Contents lists available at ScienceDirect

Fitoterapia

journal homepage: www.elsevier.com/locate/fitote

New terpenoid glycosides obtained from *Rosmarinus officinalis* L. aerial parts

Yi Zhang ^a, Tiwalade Adegoke Adelakun ^{b,c}, Lu Qu ^{b,c}, Xiaoxia Li ^{b,c}, Jian Li ^{b,c}, Lifeng Han ^{a,b,c}, Tao Wang ^{a,b,c,*}

^a Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China

^b Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China

^c Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China

ARTICLE INFO

Article history: Received 26 July 2014 Accepted in revised form 23 August 2014 Available online 6 September 2014

Keywords: Rosmarinus officinalis Terpenoid glycosides Normonoterpenoid Diterpenoid Triterpenoid

1. Introduction

Rosmarinus officinalis L. (Lamiaceae), popularly known as Rosemary in English and 迷迭香 in Chinese, is a shrub widely distributed in Europe, Asia, and Africa. And one of its elective growing areas is the Mediterranean basin where spontaneous plants are diffusely distributed. Rosemary has been traditionally used as a culinary spice, mainly to modify or to improve food flavors as well as in folk medicine, being a greatly valued medicinal herb [1]. Nowadays, it is one of the most appreciated sources of natural bioactive compounds which are of special interest in functional food industries. In fact, this plant exerts various pharmacological activities, such as hepatoprotective [2], antibacterial [3], antithrombotic [4], antiulcerogenic [5], diuretic [6], antidiabetic [7], antinociceptive [8], anti-inflammatory [9], antitumor [10], and antioxidant [11] activities.

ABSTRACT

Five new terpenoid glycosides, named as officinoterpenosides A_1 (1), A_2 (2), B (3), C (4), and D (5), together with 11 known ones, (15,45,55)-5-exo-hydrocamphor 5-O- β -D-glucopyranoside (6), isorosmanol (7), rosmanol (8), 7-methoxyrosmanol (9), epirosmanol (10), ursolic acid (11), micromeric acid (12), oleanolic acid (13), niga-ichigoside F_1 (14), glucosyl tormentate (15), and asteryunnanoside B (16), were obtained from the aerial parts of *Rosmarinus officinalis* L. Their structures were elucidated by chemical and spectroscopic methods (UV, IR, HRESI-TOF-MS, 1D and 2D NMR). Among the new ones, 1 and 2, 3 and 4 are diterpenoid and triterpenoid glycosides, respectively; and 5 is a normonoterpenoid. For the known ones, 6 was isolated from the *Rosmarinus* genus first, and 15, 16 were obtained from this species for the first time.

© 2014 Elsevier B.V. All rights reserved.

The two types of compounds that are mainly responsible for the biological activities of this plant are the volatile fraction and the phenolic constituents. The derived essential oils are mainly used in local application for their balsamic, antispasmodic and anti-inflammatory activities [12]. The phenolic constituents are mainly constituted by three groups: phenolic diterpenes of an abietic acid related structures (carnosol, carnosic acid, rosmadial or rosmanol, etc.), and flavonoids (genkwanin, cirsimaritin) derived from two common flavones: apigenin and luteolin, and phenolic acids (rosmarinic acid) [13]. Some scientists have observed that among these constituents, carnosic acid, carnosol, and abietane diterpenes are the main antioxidant compounds present in Rosemary [14]. Are there any other active terpenoids in the plant? And then, the phytochemical research for it was developed. As a result, 16 terpenoids including five new ones, officinoterpenosides A_1 (1), A_2 (2), B (3), C (4), and D (5), together with 11 known isolates, (1S,4S,5S)-5-exohydrocamphor 5-O- β -D-glucopyranoside (**6**) [15], isorosmanol (7) [16], rosmanol (8) [17], 7-methoxyrosmanol (9) [17], epirosmanol (10) [18], ursolic acid (11) [19], micromeric acid (12) [20], oleanolic acid (13) [21], niga-ichigoside F₁ (14) [22],

^{*} Corresponding author at: Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China. Tel./fax: +86 22 5959 6163.

glucosyl tormentate (**15**) [23], and asteryunnanoside B (**16**) [24] were isolated and identified. Among the new ones, **1** and **2**, **3** and **4** are diterpenoid and triterpenoid glycosides, respectively; and **5** is a normonoterpenoid. This paper deals with the isolation and structure elucidation of the new compounds.

2. Experimental

2.1. General

Optical rotations were measured on a Rudolph Autopol® IV automatic polarimeter. IR spectra were recorded on a Varian 640-IR FT-IR spectrophotometer. UV spectra were obtained on a Varian Cary 50 UV–Vis spectrophotometer. NMR spectra were determined on a Bruker 500 MHz NMR spectrometer at 500 MHz for ¹H and 125 MHz for ¹³C NMR, with TMS as an internal standard. Positive- and Negative-ion HRESI-TOF-MS were recorded on an Agilent Technologies 6520 Accurate-Mass Q-Tof LC/MS spectrometer.

