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laulimalide: synthesis of the C,—C,s fragment
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Abstract—The C,5—C,g fragment of the paclitaxel-like antimicrotubule agent laulimalide has been synthesized in 12 linear steps
with an overall yield of 14%. The methyldihydropyran ring of the side chain was efficiently prepared using ring-closing olefin
metathesis chemistry and the 19,20-syn-diol was generated through the addition of a mixed vinyl zincate to a protected

a-hydroxyaldehyde. © 2001 Published by Elsevier Science Ltd.

As part of a program aimed at the discovery of new
antimicrotubule agents, we recently identified the
marine macrolide laulimalide (1)' as a new paclitaxel
(Taxol™)-like microtubule-stabilizing agent.? Like pa-
clitaxel, laulimalide induces the dose-dependent reorga-
nization of cellular microtubules, as well as the
formation of abnormal mitotic spindles. It stimulates
the polymerization of tubulin in the absence of polymer-
ization promoters such as glycerol and GTP. Lauli-
malide is a potent inhibitor of cellular proliferation with
IC, values in the low nanomolar range against drug
sensitive cell lines and, in contrast to paclitaxel, it
retains activity against SKVLB-1 cells, a P-glycoprotein
overexpressing multidrug resistant ovarian cancer cell
line, suggesting that it is a poor substrate for transport
by P-glycoprotein. Furthermore, laulimalide triggers
apoptotic cell death. Laulimalide, therefore, represents
a new class of microtubule-stabilizing agent, with activ-
ities that may prove therapeutically useful, placing it

Scheme 1. Retrosynthetic analysis.
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within an exclusive group of compounds that, in addi-
tion to the taxanes, includes only the marine metabo-
lites discodermolide® and eleutherobin®* and the
microbial metabolites the epothilones.®

Considering its potent biological activity and interesting
structure, laulimalide has attracted surprisingly little
interest from synthetic organic chemists. Three groups
have published a total of seven papers describing their
synthetic efforts related to laulimalide,®’ including five
reports of syntheses of the C,—C,, portion of the
macrocyclic ring and two reports of a preparation of
the C,,—C,, fragment of the molecule.®** In addition,
we recently completed a hetero Diels—Alder approach
to the preparation of the C,,—C,4 side chain of lauli-
malide,® and in the adjoining paper we describe a
synthesis of the C,—C,, segment of laulimalide.’ In this
communication, we would like to describe our approach
to the synthesis of the C,5—C,g portion of laulimalide.
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Our retrosynthetic analysis is shown in Scheme 1. Con-
sidering the lability of the epoxide group, we envisioned
its incorporation late in the synthesis. Our strategy
involves dividing the C,s~C,; fragment (2) into two
pieces, 3 (C,s—C,,) and 4 (C,,—C,g), which we proposed
to couple via the chelation-controlled addition of a
vinyl anion generated from 4 to the aldehyde of 3.'°
Fragment 3 was to be prepared in a straightforward
manner from commercially available (S)-(-)-B-
hydroxy-y-butyrolactone 5,'! while fragment 4 was to
be constructed from (R)-glycidol 6, using ring-closing
olefin metathesis chemistry.'?

The synthesis of fragment 3 is outlined in Scheme 2.
Treatment of 5 with PMB-trichloroacetimidate'® and
BF;-OEFEt, provided the protected lactone. Reduction
with one equivalent of DIBAL gave hemiacetal 7
(99%), which was treated directly with methyl
(triphenylphosphoranylidene)acetate in benzene, yield-
ing unsaturated ester 8 in 90% yield. The protection of
the primary alcohol as its TBS ether (99%) was fol-
lowed by reduction of the ester (97%), and protection
of the resulting alcohol as its benzoate ester, giving
fully protected 9 in 82% yield. Finally, treatment of 9
with TBAF provided a primary alcohol (63%) that was
oxidized to give fragment 3 (88%).

The synthesis of fragment 4 (Scheme 3) started with the
copper(I)-catalyzed addition of isopropenylmagnesium
bromide to trityl-protected (S)-glycidol 10, to give a
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secondary alcohol (99%) that was converted to its allyl
ether 11 with allyl bromide/KH (99%). After cleavage
of the trityl group with TFA in CH,Cl, (71%), the
primary alcohol was oxidized to aldehyde 12 (92%).
The diene aldehyde was then subjected to RCM condi-
tions using Grubbs’ catalyst,!? cleanly providing ring-
closed product 13 in 66% yield. Vinyl iodide 4 was then
obtained using Takai’s iodoolefination reaction,'* albeit
in low yield (48%) after purification from a 6:1 mixture
of trans:cis isomers.

