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A B S T R A C T

In the last decades were witnesses that hydrogen is in the limelight as an environmentally benign and alternative
energy source to fossil fuels. The hydrolysis of sodium borohydride (NaBH4) is promising for the synthesis of
materials/chemical compounds and on-demand hydrogen generation-based applications. Herein, cobalt
embedded zeolitic imidazolate frameworks (Co@ZIF-8) were synthesized at ambient temperature via a one-pot
method (within 60 min). X-ray diffraction (XRD) pattern ensures the successful synthesis of a pure phase of
Co@ZIF-8 crystals. Transmission electron microscope (TEM) and nitrogen (N2) adsorption-desorption isotherm
reveal that Co@ZIF-8 has a hierarchical porous structure. Co@ZIF-8 exhibited high catalytic activity for the
hydrolysis of NaBH4 with a hydrogen generation rate (HGR) of 7230 mL�gcat�1�min�1 (18 � 106 mL�gCo�1�min�1).
The high catalytic performance and the simple synthesis procedure of Co@ZIF-8 endow the material’s high po-
tential to be a catalyst for hydrogen generation via the hydrolysis of hydrides such as NaBH4.
1. Introduction

Zeolitic imidazolate frameworks (ZIFs) [1–3] are a subclass of
metal-organic frameworks (MOFs) [4–13] with high thermal and
chemical stability [14]. Among several ZIFs, ZIF-8 (zinc imidazolate) has
been used as a substrate to encapsulate and support several species such
as enzyme horseradish peroxidase and magnetic nanoparticles [15],
achiral CuxS [16], cobalt [17], dye [18,19], polysaccharides [20], and
aggregation-induced emission molecule [21]. It can also proceed into
film/carbon cloth [22], membrane [23,24], and three-dimension (3D)
product [25]. It has been applied for several applications, including
catalysis, biomedicine, energy, and environmental-related fields [19,
25–33].

Hydrogen (H2) gas is promising as an alternative energy source to
fossil fuel with high energy content and environmental byproducts (e.g.,
H2O) after combustion [34]. It can be used for portable electronic devices
and proton exchange membrane fuel cell (PEMFC). Several companies
such as Toyota, Hyundai, and Honda have recently marketed small
H2-powered vehicles [34]. It can also be used for environmental appli-
cations such as dye degradation [35] and reducing nitrophenol com-
pounds [36–38]. There are several methods for hydrogen production
[39–47]. Among these methods, hydrides’ hydrolysis (1 mol NaBH4
produces 4 mol H2) offers several advantages. NaBH4 has high hydrogen
storage (gravimetric weight 10.6%) compared to other materials. NaBH4
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has lightweight/volume and produces hydrogen with high purity. The
process can be controllable and produces hydrogen for on-demand uses.
However, the process is kinetically slow and requires a catalyst to pro-
mote the process [48–51]. Thus, several materials were investigated as
catalysts for hydrogen generation via the hydrolysis of NaBH4 [52]. The
high cost of precious metal catalysts, e.g., Ru, Pt, and Pd, limit their
applications as catalysts for the hydrolysis of NaBH4 [53]. On the other
side, transition metals are cheap and offer comparable efficiency [54].
The use of transition metals requires support to enhance the performance
and prevent aggregation of the active catalytic species. ZIFs are adequate
supports for transition metals than other supports such as MXene, MoS2,
and carbon nanotubes (CNTs) [55–57]. However, further explorations
are highly required to improve their efficiency.

Herein, the synthesis of cobalt encapsulated hierarchical porous ZIF-8
(Co@ZIF-8) has been reported. The synthesis procedure is simple using a
one-pot at ambient temperature. The reaction takes place in water
without the need for any organic solvent. The application of the syn-
thesized materials for the generation of hydrogen via the hydrolysis of
NaBH4 was reported. Co@ZIF-8 material exhibited high catalytic activity
compared to other previously reported materials.

2. Materials and methods

2-methylimidazole (Hmim), Zn(NO3)2⋅6H2O, sodium hydroxide,
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Fig. 1. Schematic representation for the synthesis of Co@ZIF-8.

