the zeolites. An alternative monofunctional mechanism that both the activation of methane to form acetylene intermediate and the subsequent aromatization take place over $M_x C_y$ sites was also proposed.^[5] Recently, single iron atoms embedded in a silica matrix (Fe©SiO₂) were reported to convert methane to benzene with

- [a] Dr. H.-F. Li, L.-X. Jiang, Dr. Y.-X. Zhao, Dr. Q.-Y. Liu, T. Zhang, Prof. Dr S-G He State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. E-mail: chemzyx@iccas.ac.cn, shengguihe@iccas.ac.cn [b] L.-X. Jiang, T. Zhang, Prof. Dr. S.-G. He University of Chinese Academy of Sciences, Beijing 100049, P. R. China Dr. H.-F. Li, L.-X. Jiang, Dr. Y.-X. Zhao, Dr. Q.-Y. Liu, T. Zhang, Prof. [c] Dr. S.-G. He Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center of Excellence in Molecular Sciences, Beijing
 - 100190, P. R. China. Dr. H.-F. Li Present address: Department of Precision Instrument. Tsinghua

University, Beijing, 100084, P. R. China.

Supporting information for this article is given via a link at the end of the document.

high selectivity.^[6] The methyl radical, generated through dehydrogenation by the single iron atom coordinated with one Si and two C atoms (SiFeC₂), was proposed as an important intermediate for the subsequent gas-phase formation of benzene. Identification of reliable mechanism of methane aromatization relies on the real-time detection of the intermediates generated in each elementary step.^[2a,7] However, detection of intermediates formed in elementary reactions is usually inaccessible in condensed-phase studies.

Gas phase study of the elementary reactions between methane and isolated transition metal carbide clusters ($M_xC_y^q$), the active species involved in non-oxidative methane aromatization, provides an important way to reveal mechanistic details relevant with surface chemistry.^[8] The reactions of $M_xC_y^q$ clusters with methane have been extensively studied under room-temperature conditions.^[9] Little attention was paid to the reactions of $M_xC_y^q$ clusters with methane under high-temperature conditions, which is important to narrow the gaps between the gas phase reactions and the related surface reactions. Herein, we report that the high-temperature reactions of iron carbide cluster anions (FeC₃⁻) with methane produce acetylene, the important intermediate proposed in the monofunctional mechanism of methane aromatization. This is the first study of high-temperature reactivity of atomic clusters toward methane.

The FeC_v (y = 2-5) clusters were generated by laser ablation, mass selected, and then reacted with CH₄ in an ion trap reactor at temperatures from 300 K to 610 K (see Experimental Method in Supporting information).^[10] The FeC_3^- and $FeC_5^$ clusters show similar reactivity toward methane, whereas FeC2 and FeC_4 clusters are inert (Figure S1). The reactivity of FeC_3 is the main focus of this study and the time-of-flight (TOF) mass spectra for the reactions of FeC₃⁻ with CH₄ and CD₄ are shown in Figure 1. Upon the interaction of FeC₃⁻ with CH₄ at 300 K, a product peak assigned as $FeC_4H_4^-$ was observed (reaction 1), whereas the other two products $FeC_4H_2^-$ and $FeC_2H_2^-$ were barely observable (Figure 1b). When the reaction temperature increased from 300 K to 610 K (Figure 1c,d), the relative intensities of $FeC_4H_2^-$ and $FeC_2H_2^-$ products, corresponding to reactions 2 and 3, respectively, increased significantly. The isotopic labeling experiment with CD₄ (Figure 1e) at 610 K confirmed the above reaction channels.

$$FeC_3^- + CH_4 \to FeC_4H_4^- \tag{1}$$

 $FeC_3^- + CH_4 \rightarrow FeC_4H_2^- + H_2$ (2)

$$FeC_3^- + CH_4 \rightarrow FeC_2H_2^- + C_2H_2 \tag{3}$$

The pseudo-first-order rate constants (k_1) for FeC₃⁻ + CH₄ at different temperatures were measured (Figure S2) and shown in Figure 2. It can be seen that the temperature dependence of the rates is non-Arrhenius. The k_1 value is 1.7×10^{-15} cm³ molecule⁻¹ s⁻¹ at 300 K and increases by a factor of 2.8 when the temperature is ramped up to 410 K. However, the k_1 value increases slowly from 410 K to 575K [k_1 (575 K) = $1.2 \times k_1$ (410 K)].

