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Abstract: Both 7-deoxy-7ct-azidopaclituxel (6) and 7-daoxy-A6,7-paclituxel (4) can be prepared from paclitaxel-7-0- 
triflate (2b). Oxidation of 7-deoxy-A6,7-paclitaxel with dioxirane yields the epoxide 7, while oxidation with osmium 
tetroxide yields 6otohydroxy-7-epipaclitaxel (9), and acylation of this gives the 6ot-acyioxy-7-epipaclitaxel derivatives 
lla-d. No compound was as effective at promoting tubulin assembly as paclitaxel, but most stabilized polymer as 
well as or better than paelitaxel. Compounds 4, 6, 7, 9, and l id  differed little from paclitaxel in their cytotoxicity 
for human Burkitt lymphoma CA46 cells. 

The novel diterpenoid paclitaxel (Taxol ®) (1), originally isolated 1 from Taxus brevifolia, continues to be 

an exciting target for drug development, both because of its clinical activity 2 and because of its unusual and 

complex chemistry. 3 Specific transformations of the ring system have included modifications at C-2, 4 at C-4, 5 

and at C-7,6 as well as contraction of rings A and B, 7 oxetane opening, 7,8 and other conversions. 9 

As a part of our continuing studies on the chemistry of paclitaxel, we have had a long-standing interest in 

transformations of the C-7 hydroxyl group, 6,10 and we now report our studies on transformations of this group 

leading to the synthesis of 7-deoxy-7ct-azidopaclitaxel, 7-deoxy-A6,7-paclitaxel, and various analogs derived 

from the latter compound. The synthesis of 7-deoxy-A6,7-paclitaxel has recently and independently been 

reported by Chen et al.ll and by Johnson et al. 12 

In our earlier studies on paclitaxel we prepared the 7-mesylate derivative 2a, but this was inert to 

treatment with base. 10 Reasoning that the use of a better leaving group at C-7 might lead to reaction at this 

unreactive neopentyl-type position, we prepared the 7-O-triflate of 2'-(t-butyldimethylsilyl)paclitaxel (2b). 

Treatment of 2b with 1,8-diazabicyclo(5,4,0)undec-7-ene (DBU) at 40°C in dry dichloromethane gave the key 

intermediate 2'-(t-butyldimethylsilyl)-7-deoxy-A6,7-paclitaxel (3) in 86% yield, together with 14% 7-deoxy- 

A6,7-paclitaxel (4). Deprotection of 3 with methanolic HCI yielded the desired 7-deoxy-A6,7-paclitaxel (4) in 

50% yield, 13 together with an oxetane ring-opened product (Scheme 1). 

The triflate 2b could also be converted to a substitution product under appropriate conditions. Reaction 

of 2b with NaN3 in DMF yielded the 7ot-azido-7-deoxypaclitaxel derivative 5, together with lesser m o u n t s  of 

the dehydro derivative 3 and both paclitaxel epimers at C-7 (presumably arising either from traces of water in the 

solvent or from attack of azide ion on sulfur). Deprotection of 5 with pyridinium hydrofluoride gave 7ot-azido- 

7-deoxypaclitaxel (6) 14 (Scheme 2). 
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Reagents: (a) Ac20/py, then CH3SO2CI/py; (b) ButMe2SiCI/Imidazole, 60 °, lh, then CF3SO2CI, 
DMAP, 25 °, 2h, 92%; (c) 2b, DBU, dry CH2CI2, 40 °, 4 h; (d) HCI/MeOH, 25 °, 1.5 h, 50%. 
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Reagents: (a) NAN3, DMF, 40 °, 24 h, 49%; (b) HF.py, 25 °, 1 h, 48% 

Further conversions of the dehydropaclitaxel derivative were effected under oxidative conditions 

(Scheme 3). Oxidation of 4 with mCPBA gave only trace amounts of the epoxide 7, but oxidation with 

dimethyldioxirane gave the epoxide 7 in 43% yield. The structure of 7 was confirmed by its spectroscopic 

data, 15 and its stereochemistry was confirmed by NOE data, which showed that the C-6 and C-7 proton signals 

were enhanced when the C-3 proton was irradiated, and the signal at C-6 was enhanced when the C-5 proton 

was irradiated. Attack of dioxirane on 4 thus occurs from the less hindered 13 face of the ring. 

Oxidation of 4 with osmium tetroxide at room temperature yielded 6o~-hydroxy-7-epipaclitaxel (9), 16 

and oxidation of protected 3 under the same conditions also proceeded smoothly to give the 2' protected diol 8. 

The stereochemistry of hydroxylation was from the face opposite the alkoxy group at C-5, as observed for 2- 

cyclohexen-l-ol. 17 Acylation of 8 under mild conditions proceeded exclusively on the 6~-hydroxyl group to 

give the esters 10a-  10d, and deprotection with tetrabutylammonium fluoride gave the 6~-acyloxy-7- 

epipaclitaxel analogs l l a  - l i d  (Scheme 3). 

The biological activities of compounds 4, 6, 7, 9, and l l a  - l i d  were determined in both CA46 cell 

culture and in a tubulin-assembly assay (Table). None of the analogs was as effective at promoting tubulin 
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Reagents: (a) (CH3)2C02, acetone, 25 °, 3 days, 43%; (b) OsO 4, NMO, 25 °, 9 h, 71%; 
(c) RCOCI, DMAP, CH2CI 2 , 25 °, 4 h, 90-98%; (d) TBAF, THF, 0 °, 15 min, 80-95%. 

assembly as paclitaxel (e.g. considering the data for 40 I.tM solutions at 0°C). However, all the analogs with the 

exception of 9 and l l c  stabilized polymerized tubulin as well as or better than paclitaxel; compounds l i b ,  

l l c ,  and l i d  are particularly interesting in that they have negligible ability to promote tubulin polymerization, 

but they stabilize the polymer once formed. Compounds 4, 6, 7, 9, and l l a  differed little from paclitaxel in 

their cytotoxicity towards human Burkitt lymphoma CA46 cells, while l i b  - l i d  were distinctly less cytotoxic. 

The apparent divergence of the tubulin and cytotoxicity data is noteworthy but as yet unexplained. 

Table: Cytotoxicities and Effects of Analogs on Tubulin Polymerization a 

Compound Cytotoxicity Concentration 
IC50 values in tubulin assays 
(~tM) with 
CA46 cells 

Tubulin Assembly Activity Disassembly 
Maximum rate of assembly: Maximum rate: 
AA35o munit/min AA3so 

munit/min 
0°C 20°C 37°C 

None 
Paclitaxel (1) 
Paclitaxel (1) 
4 
a 
7 
9 
l l a  
l i b  
l l c  
l i d  

0 3.7 220 400 
0.01 10pM 2.9 840 NM 110 

40l.tM 100 430 NM 70 
0.03 40~M 2.0 330 NM 60 
0.01 401.tM 0 180 NM 57 
0.02 40pM 1.7 580 NM 73 
0.03 40~tM 2.1 640 NM 140 
0.02 40txM 0 370 NM 70 
0.05 401.tM 0 6.6 220 47 
0.2 40pM 0 2.9 270 120 
0.07 40uM 0 7.2 220 45 

a. Tubulin data are the average of three determinations; cytotoxicity data are the average of two. 
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