Fig. 2. a) XRD patterns Co@ZIF-8 and simulated XRD for ZIF-8, and b) Co@ZIF-8 before and after catalysis.
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cobalt chloride (CoCl2), were purchased from Sigma Aldrich (Germany).
NaBH4 was purchased from Alfa Aeser (UK).
2.1. Synthesis of Co@ZIF-8

A solution of NaOH (0.4 mL, 0.1 M) was added to a Zn(NO3)2 solution
(3.2 mL, 0.84 M) at ambient conditions. A white gel was observed. Then,
a CoCl2 solution (0.64 g) was added. The solution was subjected to
stirring for 10 min before the addition of Hmim (32 mL, 3 M). The re-
action solution was continuously stirred for 30 min. A solution of NaBH4
(10 mmol) was added for the reduction of Co2þ to Co. The product was
separated using filtration and washed several times with water and
ethanol to remove unreacted species.
2

2.2. Characterizations instruments

The crystal phase purity of Co@ZIF-8 was approved using X-ray
diffraction (XRD, Philips1700 diffractometer) with wavelength, current,
and accelerating voltage (Vac) of 1.54 Å, 40 mA, and 40 V, respectively.
Imaging was performed using transmission electron microscopy (TEM,
JEM-2100, JEOL, Japan, Vac 200 kV). X-ray photoelectron spectroscopy
(XPS) was measured using Thermo Fischer (K-alpha, monochromated, Al
Kα radiation, 1486.6 eV). The content of cobalt in Co@ZIF-8 was
measured using the atomic absorption flame (AAF, Buck scientific 210
VGC). For this measurement, Co@ZIF-8 was dissolved in a strong nitric
acid using ultrasonication. Surface areas (Brunauer–Emmett–Teller
(SBET), and Langmuir specific surface areas (SLang)) and pore volumes of



Fig. 3. XPS analysis of Co@ZIF-8, a) survey, b) C1s, c) N1s, d) O1s, e) Zn2p, and f) Co2p.

Fig. 4. a) TEM and b) HR-TEM of Co@ZIF-8.
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Fig. 5. a) Nitrogen adsorption-desorption isotherm, b) BET surface area fitting, pore size distribution using c) BJH model, and d) DFT model.
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Fig. 6. The hydrolysis of NaBH4 without and with Co@ZIF-8.

Fig. 7. The effect of Co@ZIF-8 loading on hydrogen generation via
NaBH4 hydrolysis.

Fig. 8. The effect of NaBH4 amount on hydrogen generation via NaBH4 hy-
drolysis using Co@ZIF-8 of 5 and 10 mg.
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Co@ZIF-8 were carried using a nitrogen adsorption-desorption analyzer
(Quantachrome Instrument Corporation, USA, at 77 K). Co@ZIF-8 was
degassed at 100 �C for 3 h under vacuum before measurements. The
external surface area (SExt) was determined using the t-plot method. BJH
method (Barrett, Joyner, and Halenda) and Density functional theory
(DFT) models were used to evaluate the pore size distribution.
2.3. Hydrolysis of NaBH4

The hydrolysis of NaBH4 solution (0.19 g in 100 mL H2O) was tested
at 30 �C. The water displacement method was used to measure the
hydrogen generated volume during the reaction [58]. Hydrogen was
exhausted through a Tygon tube to an inverted graduated cylinder
.Co@ZIF-8 (100 mg) was added to a NaBH4 solution (0.19 g in 100 mL
of water) following the same setup.

The effect of Co@ZIF-8 catalyst loading was investigated using
catalyst loading of 100 mg, 10 mg, and 5 mg following the same exper-
iment setups. Investigation of the impact of NaBH4 amount was also
tested for 0.19 g, 1 g, 2 g, and 3 g using 10 mg, and 5 mg of Co@ZIF-8.
After a specific time, the reaction flask was recharged with NaBH4
without catalyst separation. The hydrogen generation rate (HGR) was
calculated by the active cobalt catalyst’s per unit weight and was defined
as mL�min-1�gcatalyst-1 .

3. Results and discussion

3.1. Materials characterization

The synthesis of Co@ZIF-8 was achieved at room temperature in an
aqueous solution (Fig. 1). NaOH converts zinc nitrate to a white pre-
cipitate of zinc hydroxide nitrate [59]. A violet precipitate was formed
after the addition of the Hmim solution. XRD pattern of the formed violet
color precipitate is reported, as shown in Fig. 2. The XRD patterns of the
synthesized materials and the simulated pattern of ZIF-8 are overlapped
very well, indicating the formation of a pure phase of ZIF-8 after the
addition of Hmim (Fig. 2). The XRD peak broadening of the formed
crystal is due to the small particle size of the formed crystals. According
to Scherer’s equation (Eq. (1)), Co@ZIF-8 has a crystallite size of 50–100
nm.

