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Coinage metal hydrides continue to attract attention because
of their interesting structural and physical properties, as well
as for their role as reagents or intermediates in the trans-
formation of organic substrates. For example, several copper
hydride compounds have been structurally characterized and
developed as catalysts for 1,4 reduction reactions of enones
and for hydrocupration of alkynes.[1] In contrast, whereas
their heavier congeners have been implicated as reactive
intermediates in oxidation and other reactions,[2] and have
been characterized in the gas phase,[3] as well as by matrix
isolation experiments,[4] few silver and gold hydride com-
pounds have been synthesized and structurally characterized
by X-ray crystallography.[5]

We have been examining the role of coinage-metal cluster
compounds in C�C bond coupling reactions,[6] click chemis-
try,[7] and C�X bond activation[3, 8] of organic substrates. In our
work, methods based on mass spectrometry (MS) are
employed to explore cluster formation and reactivity, and to
direct condensed phase synthesis and characterization of
novel clusters.[9] As part of this cluster chemistry program, we
became interested in extending the method of generating
bis(phosphino)-protected gold nanoclusters by sodium bor-
ohydride reduction of gold salts[10] to generate related silver
nanoclusters.[11] Herein, we report on the serendipitous MS-
based discovery of a novel silver hydride cluster, [Ag3HClL3]

+

(L = bis(phosphino) ligand), which has prompted its mass-
spectrometry-directed synthesis[12] and X-ray and neutron
crystallographic structural characterization, which reveal

a {Ag3(m3-H)(m3-Cl)}+ core structure.[13, 14] The gas-phase
reactivity of this cluster is also explored.

Electrospray ionization mass spectrometry (ESI-MS)
analysis of methanol/chloroform solutions of silver(I) tri-
fluoroacetate [AgI(tfa)] that had been treated with sodium
borohydride in the presence of 1,1-bis(diphenylphosphino)-
methane (designated hereafter as L) showed evidence of the
formation of silver hydride cluster cations (Figure 1; see also
the Supporting Information, Figure S1), which, based on
isotope patterns (Figures S2 and S3) and high resolution
accurate mass measurements (Table S1), are formulated as:
[Ag3HL3]

2+, [Ag3HClL3]
+, [Ag3Cl2L3]

+ and [Ag10H8L6]
2+. The

species [Ag3H2L3]
+ was not observed in any of the spectra

recorded. Replacing NaBH4 with sodium borodeuteride
confirmed that NaBH4 is the source of the hydride in the
clusters (for example, formation of [Ag3DL3]

2+ and not
[Ag3HL3]

2+; Figures S4 and S5).
The observation of abundant silver hydride cluster cations

by ESI-MS encouraged us to refine the condensed-phase
synthetic route (Supporting Information, Method A) to allow
the isolation of a crystalline salt suitable for characterization
by IR and 1H NMR spectroscopy (Figures S6 and S7, as well
as supporting text), as well as structural determination by
single-crystal X-ray diffraction and neutron diffraction. The
presence of the abundant trinuclear silver hydride cluster
ligated by the trifluoroacetate (tfa) anion, [Ag3H(tfa)L3]

+

(Figure 1), in the MS studies led us to use a silver salt with
a non-coordinating anion. Indeed, treatment of silver(I)
tetrafluoroborate with sodium borohydride followed by
crystallization (Supporting Information, Method B) gave
rise to three distinct crystalline morphologies that were
revealed by X-ray crystallographic analysis to be: 1) [Ag3-
{(Ph2P)2CH2}3(m3-Cl)(m3-H)]BF4, (1; Figure 2),[15] 2) [Ag3-
{(Ph2P)2CH2}3(m3-Cl)2]BF4 (2 ; Figure S9), and 3) NaB-
(OCH3)4.