COMMUNICATION

From 575 K to 610 K, the k_1 value increases rapidly again [k_1 (610 K) = 1.4× k_1 (575 K). The non-Arrhenius behavior can be interpreted on the basis of the quantum chemistry calculated cluster structures and reaction mechanisms in the text below. The branching ratios (BRs) of reactions 2 and 3 increase as the increase of the temperature while the BR of reaction 1 decreases (Figure 2b), suggesting the consecutive processes: FeC₃⁻ + CH₄ \rightarrow FeC₄H₂⁻ + H₂ or FeC₂H₂⁻ + C₂H₂.

It is noteworthy that almost all of the reported rate constants of cluster reactions with methane are greater than 10^{-13} cm³ molecule⁻¹s⁻¹ around 300 K,^[11] corresponding to facile activation and conversion of methane. In sharp contrast, the reaction rates of the current system FeC₃⁻ + CH₄ [(2–8)×10⁻¹⁵ cm³molecule⁻¹s⁻¹] are very low. The elevation of temperature is thus required to enhance the reaction efficiency. The reaction system in this study can be more comparable to the condensed phase systems operated under high-temperature conditions.^[1d,12]

Figure 1. TOF mass spectra for the reactions of mass-selected FeC₃⁻ cluster with He at 610 K (a), with CH₄ at 300 K (b), 410 K (c), and 610 K (d), and with CD₄ at 610 K (e) for around 14.5 ms. The molecule density of reactant gases is about 2.4×10^{15} molecule cm⁻³.

Density functional theory (DFT) calculations were performed to study the structures and reaction mechanisms of FeC₃⁻. In literature, cyclic (IS1) and linear (IS2) structures (Figure S4) with quartet spin multiplicities were separately proposed as the lowest-lying energy isomers of FeC₃⁻.^[13] The gas phase ion chromatography experiments^[14] indicated that both cyclic and linear strucuters of FeC_y⁻ can be produced in the experiments. The adopted M06L functional (see Theoretical Method in Supporting Information) predicts that the quartet ⁴IS1 and ⁴IS2 structures are close in energy (0.14 eV) and the doublet ²IS1 and ²IS2 are above the ⁴IS1 and ⁴IS2 by 0.27 and 0.09 eV, respectively (Figure S4). As a result, both ⁴IS1 and ⁴IS2 can be produced by our experiment and ²IS1 and ²IS2 may also be populated through thermal equilibrium (Figure S5).

The potential energy surfaces (PESs) for methane activation by all of the four species (2,4 IS1 and 2,4 IS2) were explored (Figures 3 and S7). High overall positive barriers (>0.5 eV) are

WILEY-VCH

Figure 2. Rate constants (a) and branching ratios (b) at different temperatures.

encountered for C–H activation by the quartet species while the doublet species can activate methane more easily. The PESs starting from the linear structures (2,4 IS2, Figure S7) can merge into the PESs from the cyclic structures (2,4 IS1, Figure 3), so only the reaction mechanism of IS1 + CH₄ is described below.