τ¼ 0:9λ
βcosθ

1

Where: τ is the size of the crystallite; λ is the wavelength of X-ray radi-
ation; β is the line broadening at half the maximum intensity in radians,
and θ is the Bragg angle.

The XPS analysis of Co@ZIF-8 is shown in Fig. 3. The elemental XPS
survey shows elements of C, N, O, Zn, and Co (Fig. 3a). XPS analysis of
C1s show speaks corresponding to sp2 (284.9 eV), –C–N (286.2 eV), and
–C––N (287.8 eV, Fig. 3b). The analysis of N1s shows two peaks at 398.8
eV and 399.4 eV, which can be assigned to C––N– and C–N–, respectively
(Fig. 3c). The oxygen species are due to the adsorbed water and car-
bonate (531.8 eV) into ZIF-8 (Fig. 3d). The XPS analysis of the Zn 2p
region shows two peaks at 1021.9 and 1044.9 eV (Fig. 3e). The Co2p
spectrum can be fitted to 8 peaks: 781.4 eV, 783.6 eV, 786.3 eV, 789.5
eV, 797.0 eV, 799.4 eV, 802.3 eV, and 805.3 eV (Fig. 3f). The two peaks
at 781.4 eV and 797.0 eV (separated by 15 eV) can be assigned to Co
2p3/2 and Co 2p1/2, respectively (Fig. 3f). The other peaks are satellite
peaks for Co 2p3/2 and Co 2p1/2. The observable satellite features at
786.3 eV refer to Co (II). These observations indicate that the reduction
of Co (II) using NaBH4 was incomplete or due to coordination of Co to
mim. There was no peak corresponding to B (suppose to be at 187.7 eV),
indicating no Co–B formation [70]. Cobalt loading in Co@ZIF-8 is 524
ppm, according to AAF analysis.

The morphology and particle size of Co@ZIF-8 were evaluated using
TEM and high-resolution TEM (Fig. 4). TEM image (Fig. 4a) shows
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Fig. 9. Mechanism of NaBH4 hydrolysis using Co@ZIF-8.

Table 1
Summary of catalysts used for hydrogen generation via NaBH4 hydrolysis.

Catalyst Synthesis Procedure Catalysis
Conditions

Ratea Ref.

Co–B CoCl2 solution þ
NaBH4 solution

0.04 M CoCl2
solution, 15 wt%
NaBH4, 5 wt%
NaOH, 30 �C

26000 [70]

Co@ZIF-8 1. Deposition-
precipitation
2. In-situ reduction
using NaBH4

Cat. 6 mol%,
NaBH4, 0.75 mmol,
30 �C

2935 [55]
19400b

Co@ZIF-9 Solvothermal Cat. 25 mg, NaBH4,
0.5 wt%, 30 �C

3642 [63]

CoB/ZIF-8 1. Solvothermal
2. NaBH4 reduction

Cat. 10 mg, NaBH4

1.67 wt%, NaOH 5
wt%

454 [56]

Co@C 1. Co-MOF-71 (24 h
at 110 �C in an oven),
2. Calcination at 700
�C for 8 h under N2

atmosphere

Cat. 20 mg, NaBH4

10 wt%, NaOH 6
wt%, 30 �C

1680 [71]

Fe3O4@C–Co 1. Solvothermal (200
�C, 10 h)
2. Hydrothermal
(180 �C, 4 h),
annealing under
nitrogen,
3. Reduction with
NaBH4

Cat. 30 mg, NaBH4

0.26 M
1746 [62]

Co3O4@C Carbonization of ZIF-
67

Cat. 500 mg L�1,
NaBH4 4730
mg�L�1; NaOH, 1
M, T ¼ 30 �C

4900 [68]

Zn1Co1Co@NC 1. Synthesis at 120 �C
for 4 h,
2. Calcination at 900
�C for 3 h

Cat. 10 mg,
NaBH4100 mg,
NaOH 0.8 g

1807 [72]

Co@C 1. Impregnation-
chemical
2. Reduction of
cobalt salt using
NaBH4 in DMF

Cat. 20 mg, NaBH4

1 wt%; 1 wt%
NaOH1 wt.%, 27
�C

10290 [67]