[16]

The structure of 1 (Figure 2) features a triangular Ag3 core
surrounded by three bidentate bisphosphine ligands to give
three Ag2P2C five-membered rings. The Ag3 array is capped
by a m3-chloride on one side and one m3-H on the other side.
The Ag···Ag distances within the triangular Ag3 array of
2.8988(2) � are suggestive of significant argentophilic inter-
actions. This structure is comparable to previously synthe-
sized and structurally characterized clusters of the halides
[Ag3X2L3]

+, X = Cl, Br, I.[17] However, a marked difference is
the close proximity of the silver atoms of the trinuclear silver
core to the hydride (Figure 2; Ag–H distance of 1.91(2) �) in
comparison to the chloride (Ag–Cl distance of 2.859(1) �).
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This Ag–H distance is comparable to that asserted in the
diselenophosphate-protected cuboctahedral silver hydride
described by Liu and co-workers, which has a Ag4(m4-H)(m3-
Ag)4 core and claims Ag–H distances from 1.8723(13) to
2.0306(17).[5b] The Laue neutron diffraction[18] study reported
here (Figure 2; see also the Supporting Information) defin-
itively locates the nuclear position of the hydride atom,
despite the considerable electron density associated with the
three silver atoms.

We next turned our attention to exploring the gas phase
chemistry of the silver cluster cation [Ag3HClL3]

+ (m/z 1513).
Its unimolecular chemistry was studied by collision-induced
desorption (CID; Figure S10a).[19] Loss of one or two ligands
to generate [Ag3HClL2]

+ [Eq. (1)] and [Ag3HClL]+ [Eq. (2)]
were the main fragmentation pathways (Figure S8a).
[Ag2ClL]+, [Ag2ClL2]

+, and [AgL]+ were observed as very
minor product ions (relative intensities of< 1%). To establish
whether these are formed through secondary fragmentation
of [Ag3HClL2]

+ and [Ag3HClL]+, each of these ions were
mass selected and subjected to a further stage of CID in MS3

experiments. The CID of [Ag3HClL2]
+ (Figure S10b) gener-

ates [Ag3HClL]+ as the dominant species [Eq. (3)] with
[Ag2ClL]+ and [Ag2ClL2]

+ as the next most abundant
products [Eqs. (4) and (5)]. A relatively small peak is

observed at 983 m/z, which corresponds to the loss of neutral
AgCl from the parent to yield [Ag2HL2]

+ [Eq. (6)], which is
less intense than the fragmentation that arises from the loss of
AgH [Eq. (5)]. The reductive elimination of HCl [Eq. (7)] is
also observed; the CID of [Ag3HClL]+ (Figure S10c) gener-
ated [Ag2ClL]+ and [AgL]+ as the sole ionic products [Eqs. (8)
and (9)].

Finally, the bimolecular chemistry of [Ag3HClL3]
+ was

examined by subjecting it to ion–molecule reactions.[20] It is
unreactive towards a range of neutral molecules, such as

Figure 2. ORTEP-3 representations of a) the cation present in [Ag3-
{(Ph2P)2CH2}3(m3-Cl)(m3-H)]BF4 and b) the distorted trigonal bipyrami-
dal Ag(m3-Cl)(m3-H) core, where the phenyl groups are omitted for
clarity. Displacement ellipsoids set at the 20% probability level. Ag(1)–
Ag(1) 2.8998(4) �, Ag(1)–Cl 2.859(1) �; Ag(1)–P(2) 2.4421(9) �,
Ag(1)–H 1.91(2) �. The hydrogen atom is clearly established by
a neutron Laue diffraction study and is freely refinable.

Figure 1. Full LTQ ESI-MS of silver clusters synthesized by solution
phase Method A (see the Supporting Information). a) Immediately
after addition of borohydride. b) After 24 h reaction time. The m/z
values shown are of the most intense peak in the cluster. Solutions
containing condensed phase silver clusters were diluted to 50 mm in
methanol.
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2-cyclohexen-1-one, 2,3-butanedione, 3-hexyne, allyl iodide,
methanol, and water, several of which have been shown to
react with the bare silver hydride cluster cations, Agn�1H

+

(n = 3 and 5).[3a, 6a] It is likely that the bulky electron-rich
phosphine ligands provide some degree of steric protection
towards the approach of the substrates to the silver hydride
{Ag3H} cluster core (Figure S11). Indeed, this is consistent
with the fact that the crystalline material (Figure S12)
collected from the synthesis of 1 following Method B can be
stored under ambient conditions for at least 18 days, and
when redissolved in methanol, the dominant species observed
in the ESI mass spectrum of this solution corresponds to
[Ag3{(Ph2P)2CH2}3(m3-Cl)(m3-H)]+ (Figure S13).