Column chromatographies (CC) were performed on macroporous resin D101 (Haiguang Chemical Co., Ltd., Tianjin, China), Silica gel (74–149 µm, Qingdao Haiyang Chemical Co., Ltd., Qingdao, China), and ODS (50 µm, YMC Co., Ltd., Tokyo, Japan). Preparative HPLC (PHPLC) column (Cosmosil 5C₁₈-MS-II (20 mm i.d. × 250 mm, Nakalai Tesque, Inc., Tokyo, Japan)) were used to purify the constituents. Pre-coated TLC plates with Silica gel GF₂₅₄ (Tianjin Silida Technology Co., Ltd., Tianjin, China) were used to detect the purity of isolates achieved by spraying with 10% aqueous H₂SO₄–EtOH, followed by heating.

2.2. Plant material

The dried aerial parts of *R. officinalis* were collected from Butarie, Rwanda and identified by Dr. Li Tianxiang (The Hall of TCM Specimens, Tianjin University of TCM, China). The voucher specimen was deposited at the Academy of Traditional Chinese Medicine of Tianjin University of TCM (No. 20110910).

2.3. Extraction and isolation

The dried aerial parts of *R. officinalis* (2.5 kg) were refluxed with 95% EtOH. The solvent was evaporated under reduced pressure to yield the 95% EtOH extract (455 g). Then, the extract (379 g) was partitioned in a CHCl₃–H₂O mixture (1:1, v/v) to give both CHCl₃ (269 g) and H₂O (100 g) partitions. Then, the H₂O layer (100 g) was subjected to D101 macroporous resin column chromatography (CC) and eluted with H₂O and 95% EtOH (45 g) eluted fractions were obtained.

The EtOH fraction (36 g) was subjected to normal phase silica gel CC [CHCl₃ \rightarrow CHCl₃-MeOH (100:3 \rightarrow 100:5 \rightarrow 100:7, v/v) \rightarrow CHCl₃-MeOH-H₂O (10:3:1 \rightarrow 7:3:1, v/v/v) \rightarrow MeOH] to yield 11 fractions (Fr. 1–11).

Fraction 7 (5.5 g) was subjected to ODS CC [MeOH-H₂O (20:80 \rightarrow 30:70 \rightarrow 40:60 \rightarrow 50:50 \rightarrow 60:40 \rightarrow 70:30 \rightarrow 100:0, v/v)] to yield 9 fractions (Fr. 7-1–7-9). Fraction 7-5 (1610.0 mg) was also purified by PHPLC [CH₃CN–1% CH₃COOH (18:82, v/v)], as a result, 19 fractions (Fr. 7-5-1–7-5-19) were obtained. Fraction 7-5-6 (36.8 mg) was subjected to PHPLC [CH₃CN–1% CH₃COOH (10:90, v/v)] to offer (15,45,5S)-5-exo-hydrocamphor

5-O- β -D-glucopyranoside (**6**, 3.5 mg). Fraction 8 (5480.0 mg) was subjected to PHPLC through gradient elution [MeOH-H₂O $(30:70 \rightarrow 50:50 \rightarrow 70:30 \rightarrow 100:0, v/v)$] to yield 22 fractions (Fr. 8-1-8-22). Fraction 8-9 (121.6 mg) was purified by PHPLC [CH₃CN-H₂O (11:89, v/v)] to yield officinoterpenoside D (5, 44.0 mg). Fraction 8-21 (70.3 mg) was purified by PHPLC [CH₃CN-H₂O (28:72, v/v)] to yield glucosyl tormentate (15, 3.8 mg). Fraction 9 (10.0 g) was separated by ODS CC $[\text{MeOH-H}_2\text{O} (20:80 \rightarrow 30:70 \rightarrow 40:60 \rightarrow 50:50 \rightarrow 60:40 \rightarrow$ $70:30 \rightarrow 100:0, v/v$ to yield 14 fractions (Fr. 9-1-9-14). Fraction 9-10 (1510.0 mg) was purified by Sephadex LH-20 CC [CHCl₃-MeOH (1:1, v/v)] to yield 8 fractions (Fr. 9-10-1-9-10-8). Fraction 9-10-2 (512.2 mg) was subjected to PHPLC [MeOH-1% CH₃COOH (45:55, v/v)] to obtain 14 fractions (Fr. 9-10-2-1-9-10-2-14). Fraction 9-10-2-11 (85.0 mg) was purified by PHPLC [CH₃CN-1% CH₃COOH (23:77, v/v)] to yield officinoterpenoside C (4, 6.1 mg) and niga-ichigoside F_1 (14, 34.7 mg). Fraction 10 (6.3 g) was subjected to PHPLC through gradient elution [MeOH-H₂O (25:75 \rightarrow 40:60 \rightarrow $60:40 \rightarrow 80:20 \rightarrow 100:0, v/v$] to yield 35 fractions (Fr. 10-1– 10-35). Fraction 10-26 (93.7 mg) was purified by PHPLC [CH₃CN-1% CH₃COOH (16:84, v/v)] to yield officinoterpenoside A₂ (2, 7.1 mg). Fraction 10-27 (756.1 mg) was subjected to Sephadex LH-20 CC (MeOH) to yield 9 fractions (Fr. 10-27-1-10-27-9). Fraction 10-27-3 (217.5 mg) was purified by PHPLC [CH₃CN-1% CH₃COOH (18:82, v/v)] to obtain officinoterpenosides A_2 (2, 10.7 mg) and A_1 (1, 41.2 mg). Fraction 10-31 (198.5 mg) was separated by PHPLC [CH₃CN-1% CH₃COOH (26:74, v/v)] to give 5 fractions (Fr. 10-31-1-10-31-5). Fraction 10-31-2 (14.1 mg) was purified by Sephadex LH-20 (MeOH), and officinoterpenoside B (3, 8.2 mg) was obtained. Asteryunnanoside B (16, 6.3 mg) was isolated from fraction 10-33 (132.4 mg) by PHPLC [CH₃CN-1% CH₃COOH (28:72, v/v)].

