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a b s t r a c t

A series of fused pyrimidine derivatives were synthesized by the three-component reaction of an aryl
aldehyde, urea, or guanidine in ethyl alcohol/dioxane in presence of 1-methyl-1H-pyrrol-2(3H)-one 1,
1-methylpiperidin-2-one 2, 1-methylindolin-2-one 3, or 1,3-dimethyl-dihydropyrimidine-2,4-dione 9
at 80 �C catalyzed by KF–Al2O3. For example, when 1-methyl-1H-pyrrol-2(3H)-one 1, arylaldehyde 4,
and urea 5 were treated with KF–Al2O3 in ethyl alcohol at 80 �C for 3–5 h, we obtained pyrrolo[2,3-d]-
pyrimidine derivatives in good yield.

� 2008 Elsevier Ltd. All rights reserved.
Inorganic solid supports as catalysts have been used increas-
ingly in recent years for the synthesis of various biologically active
molecules. Among these inorganic solid supports, potassium fluo-
ride coated with alumina (KF–alumina) has been used as a versatile
reagent for various reactions such as the Knoevenagel condensa-
tion,1 the Henry reaction,2 the Darzens reaction,3 the Wittig reac-
tion,4 the Biginelli reaction,5 and alkylation6 and elimination7

reactions. In this Letter, we report a simple three-component syn-
thesis of 5:6 fused [d] pyrimidines such as pyrazolo[3,4-d]pyrim-
idines,8 pyrrolo[2,3-d]pyrimidines9 as well as 6:6 fused systems
such as pyrido[2,3-d]pyrimidines.10 These heterocycles represent
the aglycons of the more common bicyclic nucleosides, and these
heteroaromatic aglycons have been shown to possess a variety of
biological activities, such as inhibitors of epidermal growth factor
receptor (EGF-R) protein tyrosine kinases and their potential as a
treatment for proliferate diseases involving mitogenic signaling
from the EGF-R has been recognized.11 Derivatives of pyrrolo[2,3-
d]pyrimidines have also been evaluated for their anti-tumor
activities.12

Reports of pyrrolo[2,3-d]pyrimidine derivatives and their syn-
thesis are abundant in the literature.13 However, none of the syn-
thetic procedures provides a general route for the synthesis of
the three types of fused pyrimidines described here. Thus, as part
of our ongoing research on the development of new synthetic
methods, we found that when 1-methyl-1H-pyrrol-2(3H)-one 1,
arylaldehyde 4 and urea/guanidine 5 were treated with KF–Al2O3
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in ethyl alcohol at 80 �C for 3–5 h, we obtained pyrrolo[2,3-d]-
pyrimidine derivatives 6a–e in good yields (Scheme 1). Evidently,
a sequence of reactions involving Biginelli-like condensation took
place during formation of the product. This may be concluded from
the fact that when condensation of 1-methyl-1H-pyrrol-2(3H)-one
1 and benzaldehyde was carried out, 3-benzylidene-1-methyl-1H-
pyrrol-2(3H)-one was isolated as the product13 thereby indicating
that a condensation reaction is the first step in this three-compo-
nent process.

In order to demonstrate the efficiency and the applicability of
the method, the reaction of a series of arylaldehydes with 2 or 3
was carried out to give the corresponding products14–17 7a–e and
8a–e in good yields under identical reaction conditions
(Table 1).

The scope of the reaction was also demonstrated by the synthe-
sis of 7-pyrimido[4,5-d]pyrimidin-2-ones using 1,3-dimethyl-
dihydropyrimidine-2,4-dione 9 as the starting material; the reac-
tion proceeded at 100 �C in the presence of KF/alumina as catalyst
in dioxane to yield the desired products in moderate yield 10a–e
(Scheme 2).

The product was also obtained in good yield when an alkyl or an
electron-donating group was attached to the aromatic ring of 4.
Furthermore, the reaction shown in Scheme 2 proceeded only
when dioxane was used as the solvent. The yield of this reaction
was improved partially when a few drops of acetic acid were
added.

In conclusion, we have developed a convenient method for the
synthesis of 5:6 and 6:6 fused pyrimidine derivatives through a
three-component reaction catalyzed by KF/alumina having wide
applicability, thus providing a general method for the synthesis
of potentially biologically active heterocycles.
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Scheme 1. Synthesis of substituted fused pyrimidines.

Table 1
Substituted fused pyrimidines

Entry R1 X Yield (%)

6a H O 86
6b CH3 O 76
6c NH2 O 70
6d NO2 NH 81
6e CH3 NH 92
7a H NH 77
7b CH3 O 81
7c NH2 NH 83
7d NO2 O 60
7e CH3 NH 66
8a H NH 87
8b CH3 O 78
8c NH2 NH 76
8d NO2 O 68
8e H O 75
10a OH NH 50
10b CH3 O 59
10c NH2 O 55
10d NO2 NH 54
10e NO2 O 60
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