A Convenient One-Pot Synthesis of 4-Substituted 3,5-Bis(alkoxycarbonyl)-4,5-dihydroisoxazole 2-Oxides from Aldehydes and Nitroacetic Esters in a Solid-Liquid Reaction System and Subsequent Deoxygenation Jean-Marie Mélot, Françoise Texier-Boullet, André Foucaud* Groupe de Physicochimie Structurale associé au C.N.R.S., Université de Rennes, Campus de Beaulieu, F-35042 Rennes, France 4-Substituted 3,5-bis(alkoxycarbonyl)-4,5-dihydroisoxazole 2-oxides are obtained from nitroacetic esters and imines which are prepared from aldehydes and isopropylamine in the presence of molecular sieves. Reduction of the *N*-oxides with trimethyl phosphite in dioxane gives the corresponding 4,5-dihydroisoxazoles in good yields. 4,5-Dihydroisoxazole 2-oxides may be employed as precursors to 4,5-dihydroisoxazoles,¹ which are important intermediates in organic synthesis.²-5 4,5-Dihydroisoxazole 2-oxides⁶ have been prepared from nitroacetic esters⁷ and Schiff bases,^{8,9} aldehydes,¹0 or iodoalkanes¹¹ and from nitroalkenes and selenium ylides¹² or sulfurane S-oxides,¹³ and from the reaction of bromonitroalkenes with nitro compounds.¹⁴ We now report a convenient method for the synthesis of 4-substituted 3,5-bis(alkoxycarbonyl)-4,5-dihydroisoxazole 2-oxides in a solid-liquid reaction system. *N*-Isopropylaldimines **2** were prepared prior to use from aldehydes **1** and isopropylamine without solvent in the presence of molecular sieves. Then, the nitroacetic ester 3^7 in alcohol/ether (1:1) was added and the mixture heated to boiling (6 h) to give the **4**,5-dihydroisoxazole 2-oxides **4** in good yields (Table 1). The pure diastereoisomers **4**, with R^1 and CO_2R^2 in *trans* position, were obtained. Indeed, the ¹H-NMR spectra of **4** show that the values of the H_4 - H_5 coupling constants are small (J = 2-3 Hz). ¹⁰ It appears that the molecular sieves (4Å) are the best catalyst (alumina or montmorillonite K 10 are less efficient). The use of a volatile alkylamine is necessary to avoid side reactions. The yields of 4 decrease when amines with higher boiling points are used. The reduction of N-oxides 4 with trimethyl phosphite in dioxane (reflux 5–8 h) yielded the corresponding 4,5-dihydroisoxazoles 5 (Table 2), whereas the reduction of 4 with sodium borohydride under liquid-liquid phase-transfer conditions ¹⁵ gave the 3-alkoxycarbonyl-5-hydroxymethyl-4,5-dihydroisoxazole 2-oxides 6. Thus, the latter reduction is regioselective, only the ester group in position 5 being reduced. | 4, 5, 6 | \mathbb{R}^1 | R ² | |---------|--|-----------------| | a | C_6H_5 | CH ₃ | | b | 4-CH ₃ OC ₆ H ₄ | CH ₃ | | c | $4-CH_3C_6H_4$ | CH_3 | | d | 1-naphthyl | CH_3 | | e | $4-NO_2C_6H_4$ | CH ₃ | | f | 4-ClC ₆ H ₄ | CH ₃ | | g | | CH ₃ | | h | t-C ₄ H ₉ | CH ₃ | | i | C_6H_5 | C_2H_5 | | i | 4-ClC ₆ H ₄ | C_2H_5 | | ,