The CHCl₃ partition (200 g) of the rosemary extract was subjected to silica gel CC [CHCl₃ \rightarrow CHCl₃–MeOH (100:1 \rightarrow 100:3 \rightarrow 100:5 \rightarrow 100:7, v/v) \rightarrow CHCl₃–MeOH–H₂O (10:3:1 \rightarrow

Table 1	
¹ H and ¹³ C NMR data for 1 in CD ₃ OD.	

No.	δ_{C}	$\delta_{\text{H}} \left(J \text{ in Hz} \right)$	No.	δ_{C}	$\delta_{\text{H}} \left(J \text{ in Hz} \right)$
1	35.8	1.27 (ddd, 3.0, 13.5,	17	22.6	1.18 (d, 6.5)
		13.5)			
		3.31 (m, overlapped)	18	28.5	1.02 (s)
2	28.4	1.67 (m), 1.76 (m)	19	16.0	0.92 (s)
3	78.4	3.18 (dd, 4.5, 11.5)	20	17.7	1.40 (s)
4	40.1	-	1'	105.3	4.74 (d, 8.0)
5	51.3	1.69 (dd, 3.0, 14.0)	2′	82.9	3.87 (dd, 8.0, 9.0)
6	36.2	2.58 (dd, 3.0, 17.0)	3′	77.6	3.75 (dd, 9.0, 9.0)
		2.62 (dd, 14.0, 17.0)	4′	70.6	3.52 (dd, 9.0, 9.0)
7	200.9	_	5′	78.3	3.30 (m)
8	129.6	-	6′	62.0	3.75 (dd, 4.5, 12.0)
9	140.8	-			3.83 (br. d, ca. 12)
10	41.3	_	1″	105.4	4.86 (d, 8.0)
11	148.8	_	2″	75.6	3.43 (m,
					overlapped)
12	150.2	-	3″	77.5	3.43 (m,
					overlapped)
13	132.5	_	4″	71.1	3.42 (dd, 9.0, 9.0)
14	122.2	7.46 (s)	5″	78.4	3.34 (m)
15	41.0	2.63 (m, overlapped)	6″	62.4	3.68 (dd, 5.0, 12.0)
		3.30 (dd, 6.0, 13.0)			3.83 (br. d, ca. 12)
16	68.0	4.16 (m)			

Table 2 ¹H and ¹³C NMR data for **2** in CD₃OD.

No.	δ_{C}	$\delta_{\text{H}} \left(J \text{ in Hz} \right)$	No.	δ_{C}	$\delta_{H} \left(J \text{ in } Hz \right)$
1	35.8	1.42 (ddd, 4.0, 14.0, 14.0)	16	68.3	4.12 (m)
		3.43 (ddd, 4.0, 4.0, 14.0)	17	22.9	1.11 (d, 6.5)
2	27.7	1.88 (m)	18	28.3	1.13 (s)
		2.11 (m)	19	16.6	1.02 (s)
3	89.6	3.31 (dd, 4.5, 11.5)	20	17.6	1.41 (s)
4	40.4	_	1′	106.7	4.35 (d, 8.5)
5	51.6	1.79 (dd, 3.0, 14.0)	2′	75.6	3.22 (dd, 8.5, 9.0)
6	36.0	2.57 (dd, 3.0, 17.0)	3′	78.2	3.34 (dd, 9.0, 9.0)
		2.62 (dd, 14.0, 17.0)	4′	71.6	3.32 (dd, 9.0, 9.0)
7	201.2	_	5′	77.7	3.26 (m)
8	129.7	_	6′	62.8	3.67 (dd, 5.0, 12.0)
9	140.9	_			3.86 (dd, 2.0, 12.0)
10	41.2	_	1″	107.6	4.56 (d, 8.0)
11	149.3	-	2″	75.3	3.52 (dd, 8.0, 9.0)
12	150.6	-	3″	77.9	3.43 (dd, 9.0, 9.0)
13	132.6	_	4″	70.8	3.47 (dd, 9.0, 9.0)
14	121.7	7.44 (s)	5″	78.6	3.30 (m)
15	40.9	2.68 (dd, 6.5, 13.0)	6″	62.1	3.76 (dd, 4.5, 12.0)
		3.19 (dd, 6.5, 13.0)			3.83 (dd, 2.0, 12.0)

7:3:1, v/v/v) → MeOH] to yield 23 fractions (Fr. 1–23). Fraction 9 (56.3 g) was further subjected to silica gel CC [Pet. Ether (PE) → PE–EtOAc (20:1 → 15:1 → 10:1 → 5:1 → 3:1, v/v) → EtOAc] to yield 19 fractions (Fr. 9-1–9-19). Fraction 9–16 (5024.0 mg) was purified by PHPLC [MeOH–H₂O (90:10, v/v)], and 13 fractions (Fr. 9-16–1–9-16-13) were given. Fraction 9-16-2 (415.5 mg) was subjected to PHPLC [MeOH–H₂O (70:30, v/v)] to obtain 8 fractions (Fr. 9-16-2-1–9-16-2-8), out of which, isorosmanol (**7**, 68.3 mg) and rosmanol (**8**, 128.3 mg) were obtained. Fraction 9-16-2-7 (32.8 mg) was isolated by PHPLC [CH₃CN–H₂O (45:55, v/v)] to yield epirosmanol (**10**, 3.3 mg). Fraction 9-16-4 (629.8 mg) was

Table 3

 ^1H and ^{13}C NMR data for $\boldsymbol{3}$ in C_5D_5N.