The reaction of ⁴IS1+CH₄ has a overall barrier of 0.58 eV that can be hardly overcome at 300 K (Figure S14). The observed reactivity in Figure 1b can be due to the doublet FeC_3 . Figure 3 indicates that ²IS1 can trap CH₄ through the Fe atom with a binding energy of 0.20 eV. The reaction then proceeds through the mechanism of oxidative addition (${}^{2}I1 \rightarrow {}^{2}TS1 \rightarrow I2$) with a barrier of 0.05 eV, resulting in activation of the first C-H bond and formation of the Fe-H and Fe-CH₃ bonds. The intermediate 12 is more stable in the quartet than the doublet state, which results in a spin crossing process.^[15] After the spin conversion $(^{2}TS1 \rightarrow CP1 \rightarrow ^{4}I2$, see Figure S8), the reaction proceeds along the quartet surface. Upon a ring-opening isomerization (⁴I2 \rightarrow ⁴I3), the C-C coupling takes place (⁴I3 \rightarrow ⁴TS3 \rightarrow ⁴I4) and the 4 TS3 is lower than 2 IS1 + CH₄ in energy by 0.03 eV. The C–C coupling step can release enough energy to overcome the barrier of the second C-H bond activation and generate the intermediate ⁴I5, in which Fe site is coordinated with two H atoms. The four-membered ring of ⁴I5 embraces the CH₂ moiety to form five-membered ring (${}^{4}l5 \rightarrow {}^{4}l6$) and one of H atoms transfers from Fe atom to the carbon ligand to form ⁴I7, the most stable structure on the potential energy surface. The intermediate ⁴I7 has enough energy (~2 eV) to relax (⁴I7 \rightarrow ⁴I8) and then to activate the third C-H bond of CH₄ (⁴I8 \rightarrow ⁴I9). After a structural rearrangement to break the Fe-C bond in ⁴I9, the fourth C-H bond can be activated to form intermediate ⁴I11, in which the Fe atom is four-fold coordinated with one C atom and three H atoms. Two of the three H atoms on Fe site can make a H₂ unit that can be evaporated to form product ions FeC₄H₂⁻ (P1, Figure S10, reaction 2).

In addition to the generation of dihydrogen, there is a competing reaction for C₂H₂ formation (reaction 3). After activation of the third C-H bond of methane to form intermediate ⁴I9, one H atom can transfer from the Fe site to a C atom of C_3 ligand to form a $[C_2H_2]$ unit in intermediate ⁴I13 (⁴I9 \rightarrow ⁴I13), in which both of the two C atoms in $[C_2H_2]$ unit originate from the C_3 ligand. For further desorption of C₂H₂ molecule, the formed [C₂H₂] unit in ⁴I13 should coordinate with Fe site (⁴I13 \rightarrow ⁴I14). Therefore, the resulting intermediate ⁴I14 has enough internal energy to break $[H_2C_2-C_2H]$ bond to generate the intermediate ⁴I15 with isolated [HC=CH] unit, which can be evaporated to produce the experimentally observed FeC₂H₂⁻ product ions (P2, Figure S11). The pathway for incorporation of the C atom from CH₄ into [HC=CH] unit is also considered (Figures S12 and S13). From the intermediate ⁴I7, the H atom bonded with Fe can transfer to the adjacent C atom of [CH] moiety to form intermediate ${}^{4}I16$ with two equivalent [CH₂] units. Then, the third C-H bond of methane is activated to form intermediate ⁴I17, the

COMMUNICATION

WILEY-VCH

structure of which is similar to that of ⁴I7. Further transformation of ⁴I17 to generate HC=CH product follows the pathway similar to 4 I7 \rightarrow P2 + C₂H₂.

In the case that the reaction starts with ${}^{2}IS1 + CH_{4}$, all of the reaction intermediates, transition states, and the spin conversion point (CP1) are lower in energy than the separated reactants (Figure 3). In ${}^{2}IS2 + CH_{4}$ (Figure S7), the tiny positive barrier

(+0.08 eV) in activation of the first C–H bond can be surmounted by the kinetic energy and the vibrational energy of the reactants (E_{vib} = 0.06 eV at 300 K, see also Figure S14). As a result, the reactions 1–3 are thermodynamically and kinetically favorable at 300 K. The energy of FeC₄H₂⁻ + H₂ (P1, -0.83 eV) is significantly lower than that of FeC₂H₂⁻ +C₂H₂ (P2, -0.17 eV), which is qualitatively consistent with the higher branching ratio of FeC₄H₂⁻ over that of FeC₂H₂⁻ (Figure 2b).