k | $4-NO_2C_6H_4$ | C_2H_5 | | 1 | 2,4,6-(CH ₃ O) ₃ C ₆ H ₂ | C_2H_5 | | m | 2-naphthyl | C_2H_5 | | n | 3-NO2C6H4 | C_2H_5 | | 0 | $4-C_6H_5OC_6H_4$ | C_2H_5 | Table 1. 4-Substituted 3,5-Bis(alkoxycarbonyl)-4,5-dihydroisoxazol 2-Oxides 4 Prepared | Prod-
uct | Yield ^a
(%) | mp
(°C) | Molecular
Formula ^b
or Lit. Data | $^{1}\text{H-NMR (CDCl}_{3}/\text{TMS})^{c}$ δ , $J(\text{Hz})$ | |-----------------|---------------------------|--------------|---|--| | 4a ^d | 76 | 96 | 94-9510 | 3.74 (s, 3H, OCH ₃); 3.89 (s, 3H, OCH ₃); 4.88, 4.94 (AB, 2H, J = 2.5); 7.38 (s, 5H _{arom}) | | 4b | 81 | 94 | $C_{14}H_{15}NO_{7}$ (309.3) | 3.75 (s, 3H, OCH ₃); 3.82 (s, 3H, OCH ₃); 3.89 (s, 3H, OCH ₃); 4.84, 4.93 (AB, 2H, $J = 3.5$); 6.85–7.32 (m, 4H _{arom}) | | 4c | 77 | 98 | $C_{14}H_{15}NO_6$ (293.3) | $2.34 \text{ (s, 3 H, CH_3)}; 3.70 \text{ (s, 3 H, OCH_3)}; 3.85 \text{ (s, 3 H, OCH_3)}; 4.81, 4.92 \text{ (AB, 2 H, } J = 2.5); 7.19 \text{ (s, 4 Harom)}$ | | 4d | 75 | 164 | $C_{17}H_{15}NO_6$ | 3.71 (s, 3H, OCH ₃); 3.95 (s, 3H, OCH ₃); 4.91, 5.73 (AB, 2H, $J = 2.5$); 7.20–8.30 (m, $^{7}H_{ahom}$) | | 4e | 69 | (dec)
177 | (329.3) $C_{13}H_{12}N_2O_8$ (324.2) | (acetone- d_6): 3.69 (s, 3H, OCH ₃); 3.85 (s, 3H, OCH ₃); 5.28 (m, 2H); 7.73–8.31 (m, 4H _{arom}) | | 4f | 75 | (dec)
148 | $C_{13}H_{12}CINO_6$ (313.7) | 3.75 (s, $3H$, OCH_3); 3.86 (s, $3H$, OCH_3); 4.85 , 4.91 (AB, $2H$, $J=2.5$); $7.25-7.40$ (m, $4H_{arom}$) | | 4g | 82 | 128 | $C_{14}H_{13}NO_8$ (323.3) | 3.76 (s, 3H, OCH ₃); 3.87 (s, 3H, OCH ₃); 4.75, 4.89 (AB, 2H, $J = 2.5$); 5.97 (s, 2H, OCH ₂ O); 6.78 (s, 3H _{atom}) | | 4h | 41 | 127 | $C_{11}H_{17}NO_6$ (259.3) | $^{5 \text{ Harom}/}$ 1.06 [s, 9H, $C(CH_3)_3$]; 3.51 (d, 1H, $J = 1.5$); 3.85 (s, 3H, OCH ₃); 3.87 (s, 3H, OCH ₃); 4.93 (d, 1H, $J = 1.5$) | Table 1. (Continued) | Prod-
uct | Yield ^a
(%) | mp
(°C) | Molecular
Formula ^b
or Lit. Data | 1 H-NMR (CDCl ₃ /TMS) c δ , J (Hz) | |--------------|---------------------------|-------------|--|--| | 4j | 73 | 74 | C ₁₅ H ₁₇ NO ₆
(307.3) | 1.13 (t, 3H, CH_2CH_3 , $J = 7$); 1.34 (t, 3H, CH_2CH_3 , $J = 7$); 4.09 (q, 2H, CH_2-CH_3 , $J = 7$); 4.33 (q, 2H, CH_2CH_3 , $J = 7$); 4.84, 4.93 (AB, 2H, $J = 2.5$); 7.34 (s, 5H _{atom}) | | 4j | 79 | 98 | $C_{15}H_{16}CINO_6$ (341.7) | 1.17 (t, 3H, CH_2CH_3 , $J = 7$); 1.35 (t, 3H, CH_2CH_3 , $J = 7$); 4.19 (q, 2H, CH_2CH_3 , $J = 7$); 4.32 (q, 2H, CH_2CH_3 , $J = 7$); 4.85, 4.92 (AB, 2H, $J = 2.5$); 7.32 (m, 4H _{arom}) | | 4k | 52 | 98