No.	δ_{C}	$\delta_{H}\left(J \text{ in } Hz\right)$	No.	δ_{C}	$\delta_{H}\left(J \text{ in } Hz\right)$
1	48.0	1.23 (m, overlapped)	22	37.5	1.88 (ddd, 4.5, 13.0,
					13.0)
		2.20 (dd, 4.0, 12.5)			1.98 (m, overlapped)
2	68.6	4.03 (m)	23	29.4	1.17 (s)
3	83.9	3.32 (d, 9.5)	24	17.6	0.99 (s)
4	39.8	-	25	17.4	0.96 (s)
5	56.1	0.99 (m, overlapped)	26	16.7	1.07 (s)
6	19.0	1.36 (m), 1.54 (m)	27	24.7	1.64 (s)
7	33.6	1.50 (m), 1.65 (m)	28	177.0	-
8	40.7	-	29	27.0	1.38 (s)
9	47.9	1.90 (dd, 9.5, 9.5)	30	17.0	1.06 (d, 7.0)
10	38.5	-	1'	93.7	6.15 (d, 7.5)
11	24.2	2.08 (m)	2′	79.3	4.42 (dd, 7.5, 8.5)
12	128.2	5.50 (t, 3.5)	3′	79.0	4.28 (dd, 8.5, 9.0)
13	139.5	-	4′	70.9	4.20 (dd, 9.0, 9.0)
14	42.1	-	5′	79.1	3.92 (m)
15	29.8	1.36 (m, overlapped)	6′	62.4	4.32 (dd, 6.0, 11.5)
		2.40 (ddd, 5.0, 14.5,			4.40 (br. d, ca. 12)
		14.5)			
16	26.8	1.21 (m, overlapped)	1″	104.8	5.64 (d, 7.5)
		1.97 (m, overlapped)			
17	48.6	-	2″	75.9	4.05 (dd, 7.5, 9.0)
18	54.5	2.89 (s)	3″	78.3	4.20 (dd, 9.0, 9.0)
19	72.7	-	4″	72.9	4.07 (dd, 9.0, 9.0)
20	42.2	1.44 (m)	5″	78.1	3.97 (m)
21	25.9	2.23 (m, overlapped)	6″	63.9	4.34 (dd, 6.0, 12.0)
		3.08 (ddd, 4.5, 13.0,			4.58 (dd, 3.0, 12.0)
		13.0)			

Table 4

¹ H and ¹³ C NMR o	data for 4 in	n CD₃OD.
--	----------------------	----------

No.	δ_{C}	$\delta_{H}\left(J \text{ in } Hz\right)$	No.	δ_{C}	$\delta_{\text{H}}(\text{J in Hz})$
1	47.9	0.89 (dd, 12.0, 12.0)	19	41.4	1.10 (dd, 4.0, 13.5)
		1.94 (dd, 5.0, 12.0)			1.81 (dd, 13.5, 13.5)
2	69.6	3.78 (ddd, 5.0, 9.0, 12.0)	20	36.8	-
3	85.9	3.04 (d, 9.0)	21	28.9	1.09 (m), 1.79 (m)
4	44.4	-	22	32.4	1.65 (m), 1.75 (m)
5	57.2	0.97 (dd, 3.0, 11.5)	23	23.8	1.22 (s)
6	19.9	1.40 (m), 1.62 (m)	24	66.2	3.38 (d, 11.5)
7	34.2	1.33 (m), 1.47 (m)			4.02 (d, 11.5)
8	40.7	-	25	17.6	0.99 (s)
9	49.3	1.63 (dd, 3.0, 9.0)	26	17.6	0.78 (s)
10	39.1	-	27	26.3	1.17 (s)
11	24.9	1.92 (m)	28	178.0	-
12	123.6	5.27 (t, 3.5)	29	74.3	3.19 (s)
13	144.9	-	30	19.5	0.92 (s)
14	42.9	-	1′	95.8	5.38 (d, 8.0)
15	29.3	1.17 (m, overlapped)	2′	73.9	3.33 (dd, 8.0, 9.0)
		1.50 (m)	3′	78.7	3.35 (dd, 9.0, 9.0)
16	24.0	1.73 (m), 2.05 (m)	4′	71.1	3.35 (dd, 9.0, 9.0)
17	48.3	-	5′	78.3	3.41 (m)
18	41.8	2.89 (dd, 4.0, 13.5)	6′	62.4	3.65 (dd, 5.0, 11.5)
					3.81 (br. d, ca. 12)

subjected to PHPLC [MeOH–H₂O (75:25, v/v)] to give 10 fractions (Fr. 9-16-4-1-9-16-4-10). Fraction 9-16-4-9 (53.4 mg) was purified by PHPLC [CH₃CN–H₂O (41:59, v/v)] to give 7-methoxyrosmanol (**9**, 4.7 mg). Fraction 9-16-10 was isolated by PHPLC [MeOH–H₂O (88:12, v/v)] to yield micromeric acid (**12**, 23.7 mg), oleanolic acid (**13**, 28.3 mg), and ursolic acid (**11**, 16.7 mg). Fraction 9-16-12 was purified by PHPLC [MeOH–H₂O (88:12, v/v)], too, and ten, oleanolic acid (**13**, 22.0 mg) was obtained.