In conclusion, mass spectrometry continues to be a power-
ful tool to explore cluster formation and reactivity, and to
direct the synthesis of novel materials.[9, 12,21] Nanoclusters
comprised of only a few metal atoms are particularly suitable
for MS-based studies. Herein, we have shown that treatment
of silver salts with sodium borohydride in the presence of
a bis(phosphino) bidentate ligand yields silver hydride
clusters rather than leading to the all-metallic clusters
observed for related reductions of gold salts.[10] Further
work is underway to study the formation, structures, physical
properties, and reactions of other silver hydride nanocluster
cations. The [Ag10H8L6]

2+ cluster is particularly intriguing as
a potential model for hydrogen storage.[22]

Experimental Section
Synthesis of bisdiphenylphosphino bridged silver hydride clusters
(Figure 1): Silver hydride clusters were synthesized in the condensed
phase. Silver(I) trifluoroacetate (2.2 mg, 0.010 mmol) and bisdiphe-
nylphosphinomethane (3.8 mg, 0.010 mmol) in 20 mL MeOH/CHCl3

(1:1) were added to a 25 mL quickfit Erlenmeyer flask equipped with
a magnetic stirbar and stopper. All reagents were kept in the dark,
and the flasks covered in foil. A freshly prepared solution of sodium
borohydride (2.0 mg, 0.050 mmol) was then added, resulting in a color
change from colorless to light yellow, thus indicating the formation of
silver clusters.

Synthesis of crystalline (1) and (2): Silver (I) tetrafluoroborate
(12.64 mg, 0.650 mmol) and bisdiphenylphosphinomethane (25 mg,
0.650 mmol) were added to a degassed solution of chloroform/
methanol (1:1; ca. 3 mL) in a Schlenk tube covered in foil. The
addition of sodium borohydride (12.3 mg, 0.325 mmol) resulted in
a yellow solution, which was left at room temperature for 1 h with
intermittent shaking of the contents. The solution was then frozen,
layered with dry diethyl ether (ca. 10 mL), and allowed to stand
undisturbed for 3 days to yield crystals (Figure S12) of [Ag3-
{(Ph2P)2CH2}3(m3-Cl)(m3-H)]BF4·0.5CHCl3 (1) and crystals of [Ag3-
{(Ph2P)2CH2}3(m3-Cl)2]BF4 (2), both suitable for X-ray crystallogra-
phy. A larger crystal, suitable for neutron diffraction, was manually
isolated from this crystal mixture.

Mass spectrometry: Mass spectra were recorded using a Finnigan
hybrid linear triple-quadrupole (LTQ) Fourier transform ion cyclo-
tron resonance (FTICR) mass spectrometer. The silver clusters
prepared in the condensed phase were introduced into the mass
spectrometer via a syringe pump set at a flow rate of 5 mLmin�1 to the
ESI capillary. The typical ESI conditions used, for optimum intensity
of the target ions, were: spray voltage, 4.2–5.0 kV, capillary temper-
ature, 250 8C, nitrogen sheath gas pressure, 5 (arbitrary units),
capillary voltage 15 V. Selected ions were transferred to the FTICR
cell for accurate mass measurement with the use of selected ion

monitoring (SIM) and selected reaction monitoring (SRM) to obtain
the most reliable results.

Crystal data for 1: C75�5H67.5BCl2.5F4P6Ag3 M = 1599.98, T=

130.0(2) K, l = 0.7107 �, cubic, space group Pa�3 a = 24.1128(3) �,
V= 14019.8(3) �3, Z = 8, 1cald = 1.516 mgM�3 m(Mo-Ka) 1.116 mm�1,
X-ray: F(000); 6676, crystal size 0.39 � 0.35 � 0.32 mm. 52469 reflec-
tions measured, 5359 independent reflections (Rint = 0.0595), the final
R was 0.041 [I> 3s(I)] and wR(F) (all data) was 0.075. Laue Neutron
F(000) = 2900, crystal size 0.6 � 0.8 � 1.0 mm. 46 000 reflections mea-
sured, 1147 independent reflections (Merging R = 15(7)%, 832 I>
3s(I) used in refinement, the final R was 0.096 weighted = 0.090 for
217 parameters.
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