Completion of fragment 2 (Scheme 4) was accom-
plished using the zinc-catalyzed, chelation-controlled
addition of a vinyl anion formed from 4 to the aldehyde
of compound 3.!° The sequential transmetallation of
vinyl iodide 4 with tzert-BuLi followed by ZnMe,
yielded a mixed zincate species (i.e. 14), which was then
added to a mixture of 3 and ZnMe,. While the reaction
yielded exclusively the syn-diol stereochemistry (see
below), the desired product 15 was unexpectedly con-
taminated with approximately 25% of methyl adduct
16, presumably resulting from the transfer of methyl
from a zincate species formed from excess rert-Buli
and ZnMe,."> Attempts to reduce the amount of zert-
BuLi or to perform the initial halogen—-metal exchange
with n-BuLi led to lower yields and more complex
mixtures. Because 15 and 16 were difficult to separate
chromatographically, the mixture was treated with
TIPS triflate, followed by DIBAL to give a mixture of
primary alcohols that were chromatographically sepa-

OH oTBS
def 50 g, h
— . —2 3

Scheme 2. (a) PMB-trichloroacetimide, BF;~OEt,, CH,Cl,, —=78°C, 1 h (76%); (b) DIBAL, toluene, —78°C, 5 min (99%); (c)
Ph,P=CHCO,Me, PhH, reflux, 1 h (90%); (d) TBSCI, Et;N, DMAP, CH,Cl,, 2 h (99%); (e) DIBAL, toluene, —78°C, 2 h (97%);
(f) PhCOCl, pyridine, DMAP, CH,Cl,, rt, 16 h (82%); (g) TBAF, THF, rt, 2 h (63%); (h) (COCl),, DMSO, —78°C; then Et;N,

—78°C to rt (88%).
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Scheme 3. (a) CH;C(MgBr)=CH,, Cul, THF, —-30°C, 1 h (99%); (b) KH, allyl bromide, THF, 30 min (99%); (c) 10% TFA in
MeOH, rt, 3 h (65%); (d) (COCl),, DMSO, -78°C; Et;N, —78°C to rt (92%); (e) Cl,(PCy;),Ru=CHPh, CH,Cl,, rt, 2 days (66%);
(f) CHI; (3 equiv.), CrCl, (9 equiv.), THF, 0°C, 3.5 h (6:1, trans:cis; 48% trans).
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Scheme 4. (a) tert-BuLi (1.6 equiv.), ether, —78°C, then ZnMe,; (b) 3, ZnMe,, ether (60%, 3:1 ratio of 13:14); (c) TIPSOTT,
2,6-lutidine, CH,Cl, (67%); (d) DIBAL, CH,Cl,, —78°C (82%); (e) (COCIl),, DMSO, -78°C; Et;N, —-78°C to rt (99%).
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rable, giving pure 17. Compound 2!° was then obtained
by oxidation of the alcohol to an aldehyde.

The stereochemistry of the newly introduced C,, chiral
center was confirmed by a-methoxy-a-phenylacetic acid
(MPA) ester analysis.!” Esterification of separate
aliquots of the 15/16 mixture with (R)-MPA and (S5)-
MPA using DCC as the coupling reagent led to the
corresponding diastereomeric (R)- and (S)-esters,
respectively, which were analyzed by 'H NMR spec-
troscopy. Although complicated by significant signal
overlap, several diagnostic NMR signals could be
assigned and used for the stereochemical determination.
Specifically, when '"H NMR spectra recorded for the
(R)- and (S)-MPA esters were compared, it could be
clearly observed that the H,, and H,, olefinic protons
were shifted more upfield in the spectrum recorded for
the (S)-MPA ester and the signals assigned to the H,,
and H,, olefinic protons appeared more upfield in the
spectrum of the (R)-MPA ester. Using the model elabo-
rated by Trost,'” these results support the assignment of
the C,, chiral center as S, confirming the formation of
the desired syn-diol geometry.

In summary, we have reported a new synthesis of the
C,s—C,5 fragment of the microtubule-stabilizing agent
laulimalide. Our approach utilized RCM chemistry for
the preparation of the terminal dihydropyran ring and
a Zn-catalyzed addition of a vinyl anion to an o-
alkoxyaldehyde for the coupling of fragments 3 and 4
and the formation of the syn-diol. Further work toward
the synthesis of laulimalide is underway.
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