2.3.1. Officinoterpenoside A_1 (**1**)

Table 5	
¹ H and ¹³ C NMR data for 4 in C ₅ D ₅ N.	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
1 47.7 1.28 (m, overlapped) 19 41.0 1.44 (m, overlapped) 2 2.25 (dd, 5.0, 12.0) 2.12 (dd, 14.0, 14.0) 2 68.7 4.28 (m) 20 36.4 - 3 85.6 3.55 (d, 9.5) 21 28.9 1.28 (m, overlapped) 4 44.0 - - overlapped) 5 56.5 1.09 (m, overlapped) 22 32.0 1.86 (m) 6 1.93 1.42 (m, overlapped) 23 24.1 1.55 (s) 1.64 (m) 23 24.1 1.55 (s) .09 (m, overlapped) 23 24.1 1.55 (s) 7 33.5 1.42 (m, overlapped) 23 24.1 1.55 (s) .09 (s) 8 40.0 - - 4.44 (n1.5) 8 .09 (s) .09 (s) .09 (s) 10 38.3 - 27 26.1 1.22 (s) .01 (n) .09 (s) .09 (s) .09 (s) 11 24.2 1.97 (m) 28 17.6 .09 (s) .09 (s) .01 (s) .09 (s) .01 (s)	No.	δ_{C}	$\delta_{H} \left(J \text{ in } Hz \right)$	No.	δ_{C}	$\delta_{H} \left(J \text{ in } Hz \right)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	47.7	1.28 (m, overlapped)	19	41.0	1.44 (m,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						overlapped)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2.25 (dd, 5.0, 12.0)			2.12 (dd, 14.0, 14.0)
3 85.6 3.55 (d, 9.5) 21 28.9 1.28 (m, overlapped) 4 44.0 -	2	68.7	4.28 (m)	20	36.4	-
4 44.0 - overlapped) 5 56.5 1.09 (m, overlapped) 22 32.0 1.86 (m) 6 19.3 1.42 (m, overlapped) 23 24.1 1.55 (s) 6 19.3 1.42 (m, overlapped) 23 24.1 1.55 (s) 7 33.5 1.42 (m) 24 65 3.71 (d, 10.5) 7 33.5 1.42 (m) 24 61 3.71 (d, 10.5) 8 40.0 - 25 17.3 0.99 (s) 9 48.3 1.75 (m, overlapped) 26 17.4 1.10 (s) 10 38.3 - 27 26.1 1.22 (s) 11 24.2 1.97 (m) 28 176.6 - 12 122.7 5.45 (t, 3.0) 29 7.3 3.56 (s) 13 144.3 - 30 19.7 1.09 (s) 14 42.1 - 1' 95.8 6.32 (d, 8.0) 15 28.3	3	85.6	3.55 (d, 9.5)	21	28.9	1.28 (m,
4 44.0 - 1.75 (m, overlapped) 5 56.5 1.09 (m, overlapped) 22 32.0 1.86 (m) 6 19.3 1.42 (m, overlapped) 23 241 1.55 (s) 7 33.5 1.42 (m, overlapped) 24 65.6 3.71 (d, 10.5) 7 33.5 1.42 (m) 4.44 (d, 11.5) 8 40.0 - 25 17.3 0.99 (s) 9 48.3 1.75 (m, overlapped) 26 17.4 1.10 (s) 10 38.3 - 27 26.1 1.22 (s) 11 24.2 1.97 (m) 28 176.6 - 12 122.7 5.45 (t, 3.0) 29 73.7 3.56 (s) 13 144.3 - 30 197.7 1.09 (s) 14 42.1 - 1' 95.8 6.32 (d, 8.0) 15 28.3 1.17 (m, overlapped) 2' 74.1 4.21 (dd, 8.0, 8.5) 2.35 (ddd, 4.5, 14.0, 3' 78.9 4.30 (dd, 8.5, 9.0) 14.0 16 23.5 2						overlapped)
5 56.5 1.09 (m, overlapped) 22 32.0 1.86 (m) 6 19.3 1.42 (m, overlapped) 23 24.1 1.55 (s) 7 33.5 1.42 (m) 24 65.6 3.71 (d, 10.5) 7 33.5 1.42 (m) 24 65.7 3.71 (d, 10.5) 7 33.5 1.42 (m) 24 67.1 0.99 (s) 9 48.3 1.75 (m, overlapped) 26 17.4 1.10 (s) 10 38.3 - 27 26.1 1.22 (s) 11 24.2 1.97 (m) 28 176.6 - 12 122.7 5.45 (t, 3.0) 29 73.7 3.56 (s) 13 144.3 - 30 197.7 1.09 (s) 14 42.1 - 1' 95.8 6.32 (d, 8.0) 15 28.3 1.17 (m, overlapped) 2' 74.1 4.21 (dd, 8.0, 8.5) 14.0 - .400 .5 .9.0	4	44.0	-			1.75 (m,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						overlapped)
	5	56.5	1.09 (m, overlapped)	22	32.0	1.86 (m)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	19.3	1.42 (m, overlapped)	23	24.1	1.55 (s)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1.64 (m)	24	65.6	3.71 (d, 10.5)
8 40.0 - 25 17.3 0.99 (s) 9 48.3 1.75 (m, overlapped) 26 17.4 1.10 (s) 10 38.3 - 27 26.1 1.22 (s) 11 24.2 1.97 (m) 28 176.6 - 12 122.7 5.45 (t, 3.0) 29 73.7 3.56 (s) 13 144.3 - 30 19.7 1.09 (s) 14 42.1 - 1' 95.8 6.32 (d, 8.0) 15 28.3 1.17 (m, overlapped) 2' 74.1 4.21 (d, 8.0, 8.5) 2.35 (ddd, 4.5, 14.0, 3' 78.9 4.30 (dd, 8.5, 9.0) 14.0) 16 23.5 2.00 (m), 2.18 (m) 4' 71.1 4.36 (dd, 9.0, 9.0) 17 47.5 - 5' 79.3 4.04 (m) 18 41.2 3.30 (dd, 4.0, 14.0) 6' 62 4.40 (dd, 5.0, 12.0)	7	33.5	1.42 (m)			4.44 (d, 11.5)