(dec) | $C_{15}H_{16}N_2O_8$ (352.3) | 1.18 (t, 3H, CH ₂ CH ₃ , $J = 7$); 1.38 (t, 3H, CH ₂ CH ₃ , $J = 7$); 4.21 (q, 2H, CH ₂ CH ₃ , $J = 7$); 4.38 (q, 2H, CH ₂ CH ₃ , $J = 7$); 4.93, 5.07 (AB, 2H, $J = 2.5$); 7.60–8.30 (m, 4H _{arm}) | | 41 | 52 | 150 | C ₁₈ H ₂₃ NO ₉
(397.4) | 1.09 (t, 3 H, CH ₂ CH ₃ , $J = 7$); 1.30 (t, 3 H, CH ₂ CH ₃ , $J = 7$); 3.82 (s, 9 H, 3 OCH ₃); 4.12 (q, 2 H, CH ₂ CH ₃ , $J = 7$); 4.30 (m, 2 H); 4.82 (d, 1 H, $J = 6$); 5.51 (d, 1 H, $J = 6$); 6.16 (s, 2 H _{argm}) | | 4m | 81 | 93 | C ₁₉ H ₁₉ NO ₆
(357,4) | 1.06 (t, 3H, CH ₂ CH ₃ , $J = 7$); 1.31 (t, 3H, CH ₂ CH ₃ , $J = 7$); 4.10 (q, 2H, CH ₂ CH ₃ , $J = 7$); 4.98, 5.06 (AB, 2H, $J = 2$); 7.32–7.95 (m, 7H _{aron}) | | 4n | 54 | 81
(dec) | $C_{15}H_{16}N_2O_8$ (352.3) | 1.19 (t, 3H, CH_2CH_3 , $J = 7$); 1.38 (t, 3H, CH_2CH_3); 4.23 (q, 2H, CH_2CH_3 , $J = 7$); 4.39 (q, 2H, CH_2CH_3 , $J = 7$); 5.00 (m, 2H); 7.50–8.40 (m, 4H _{arom}) | | 40 | 75 | 104 | C ₂₁ H ₂₁ NO ₇
(399.4) | 1.08 (t, 3 H, CH_2CH_3 , $J = 7$); 1.33 (t, 3 H, CH_2CH_3 , $J = 7$); 4.20 (q, 2 H, CH_2CH_3 , $J = 7$); 4.30 (q, 2 H, CH_2CH_3 , $J = 7$); 4.82, 4.94 (AB, 2 H, $J = 2$); 6.80–7.50 (m, 9 H_{arom}) | ^a Isolated pure product, recrystallised from R²OH. Table 2. 4,5-Dihydroisoxazole Derivatives 5 and 6 Prepared | Prod-
uct | Reaction
Time (h),
Temp. (°C) | Yield ^a
(%) | mp
(°C) | Molecular
Formula ^b | IR (nujol) v(cm ⁻¹) | 1 H-NMR (CDCl ₃ /TMS) c δ , J (Hz) | |-----------------|-------------------------------------|---------------------------|---------------------------|---|---------------------------------|---| | 5a ^d | 5, 10 | 65 | 82
(MeOH) | C ₁₃ H ₁₃ NO ₅ | 1755, 1730, | 3.79 (s, 3H, OCH ₃); 3.85 (s, 3H, OCH ₃); 4.88, 5.10 (AB, | | 5d | 8, 100 | 70 | 110 | (263.3) (263.3) (263.3) (263.3) (263.3) (263.3) (263.3) (263.3) (263.3) (263.3) (263.3) (263.3) (263.3) (263.3) (263.3) (263.3) (263.3) | 1740, 1730, | 2H, $J = 5$); 7.25 (m, 5H _{arom})
3.71 (s, 3H, OCH ₃); 3.84 (s, 3H, OCH ₃); 5.10 (d, 1H, J | | 5f | 5, 100 | 75 | (MeOH)
110 | (313.3)
C ₁₃ H ₁₂ CINO ₅ | 1635
1755, 1730, | = 4.5); 5.71 (d, 1H, <i>J</i> = 4.5); 7.10-8.30 (m, 7H _{arom})
3.79 (s, 3H, OCH ₃); 3.85 (s, 3H, OCH ₃); 4.88 (d, 1H, <i>J</i> | | 5g | 5, 100 | 76 | (MeOH)
141
(MeOH) | (297.7)
C ₁₄ H ₁₃ NO ₇ | 1590
1740, 1710, | = 5); 5.08 (d, 1H, <i>J</i> = 5); 7.10–7.40 (m, 4H _{arom})
3.81 (s, 6H, OCH ₃); 4.78 (d, 1H, <i>J</i> = 4.5); 5.02 (d, 1H, <i>J</i> | | 6a | 1, 20 | 75 | $108-109$ (C_6H_6) | (307.3)
$C_{12}H_{13}NO_5$ | 1630
3510, 1720 | = 4.5); 5.95 (s, 2H, OCH ₂ O); 6.70 (m, 3H _{arom})