Figure 3. DFT calculated potential energy profiles (a) and structures (b) for FeC_3^- (IS1) + CH₄. The isomeric structures of FeC_3^- , $FeC_4H_2^-$, and $FeC_2H_2^-$ are given in Figures S4, S10, and S11, respectively. The transition states and some intermediates can be found in Figure S6. The zero-point vibration corrected energies (ΔH_0 in eV) with respect to ⁴IS1 + CH₄ are given. Bond lengths are given in pm.

The doublet FeC₃⁻ can activate and transform methane at 300 K (Figure 1b) while the reaction efficiency is very low (on the order of 10^{-6}). The high energy barrier (⁴TS3-⁴I3 = 0.95 eV) of the tight transition state ${}^{4}TS3$ (ΔG_{298} = +0.56 eV) for C-C coupling is the bottleneck to form the H_2 and C_2H_2 elimination products (reactions 2 and 3). In addition, the spin conversion in the C–H activation ($^2TS1 \rightarrow CP1 \rightarrow {}^4I2)$ may also slow down the formation of ⁴I3 that is the most possible candidate of the experimentally observed adsorption complex FeC₄H₄⁻ (reaction 1). The above two rate limiting processes (${}^{4}I3 \rightarrow {}^{4}TS3$ and ${}^{2}TS1$ \rightarrow ⁴I2) can be enhanced by elevation of reaction temperature, which is consistent with the significant increase of rate constant from 300 K to 410 K (Figure 2a). Note that at 300 K, the quartet FeC₃⁻ is unlikely to contribute to the observed reactivity because very tiny percentage (10⁻⁸) of CH₄ molecules have enough kinetic energy to overcome the high reaction barrier (0.55-0.58 eV, Figure S14). At high temperatures (~600 K), the quartet FeC_3 may react with a fair amount of CH₄ (0.03%-0.09%), which is consistent with a sharp increase of the rate constant from 575 K to 610 K in the experiment (Figure 2a).

During the gas phase experiment, the adsorption complex ⁴I3 can be stabilized through the collisions with the bath gas.

Alternatively, it can transform to separated products (⁴I3 \rightarrow FeC₄H₂⁻ + H₂ or FeC₂H₂⁻ + C₂H₂) or dissociate back to separated reactants (⁴I3 \rightarrow FeC₃⁻ + CH₄). The temperature increase should always favour the formation of separated products and the total rate constant of reactions 2 and 3 increase during the entire termperature range (from 300 K to 610 K, Figure S3). However, the increased temperature disfavors the stablization of adsorption complex. As a result, reaction 1 can have a negative temperature dependence (from 410 K to 610 K in Figure S3). The coexistence of multiple species and the negative termperature dependence of the association reaction are responsible for the non-Arrhenius temperature dependence of the total rate constants shown in Figure 2a.

In literature, the gas phase reactions of methane with transition-metal carbide cluster cations^[9a,b,d,e] (TaC₁₋₁₄⁺, MoC⁺, AuC⁺, and CuC⁺) and the anions^[9c,f] (FeC₆⁻ and Ta₂C₄⁻) have been studied by mass spectrometric experiments under room-temperature conditions. The generation of ethylene has been identified for many of the cations and the production of acetylene was only observed for the TaC_y⁺.^[9a] The cluster anions are generally much less reactive than the corresponding

WILEY-VCH

COMMUNICATION

cations in the reactions with methane.^[16] The carbide cluster anions were reported to dehydrogenate methane to produce dihydrogen at room temperature facilitated by the dissociative CO adsorption^[17] or by the cooperation of two metal atoms,^[9f] while no C-C coupling product was observed. In this study, the production of C-C coupling product, acetylene, was evidently observed in the reaction of mononuclear iron carbide cluster anions FeC₃⁻ with methane under high-temperature conditions.