Co@ZIF-8 One-Pot synthesis,
Room temperature,

Cat. 5 mg, NaBH4

3 wt%
7230 Here
(18 �
106)b

Notes: a, mL� min�1�g�1; b, mL�min�1� gCo�1.
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Co@ZIF-8 with a particle size of 50–200 nm, which agrees with the size
calculated from Scherer’s equation using XRD data (Fig. 2a). The formed
crystals exhibited a truncated cubic crystal morphology without any
observation of the aggregation of cobalt nanoparticles (Fig. 4a). The
crystal contains a mesopore inside the crystal particle with a size of 5–20
nm (Fig. 4a). It is essential to mention that conventional ZIF-8 is
microporous material with a pore size of fewer than 2 nm [1]. The small
pore volume of microporous ZIF-8 prevents the diffusion of large mole-
cules. On the other side, Co@ZIF-8 contains a mesopore structure as well
as the micropores of conventional ZIF-8. In other words, Co@ZIF-8 is a
hierarchical porous material.

Nitrogen (N2) adsorption-desorption isotherm of Co@ZIF-8 is shown
in Fig. 5a. It shows type-IV indicating the presence of micropore to
mesopore regime. The analysis reveals BET surface area, Langmuir sur-
face area, and external surface area of 200 m2�g-1, 250 m2�g-1, and 197
m2�g-1, respectively (Fig. 5b). The pore size distribution was evaluated
using BJH (Fig. 5c) and DFT (Fig. 5d) model. Data analysis confirms the
presence of a pore size of 3.5–25 nm with a maximum pore size 10 nm
that agrees with the TEM image (Fig. 4a).
3.2. Hydrogen generation via NaBH4 hydrolysis

Hydrogen generation via the hydrolysis of NaBH4 using Co@ZIF-8 as
a catalyst has been reported. The self-hydrolysis of NaBH4 is a slow
process (Fig. 6a). The production of hydrogen via NaBH4 hydrolysis is
kinetically limited under ambient conditions in the absence of a catalyst.
Co@ZIF-8 has a large pore size and may render the diffusion of reactions
feasible. Furthermore, water molecules can be dissociated into the
external surface of ZIF-8 crystal, leading to acidic and basic sites [60].
Thus, Co@ZIF-8 has been investigated as a catalyst for the hydrolysis of
NaBH4. The generated volume of hydrogen via the self-hydrolysis of
NaBH4 or in the presence of ZIF-8 is low compared to the generated
volume in the presence of Co@ZIF-8 materials (Fig. 6). Co@ZIF-8 can
serve as an effective catalyst for the hydrolysis of NaBH4 (Fig. 6).

The effect of the catalyst loading (5 mg, 10 mg, and 100 mg) was
investigated, as shown in Fig. 7. There is no dramatic change in the
generated volume of hydrogen for different catalyst loadings. This
observation indicates that even low catalyst loading, e.g., 5 mg, can
efficiently catalyze the reaction. Data reveal that Co@ZIF-8 is an effective
catalyst for hydrogen generation via NaBH4 hydrolysis (Fig. 7). This is
mainly due to the presence of active species with high catalytic effi-
ciency. It implies no consumption of the hydrogen generated during the
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hydrolysis using a high loading of Co@ZIF-8.
The hydrolysis process depends on the reactant’s concentration, i.e.,

water and NaBH4. A large volume of water (100 mL) is used. Thus, the
reaction is independent of the concentration of water, i.e., pseudo-first-
order. The effect of NaBH4 concentration on the generated volume of
hydrogen using two different loadings of Co@ZIF-8, e.g., 5 and 10 mg,
was investigated (Fig. 8). The hydrogen volume increases with the in-
crease of NaBH4 (Fig. 8). There is no dramatic difference in the efficiency
of Co@ZIF-8 using 10 mg and 5 mg (Fig. 8). This observation agrees with
our previous results shown in Fig. 7. The active species can be used
successively without deactivation (Fig. 8).

Sodium borohydride can be recharged into the reaction solution
without separating the catalyst (Fig. 8). There is no decrease in the ef-
ficiency of the catalyst over time (Fig. 8). The volume of hydrogen in-
creases with the time and NaBH4 amount (Fig. 8). The reaction becomes
faster and requires a shorter time for high NaBH4 loading (2–3 g). There
is an insignificant difference between 10 mg and 5 mg in the catalytic
performance, indicating the investigated catalyst’s high performance.
The hydrogen generation rates (HGR) using Co@ZIF-8 are 2961
mL�gcat�1�min�1, and 7230 mL�gcat�1�min�1 for 10 mg, and 5 mg, respec-
tively (Fig. 8).