3.10 (s, 1H, OH); 3.68 (s, 3H, OCH ₃); 3.88 (m, 2H); 4.66 | | 6b | 1, 20 | 73 | (C_6H_6) 118 (C_6H_6) | $C_{13}H_{15}NO_6$ | 3505, 1705,
1615 | (m, 2H); 7.32 (s, 5H _{arom})
2.87 (s, 1H, OH); 3.69 (s, 3H, OCH ₃); 3.81 (s, 3H, OCH ₃);
3.89 (m, 2H); 4.62 (m, 2H); 6.8–7.2 (m, 4H _{arom}) | a Yield of recrystallized product. The structure of compounds **6** was assigned on the basis of IR-spectrometric data: $v = 1705-1720 \,\mathrm{cm}^{-1}$ (C=O of a conjugated ester); the carbonyl stretching frequencies for compounds **5** are $v = 1740-1755 \,\mathrm{cm}^{-1}$ (ester group at C-5) and $v = 1710-1730 \,\mathrm{cm}^{-1}$ (conjugated ester group at C-3) (Table 2); for compound **4a**, these stretching frequences are $v = 1740-1760 \,\mathrm{cm}^{-1}$. The structure of compounds **6** is confirmed by spindecoupling experiments with the H-4 and H-5 signals of **6a** (CH₂OH gave a singlet) and on the CH₂OH signal (H-4 and H-5 gave an AB system). The procedure reported here demonstrates the ease of performance of the reaction. With R¹ = aryl, the yields are higher than those obtained by the previous methods. ^{9,10} When diethylamine was used as base, ⁸ products **4** could not be obtained, the 3-alkoxycarbonyl group being converted into an amide group. ## 4-Substituted 3,5-Bis(alkoxycarbonyl)-4,5-dihydroisoxazole 2-Oxides 4; General Procedure: To molecular sieves (4 Å, powder; 5 g) is added, at 0-5 °C, the aldehyde 1 (10 mmol) and then, dropwise and with stirring, *i*-PrNH₂ (0.9 g, ^d ¹³C-NMR (20.115 MHz, CDCl₃): δ [J(Hz)] = 52.9 (q, J = 148.5); 53.1 (q, J = 148.5); 56.6 (dd, J = 139, 3.3, C-4); 87.8 (dd, J = 158.4, 3.3, C-5); 127.5, 128.6, 129.5, 136.9 (C_6 H₅); 153.3 (dd, J = 6.5, C-3); 159.8, 169.0 (C=O). 15 mmol). The mixture is left at room temperature for 3 h. Excess *i*-PrNH₂ is then removed under reduced pressure. A solution of methyl or ethyl nitroacetate (22 mmol) in Et₂O/R²OH (1:1, 8 mL) is added dropwise at 0 °C, with stirring, and the mixture is refluxed for 6 h. Molecular sieves are separated by filtration through a celite layer, and washed with CH₂Cl₂ (2 × 20 mL). The product 4 is obtained by evaporation of the filtrate and recrystallization of the residue from R²OH. ## 4-Substituted 3,5-Bis(alkoxycarbonyl)-4,5-dihydroisoxazoles 5; General Procedure: To a solution of the N-oxide 4 (10 mmol) in dioxane (15 mL) is added trimethyl phosphite (1.55 g, 12.5 mmol) under a well ventilated hood. The mixture is refluxed for the appropriate time (Table 2). After removal of the solvent under reduced pressure, the residual oil is crystallized from MeOH. ## 4-Aryl-5-hydroxymethyl-3-methoxycarbonyl-4,5-dihydroisoxazole 2-Oxides 