In condensed-phase studies of methane aromatization, a consensus that the formation of C₂H_x intermediates via C-C coupling is essential for further cyclization to produce aromatics has been reached.^[1d,18] However, three different mechanisms were proposed for non-oxidative aromatization of methane based on the experimental identification of the intermediates. Most of the studies of the Mo/zeolites catalysts insisted on a bifunctional mechanism^[2c, 19] that the Mo carbide phase converts methane into ethylene and then ethylene further goes through oligomerization into aromatics over the Brønsted acid sites embedded in the zeolites. A monofunctional mechanism, suggested by Mériaudeau,^[2b,5a] and Ha,^[20] emphasized activation of methane to acetylene, followed by aromatization into aromatics exclusively over Mo carbide phase.^[21] A gas phase mechanism, which is quite different from the above two mechanisms, was proposed for the catalytic system of Fe©SiO₂ in which methane is activated by the SiFeC2 site to form gas phase methyl radical that undergoes series reactions to form ethylene and aromatics.^[6] Recently, the production of highly selective acetylene catalyzed by Fe©SiO2 in a hydrogenpermeable membrane reactor was also reported.^[22] However, there is still a lack of experimental evidence for the formation of the first C-C bond to support the relevant mechanisms. In this study, by using a cluster mass spectrometer coupled with a high-temperature ion trap reactor, the elementary steps of methane activation and further transformation of the CH_x species into acetylene via C-C coupling over the active FeC₃ cluster have been identified, implying that the monofunctional mechanism possibly operates over the surface of metal/zeolites and Fe©SiO₂ catalysts for non-oxidative aromatization of methane. Note that the single Fe atoms in both SiFeC₂ active site and FeC₃⁻ cluster (IS1) are three-fold coordianted.

In summary, the high-temperature conversion of methane to acetylene, an important intermediate for methane aromatization proposed in condensed-phase studies, mediated by mononuclear iron carbide cluster anions of FeC3 has been characterized. The detailed elementary steps involving methane activation and further transformation of CH_x into acetylene via C-C coupling exclusively occurring over the active cluster of FeC₃⁻ reveal a molecular level origin of the monofunctional mechanism for non-oxidative methane aromatization proposed in condensed-phase systems.

Acknowledgements

This work was financially supported by the Chinese Academy of Sciences (No. XDA09030101) and the National Natural Science Foundation of China (Nos. 91645203, 21573247, and 21773253).

Keywords: methane transformation • metal carbide cluster • high temperature reaction • mass spectrometry • density functional calculations