There are several studies reported that effective transition elements as
catalysts for the hydride hydrolysis are used in boride or phosphide.
These species are electron-rich atoms and can protect the core transition
metals from oxidation via electron transfer from B to Co [61]. Thus,
boride or phosphide-based catalysts alloys showed higher catalytic ac-
tivity compared to the corresponding metals. However, XPS data showed
no presence of B in our system, i.e., Co@ZIF-8. Several mechanisms were
reported to explain the catalysis of NaBH4 hydrolysis (Fig. 9). The
hydrogen (4 molecules) is produced from water (2 molecules) and BH4

�

(2 molecules) (Fig. 9). The Co site and Zn metal catalyze sodium boro-
hydride’s hydrolysis and the O–H bond cleavage of H2O (Fig. 9). The
hydrolysis of NaBH4 produces H2 molecules and BH3(OH)- (Fig. 9). Three
successive processes are followed, producing 4H2 molecules. According
to the kinetic isotope effect, the O–H bond cleavage of water is the
rate-determining step [55]. It was reported that Co2þ ions in Co/Zn-ZIF-8
were partially in-situ transformed into CoB via direct reduction using
NaBH4 [56]. The authors reported no collapse of the ZIF-8 framework
[56]. XRD pattern for Co@ZIF-8 after the hydrolysis of NaBH4 indicates
that the catalyst retains its basic structure after catalysis (Fig. 2b).

The synthesis procedure of Co@ZIF-8 is simple, requires no special
types of equipment, occurs using water, and no need of solvothermal
condition (Table 1) [56]. Among different first-raw transition metals (Fe,
Co, Ni, and Cu), cobalt-based catalysts such as Co@ZIF-8 [55],
Fe3O4@C–Co [62], and Co-ZIF-9 [63], were the most efficient and se-
lective catalyst in this series. Cobalt offers similar reactivity to noble
metals and is much more cost-effective [57,64]. Co@ZIF-8 showed a
hydrogen generation rate of 14,000 mL�min�1�gCo�1 at 30 �C [55].
However, the rapid deactivation of Co catalyst is one of the significant
drawbacks of the Co-based catalyst [65]. The Co catalyst’s deactivation is
due to the deposition of a thick passivation layer of B–O compounds.
Therefore, the catalyst should be removed and washed with a dilute acid
solution for activation. A method such as encapsulation of Co NPs in
carbon nanomaterials was proposed to prevent agglomeration and
leaching of cobalt [66]. There is no deactivation of Co@ZIF-8 during the
charging of NaBH4 without the need for separation or activation process
(Fig. 8). Co@ZIF-8 showed higher hydrogen generated rate compared to
carbon-supported cobalt catalysts which showed hydrogen generation
rate of 10290 mL�min-1�gCo-1 at 27 �C [67]. Carbonization of ZIF-67 at
600 �C showed hydrogen generation rate (HGR) of 4900 in the presence
of NaOH (1 M) [68]. On other side, Co@ZIF-8 exhibited higher hydrogen
generation rate without the need for a base (Table 1). Cobalt-based
catalyst suffers from rapid deactivation [69]. This could be due to
nanoparticles’ aggregation, degradation (for supported films/layers), or
etching. Interestedly, Co@ZIF-8 can be used successfully without sepa-
ration. Sodium borohydride can be recharged into the reaction mixture
7

without the need of separation or activation steps.

4. Conclusions

A simple procedure has been reported for the synthesis of hierarchical
porous Co@ZIF-8. The method was a one-pot procedure without the need
for sophisticated equipment. It required a short time and uses water
molecules. The reaction takes placed at ambient conditions without the
need for heating. The produced material showed unique properties since
it has a hierarchical porous structure. The materials exhibited high cat-
alytic performance for hydrogen gas generation via the hydrolysis of
NaBH4. Co@ZIF-8 exhibited hydrogen generation rate of 7230
mL�gcat�1�min�1 (18 � 106 mL�gCo�1�min�1). Data may open new avenues
for further exploration of effective and commercial catalysts for on-
demand production of hydrogen using the hydrolysis of NaBH4.
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