9 48.3 1.75 (m, overlapped) 26 17.4 1.10 (s) 10 38.3 - 27 26.1 1.22 (s) 11 24.2 1.97 (m) 28 176.6 - 12 122.7 5.45 (t, 3.0) 29 73.7 3.56 (s) 13 144.3 - 30 197 1.09 (s) 14 42.1 - 1' 95.8 6.32 (d, 8.0) 15 28.3 1.17 (m, overlapped) 2' 74.1 4.21 (dd, 8.0, 8.5) 2.35 (ddd, 4.5, 14.0, 14.0) 3' 78.9 4.30 (dd, 8.5, 9.0) 14.0 - - 5' 79.3 4.04 (m) 16 23.5 2.00 (m), 2.18 (m) 4' 71.1 4.36 (dd, 9.0, 9.0) 17 47.5 - 5' 79.3 4.04 (m) 18 41.2 3.30 (dd, 4.0, 14.0) 6' 62.2 4.40 (dd, 5.0, 12.0)	8	40.0	-	25	17.3	0.99 (s)
10 38.3 - 27 26.1 1.22 (s) 11 24.2 1.97 (m) 28 176.6 - 12 122.7 5.45 (t, 3.0) 29 73.7 3.56 (s) 13 144.3 - 30 19.7 1.09 (s) 14 42.1 - 1' 95.8 6.32 (d, 8.0) 15 28.3 1.17 (m, overlapped) 2' 74.1 4.21 (dd, 8.0, 8.5) 2.35 (ddd, 4.5, 14.0, 14.0) 3' 78.9 4.30 (dd, 8.5, 9.0) 14.0) - - 5' 79.3 4.04 (m) 16 23.5 2.00 (m), 2.18 (m) 4' 71.1 4.36 (dd, 9.0, 9.0) 17 47.5 - 5' 79.3 4.04 (m) 18 41.2 3.30 (dd, 4.0, 14.0) 6' 4.40 (dd, 5.0, 12.0)	9	48.3	1.75 (m, overlapped)	26	17.4	1.10 (s)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	38.3	-	27	26.1	1.22 (s)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	24.2	1.97 (m)	28	176.6	-
13 144.3 - 30 19.7 1.09 (s) 14 42.1 - 1' 95.8 6.32 (d, 8.0) 15 28.3 1.17 (m, overlapped) 2' 74.1 4.21 (dd, 8.0, 8.5) 2.35 (ddd, 4.5, 14.0, 14.0) 3' 78.9 4.30 (dd, 8.5, 9.0) 16 23.5 2.00 (m), 2.18 (m) 4' 71.1 4.36 (dd, 9.0, 9.0) 17 47.5 - 5' 79.3 4.04 (m) 18 41.2 3.30 (dd, 4.0, 14.0) 6' 62.2 4.40 (dd, 5.0, 12.0) 4.46 (dd, 2.0, 12.0) - - 4.46 (dd, 2.0, 12.0)	12	122.7	5.45 (t, 3.0)	29	73.7	3.56 (s)
14 42.1 - 1' 95.8 6.32 (d, 8.0) 15 28.3 1.17 (m, overlapped) 2' 74.1 4.21 (dd, 8.0, 8.5) 2.35 (ddd, 4.5, 14.0, 14.0) 3' 78.9 4.30 (dd, 8.5, 9.0) 16 23.5 2.00 (m), 2.18 (m) 4' 71.1 4.36 (dd, 9.0, 9.0) 17 47.5 - 5' 79.3 4.04 (m) 18 41.2 3.30 (dd, 4.0, 14.0) 6' 62 4.40 (dd, 5.0, 12.0) .446 (dd, 2.0, 12.0) .446 (dd, 2.0, 12.0) .446 (dd, 2.0, 12.0) .446 (dd, 2.0, 12.0)	13	144.3	-	30	19.7	1.09 (s)
15 28.3 1.17 (m, overlapped) 2' 74.1 4.21 (dd, 8.0, 8.5) 2.35 (ddd, 4.5, 14.0, 3' 78.9 4.30 (dd, 8.5, 9.0) 14.0) 14.0 14.0 14.0 16 23.5 2.00 (m), 2.18 (m) 4' 71.1 4.36 (dd, 9.0, 9.0) 17 47.5 - 5' 79.3 4.04 (m) 18 41.2 3.30 (dd, 4.0, 14.0) 6' 62 4.40 (dd, 5.0, 12.0) .4.6 (dd, 2.0, 12.0) .4.6 (dd, 2.0, 12.0) .4.6 (dd, 2.0, 12.0)	14	42.1	-	1′	95.8	6.32 (d, 8.0)
2.35 (ddd, 4.5, 14.0, 14.0) 3' 78.9 4.30 (dd, 8.5, 9.0) 16 23.5 2.00 (m), 2.18 (m) 4' 71.1 4.36 (dd, 9.0, 9.0) 17 47.5 - 5' 79.3 4.04 (m) 18 41.2 3.30 (dd, 4.0, 14.0) 6' 62.2 4.40 (dd, 5.0, 12.0) 4.46 (dd, 2.0, 12.0) 4.46 (dd, 2.0, 12.0) 4.46 (dd, 2.0, 12.0) 4.46 (dd, 2.0, 12.0)	15	28.3	1.17 (m, overlapped)	2′	74.1	4.21 (dd, 8.0, 8.5)
14.0) 16 23.5 2.00 (m), 2.18 (m) 4' 71.1 4.36 (dd, 9.0, 9.0) 17 47.5 - 5' 79.3 4.04 (m) 18 41.2 3.30 (dd, 4.0, 14.0) 6' 62.2 4.40 (dd, 5.0, 12.0) 4.46 (dd, 2.0, 12.0) - - - - -			2.35 (ddd, 4.5, 14.0,	3′	78.9	4.30 (dd, 8.5, 9.0)
16 23.5 2.00 (m), 2.18 (m) 4' 71.1 4.36 (dd, 9.0, 9.0) 17 47.5 - 5' 79.3 4.04 (m) 18 41.2 3.30 (dd, 4.0, 14.0) 6' 62.2 4.40 (dd, 5.0, 12.0) 4.46 (dd, 2.0, 12.0) 4.46 (dd, 2.0, 12.0) 4.46 (dd, 2.0, 12.0) 4.46 (dd, 2.0, 12.0)			14.0)			
17 47.5 - 5' 79.3 4.04 (m) 18 41.2 3.30 (dd, 4.0, 14.0) 6' 62.2 4.40 (dd, 5.0, 12.0) 4.46 (dd, 2.0, 12.0) 4.46 (dd, 2.0, 12.0)	16	23.5	2.00 (m), 2.18 (m)	4′	71.1	4.36 (dd, 9.0, 9.0)
18 41.2 3.30 (dd, 4.0, 14.0) 6' 62.2 4.40 (dd, 5.0, 12.0) 4.46 (dd, 2.0, 12.0)	17	47.5	-	5′	79.3	4.04 (m)
4.46 (dd, 2.0, 12.0)	18	41.2	3.30 (dd, 4.0, 14.0)	6′	62.2	4.40 (dd, 5.0, 12.0)
						4.46 (dd, 2.0, 12.0)