- [1] a) C. Hammond, S. Conrad, I. Hermans, ChemSusChem 2012, 5, 1668-1686; b) P. Tang, Q. Zhu, Z. Wu, D. Ma, Energy Environ. Sci. 2014, 7, 2580-2591; c) C. Mesters, Annu. Rev. Chem. Biomol. Eng. 2016, 7, 223-238; d) P. Schwach, X. Pan, X. Bao, Chem. Rev. 2017, 117, 8497-8520.
- [2] a) L. Wang, L. Tao, M. Xie, G. Xu, J. Huang, Y. Xu, Catal. Lett. 1993, 21, 35–41; b) P. Mériaudeau, L. V. Tiep, V. T. T. Ha, C. Naccache, G. Szabo, J. Mol. Catal. A: Chem. 1999, 144, 469–471; c) S. Ma, X. Guo, L. Zhao, S. Scott, X. Bao, *J. Energy Chem.* **2013**, *22*, 1–20; d) S. H. Morejudo, R. Zanón, S. Escolástico, I. Yuste-Tirados, H. Malerød-Fjeld, P. K. Vestre, W. G. Coors, A. Martínez, T. Norby, J. M. Serra, C. Kjølseth, Science 2016, 353, 563-566.
- a) R. H. Crabtree, Chem. Rev. 1995, 95, 987-1007; b) Y. Lai, G. Veser, [3] Catal. Sci. Technol. 2016, 6, 5440-5452; c) P. Tan, J. Catal. 2016, 338, 21-29
- a) D. Ma, Y. Shu, M. Cheng, Y. Xu, X. Bao, J. Catal. 2000, 194, 105-114; [4] b) P. Moghimpour Bijani, M. Sohrabi, S. Sahebdelfar, Chem. Eng. Technol. 2012, 35, 1825-1832; c) C. Karakaya, S. H. Morejudo, H. Zhu,
- R. J. Kee, *Ind. Eng. Chem. Res.* 2016, *55*, 9895–9906.
 a) P. Mériaudeau, V. T. T. Ha, L. V. Tiep, *Catal. Lett.* 2000, *64*, 49–51; b)
 K. S. Wong, J. W. Thybaut, E. Tangstad, M. W. Stöcker, G. B. Marin, *Microporous Mesoporous Mat.* 2012, *164*, 302–312; c) I. Lezcano-González, R. Oord, M. Rovezzi, P. Glatzel, S. W. Botchway, B. Weckhuysen, A. M. Beale, Angew. Chem. Int. Ed. 2016, 55, 5215-5219
- X. Guo, G. Fang, G. Li, H. Ma, H. Fan, L. Yu, C. Ma, X. Wu, D. Deng, M. Wei, D. Tan, R. Si, S. Zhang, J. Li, L. Sun, Z. Tang, X. Pan, X. Bao, [6] Science 2014, 344, 616-619.
 a) L. Y. Chen, L. W. Lin, Z. S. Xu, X. S. Li, T. Zhang, J. Catal. 1995, 157,
- [7] 190-200; b) D. Gerceker, A. H. Motagamwala, K. R. Rivera-Dones, J. B. Miller, G. W. Huber, M. Mavrikakis, J. A. Dumesic, ACS Catal. 2017, 2088-2100.
- [8] a) R. J. O'Hair, G. Khairallah, J. Cluster Sci. 2004, 15, 331-363; b) D. K. Böhme, H. Schwarz, Angew. Chem. Int. Ed. 2005, 16, 657-669, 2354; c) G.
 E. Johnson, E. C. Tyo, A. W. Castleman, Proc. Natl. Acad. Sci. U. S. A.
 2008, 105, 18108–18113; d) Y. Gong, M. Zhou, L. Andrews, Chem. Rev.
 2009, 109, 6765–6808; e) S. M. Lang, T. M. Bernhardt, Phys. Chem. Chem. Phys. 2012, 14, 9255-9269.
- C. J. Cassady, S. W. McElvany, J. Am. Chem. Soc. 1990, 112, 4788–4797; b) Z.-Y. Li, Z. Yuan, Y.-X. Zhao, S.-G. He, Chem.-Eur. J. 2014, 20, 4163–4169; c) H.-F. Li, Z.-Y. Li, Q.-Y. Liu, X.-N. Li, Y.-X. Zhao, S.-G. He, J. Phys. Chem. Lett. 2015, 6, 2287-2291; d) J. Li, S. Zhou, M. Schlangen, T. Weiske, H. Schwarz, *Angew. Chem. Int. Ed.* **2016**, *55*, 13072–13075; e) C. Geng, J. Li, T. Weiske, M. Schlangen, S. Shaik, H. Schwarz, *J. Am. Chem. Soc.* **2017**, *139*, 1684–1689; f) H.-F. Li, Y.-X. Zhao, Z. Yuan, Q.-Y. Liu, Z.-Y. Li, X.-N. Li, C.-G. Ning, S.-G. He, J. Phys. Chem. Lett. 2017, 8, 605-610.