6a, b: To a stirred solution of the N-oxide 4a, b (10 mmol) in CH_2Cl_2 (20 mL) is added a solution of NaBH₄ (500 mg, 13 mmol) and TEBA (250 mg, 1.1 mmol) in H_2O (4 mL) and stirring is continued for 1 h at room temperature. Excess NaBH₄ is destroyed by addition of 1 M aqueous HCl (3 mL). The mixture is transferred to a separatory funnel, the Satisfactory microanalyses obtained: $C \pm 0.3$, $H \pm 0.2$, $N \pm 0.23$. Exceptions: **4f** (C - 0.70), **4k** (C + 0.53), **4o** (C - 0.62). Recorded on a Bruker WP 80 spectrometer. ^d Exact Mass ($C_{13}H_{13}NO_6$): calc. 279.0743, found 279.0736. ¹³C-NMR (20.115 MHz, CDCl₃/TMS): δ [J(Hz)] = 52.7 (q, J = 148.5); 52.8 (dd, J = 139, 3.3, C-4); 53.3 (q, J = 148.5); 78.9 (dd, J = 160.6, 3.3, C-5); 109 (d, J = 6.6, C-3); 127.1, 129.0, 129.6, 139.0 (C_6H_5); 158.8, 168.8 (C=O). ^b Satisfactory microanalyses obtained: $C \pm 0.41$, $H \pm 0.24$, $N \pm 0.1$. Recorded on a Bruker WP 80 Spectrometer. organic phase is separated, and the aqueous layer is extracted with CH₂Cl₂ (10 mL). The combined organic extracts are dried (MgSO₄) and evaporated. The crude product 6 is recrystallized from benzene. Received: 11 December 1987; revised: 2 March 1988 - Coutouli-Argyropoulos, E., Alexandrou, N.E. J. Org. Chem. 1980, 45, 4158. - (2) Jäger, V., Müller, I. Tetrahedron 1985, 41, 3519. Jäger, V., Müller, I., Schohe, R., Frey, M., Ehrler, R., Häfele, B., Schröter, D. Lect. Heterocycl. Chem. 1985, 8, 79. - (3) Kozikowski, A.P. Acc. Chem. Res. 1984, 17, 410. - (4) Curran, D.P., Scanga, S.A., Fenk, C.J. J. Org. Chem. 1984, 49, 3474. - (5) Curran, D.P., Fenk, C.J. J. Am. Chem. Soc. 1985, 107, 6023. - (6) Nielsen, A. T., in: The Chemistry of the Nitro and Nitroso Groups, Part 1, Feuer, S. (ed.), John Wiley & Sons, New York 1969, p. 430. Lang, S. A., Jr., Lin, Y.-I., in: Katritzky and Rees Comprehensive Heterocyclic Chemistry, Vol. 6, Potts, K. T. (ed.), Pergamon Press, Oxford, 1984, p. 1. - (7) Shipchandler, M.T. Synthesis 1979, 666. - (8) Dornow, A., Frese, A. Liebigs Ann. Chem. 1952, 578, 113, 122. - (9) Umezawa, S., Zen, S. Bull. Chem. Soc. Jpn. 1963, 36, 1150. - (10) Kaji, E., Zen, S. Chem. Pharm. Bull. 1980, 28, 479. - (11) Zen, S., Kaji, E. Chem. Pharm. Bull. 1974, 22, 477. - (12) Magdesieva, N. N., Sergeeva, T. A., Kyandzhetsian, R. A. Zh. Org. Khim. 1985, 21, 1980; C. A. 1985, 103, 215232. - (13) Clagett, M., Gooch, A., Graham, P., Holz, N., Mains, B., Strunk, J. J. Org. Chem. 1976, 41, 4033. - (14) Metelkina, E.L., Sopova, A.S., Perekalin, V.V., Ionin, B.I. Zh. Org. Khim. 1974, 10, 209; C.A. 1974, 80, 108413. - (15) Rolla, F. J. Org. Chem. 1981, 46, 3909.