Table 6 ¹H and ¹³C NMR data for **5** in CD₃OD.

No.	δ_{C}	$\delta_{H} \left(J \text{ in } Hz \right)$	No.	δ_{C}	$\delta_{H}\left(J \text{ in } Hz\right)$
1	213.4	-	8	18.8	1.02 (s)
2	130.0	5.86 (d, 1.0)	9	15.1	2.13 (s)
3	185.4	-	1′	104.3	4.26 (d, 8.0)
4	51.7	-	2′	74.8	3.13 (dd, 8.0, 9.0)
5	48.6	2.67 (q, 7.5)	3′	78.1	3.32 (dd, 9.0, 9.0)
6	10.2	1.05 (d, 7.5)	4′	71.5	3.27 (dd, 9.0, 9.0)
7	73.5	3.58 (d, 9.5)	5′	77.9	3.26 (m)
		3.92 (d, 9.5)	6′	62.7	3.66 (dd, 5.0, 11.5)
					3.87 (dd, 1.5, 11.5)

White powder. $[\alpha]_{D}^{25} + 17.5^{\circ}$ (c = 0.89, MeOH); IR ν_{max} (KBr) cm⁻¹: 3503, 2931, 2867, 1674, 1602, 1560, 1454, 1422, 1320, 1251, 1069, 1023; UV λ_{max} (MeOH) nm (log ε): 312 (3.54), 265 (3.97). ¹H NMR (500 MHz, CD₃OD) and ¹³C NMR (125 MHz, CD₃OD) spectroscopic data, see Table 1; HRESI-TOF-MS: Negative-ion mode m/z 671.2899 [M–H]⁻ (calcd for C₃₂H₄₇O₁₅ 671.2920).