- [10] L.-X. Jiang, Q.-Y. Liu, X.-N. Li, S.-G. He, J. Am. Soc. Mass Spectrom. 2017, DOI: 10.1007/s13361-017-1828-3.
- X.-L. Ding, X.-N. Wu, Y.-X. Zhao, S.-G. He, *Acc. Chem. Res.* 2012, *45*, 382–390; b) Y.-X. Zhao, Q.-Y. Liu, M.-Q. Zhang, S.-G. He, *Dalton Trans.* 2016, *45*, 11471–11495; c) H. Schwarz, P. González-Navarrete, J. Li, M. Schlangen, X. Sun, T. Weiske, S. Zhou, Organometallics 2017, 36, 8-17; d) H. Schwarz, S. Shaik, J. Li, J. Am. Chem. Soc. 2017, DOI: 10.1021/jacs.7b10139.
- [12] a) C. Karakaya, H. Zhu, R. J. Kee, Chem. Eng. Sci. 2015, 123, 474-486; [12] J. G. Hulldy, H. Zha, K. S. Key, J. H. Hensen, J. R. Zord, J. F. Hard, S. Szécsényi, E. J. M. Hensen, J. Ruiz-Martinez, E. A. Pidko, J. Gascon, ACS Catal. 2016, 6, 2965–2981; c) Y. Liu, D. Li, T. Wang, Y. Liu, T. Xu, Y. Zhang, ACS Catal. 2016, 6, 5366–5370.
 [13] a) L.-S. Wang, Surf. Rev. Lett. 1996, 3, 423–427; b) L.-S. Wang, X. Li, J. Chem. Phys. 2000, 112, 3602–3608; c) Z. Cao, Q. Zhang, Int. J.
- Quantum Chem. 2003, 93, 275-279; d) M. F. A. Hendrickx, S. Clima, Chem. Phys. Lett. 2004, 388, 290-296; e) P. Redondo, L. Largo, C. Barrientos, Chem. Phys. 2009, 364, 1–13. [14] G. Von Helden, N. G. Gotts, P. Maitre, M. T. Bowers, Chem. Phys. Lett.
- 1994. 227. 601-608.
- [15] D. Schröder, S. Shaik, H. Schwarz, Acc. Chem. Res. 2000, 33, 139-145. [16] a) K. A. Zemski, D. R. Justes, A. W. Castleman, J. Phys. Chem. A 2001, 105, 10237-10245; b) J.-H. Meng, X.-J. Deng, Z.-Y. Li, S.-G. He, W.-J. Zheng, Chem.-Eur. J. 2014, 20, 5580-5583; c) J.-B. Ma, L.-L. Xu, Q.-Y. Liu, S.-G. He, Angew. Chem. Int. Ed. 2016, 55, 4947-4951.
- [17] Q.-Y. Liu, J.-B. Ma, Z.-Y. Li, C. Zhao, C.-G. Ning, H. Chen, S.-G. He, Angew. Chem. Int. Ed. 2016, 55, 5760-5764.
- [18] G. J. Hutchings, Top. Catal. 2016, 59, 658-662.
- [19] Z. R. Ismagilov, E. V. Matus, L. T. Tsikoza, Energy Environ. Sci. 2008, 1, 526-541.
- [20] V. T. T. Ha, L. V. Tiep, P. Meriaudeau, C. Naccache, J. Mol. Catal. A: Chem. 2002, 181, 283-290.
- [21] N. Kosinov, F. J. A. G. Coumans, E. A. Uslamin, A. S. G. Wijpkema, B.
- Mezari, E. J. M. Hensen, ACS Catal. 2016, 7, 520–529.
 M. Sakbodin, Y. Wu, S. C. Oh, E. D. Wachsman, D. Liu, Angew. Chem. Int. Ed. 2016, 55, 16149–16152.

WILEY-VCH

COMMUNICATION

Entry for the Table of Contents (Please choose one layout)

COMMUNICATION

The generation of C–C coupling product of acetylene in the high temperature reaction of methane with atomic cluster species (FeC_3^-) has been identified, providing a molecular level origin of the monofunctional methanism for non-oxidative methane aromatization proposed in condensed phase systems.

Hai-Fang Li, Li-Xue Jiang, Yan-Xia Zhao,* Qing-Yu Liu, Ting Zhang, and Sheng-Gui He*

Page No. – Page No.

Formation of Acetylene in the Reaction of Methane with Iron-Carbide Cluster Anions FeC₃⁻ under High-Temperature Conditions