2.3.2. Officinoterpenoside $A_2(2)$

White powder. $[\alpha]_{D}^{25} - 0.5^{\circ}$ (c = 0.85, MeOH); IR ν_{max} (KBr) cm⁻¹: 3367, 2926, 2851, 1671, 1600, 1560, 1456, 1420, 1364, 1327, 1255, 1221, 1071, 1016; UV λ_{max} (MeOH) nm (log ε): 312 (3.54), 262 (3.88). ¹H NMR (500 MHz, CD₃OD) and ¹³C NMR (125 MHz, CD₃OD) spectroscopic data, see Table 2; HRESI-TOF-MS: Negative-ion mode m/z 671.2897 [M–H]⁻ (calcd for C₃₂H₄₇O₁₅ 671.2920).

2.3.3. Officinoterpenoside B (**3**)

White powder. $[\alpha]_D^{25} - 6.9^{\circ}$ (c = 0.38, MeOH); IR ν_{max} (KBr) cm⁻¹: 3367, 2919, 2851, 1733, 1641, 1457, 1384, 1077. ¹H NMR (500 MHz, C₅D₅N) and ¹³C NMR (125 MHz, C₅D₅N) spectroscopic data, see Table 3; HRESI-TOF-MS: Negative-

ion mode m/z 847.4210 [M + Cl]⁻ (calcd for C₄₂H₆₈O₁₅Cl 847.4252).

2.3.4. Officinoterpenoside C (4)

White powder. $[\alpha]_D^{25} + 6.2^{\circ} (c = 0.78, MeOH); IR \nu_{max}$ (KBr) cm⁻¹: 3367, 2932, 2840, 1732, 1648, 1559, 1457, 1267, 1072. ¹H NMR (500 MHz, CD₃OD) and ¹³C NMR (125 MHz, CD₃OD) spectroscopic data, see Table 4; ¹H NMR (500 MHz, C₅D₅N) and ¹³C NMR (125 MHz, C₅D₅N) spectroscopic data, see Table 5; HRESI-TOF-MS: Negative-ion mode *m*/*z* 711.3961 [M + COOH]⁻ (calcd for C₃₇H₅₉O₁₃ 711.3938).

2.3.5. Officinoterpenoside D (5)

White powder. $[\alpha]_D^{25} - 55.9^\circ$ (c = 0.88, MeOH); IR ν_{max} (KBr) cm⁻¹: 3382, 2970, 2916, 2877, 1690, 1618, 1434, 1381, 1320, 1285, 1218, 1162, 1077, 1039, 860; UV λ_{max} (MeOH) nm (log ε): 224 (4.11). ¹H NMR (500 MHz, CD₃OD) and ¹³C NMR (125 MHz, CD₃OD) spectroscopic data, see Table 6; HRESI-TOF-MS: Negative-ion mode m/z 351.1225 [M + Cl]⁻ (calcd for C₁₅H₂₄O₇Cl 351.1216).

2.4. Acid hydrolysis of 1-5

A solution of officinoterpenosides A_1 -D (1-5, 2.5 mg each) in 1 M HCl (1 mL) was heated under reflux for 3 h, respectively. The reaction mixture was neutralized with Amberlite IRA-400 (OH⁻ form) and removed by filtration. The aqueous layer was subjected to the HPLC analysis under the following conditions, respectively: HPLC column, Kaseisorb LC NH₂-60-5, 4.6 mm i.d. × 250 mm (Tokyo Kasei Co. Ltd., Tokyo, Japan); detection, optical rotation [Chiralyser (IBZ Messtechnik GMBH, Mozartstrasse 14–16 D-30173 Hannover, Germany)]; mobile phase, CH₃CN-H₂O (75:25, v/v); and flow rate 1.0 mL/min. D-Glucose from 1–5 presented in the aqueous was carried out by comparison of its retention

Fig. 1. The new compounds (1-5) obtained from the aerial parts of R. officinalis.

Fig. 2. The known terpenes (6-16) obtained from the aerial parts of R. officinalis.

time and optical rotation with that of authentic samples, $t_{\rm R}$ 17.6 min (positive).

3. Results and discussion

The dried aerial parts of *R. officinalis* were refluxed with 95% EtOH for 3 times. Evaporation of the solvent was done under reduced pressure to yield the 95% ethanol extract. The extract was partitioned in a CHCl₃–H₂O mixture (1:1) to give both CHCl₃ and H₂O partitions. Then, the H₂O layer was subjected to D101 macroporous resin CC, and eluted sequentially with H₂O and 95% EtOH. CHCl₃ partition and 95% EtOH eluate from D101 CC were subjected to normal- and reverse-phase CC, and finally preparative HPLC (PHPLC) to give 16 terpenoids, which included five new ones, officinoterpenosides A₁ (1), A₂ (2), B (3), C (4), and D (5), together with 11 known isolates,

(15,45,55)-5-exo-hydrocamphor 5-*O*- β -D-glucopyranoside (6), isorosmanol (7), rosmanol (8), 7-methoxyrosmanol (9), epirosmanol (10), ursolic acid (11), micromeric acid (12), oleanolic acid (13), niga-ichigoside F₁ (14), glucosyl tormentate (15), and asteryunnanoside B (16). Among the known ones, 6 was isolated from the *Rosmarinus* genus first, and 15 and 16 were obtained from this species for the first time. The structures of the new compounds 1–5 and known ones were shown in Figs. 1 and 2, respectively.

Officinoterpenoside A₁ (**1**) was obtained as a white powder with positive optical rotation ($[\alpha]_{D}^{25}$ + 17.5° in MeOH). The molecular formula C₃₂H₄₈O₁₅ of it was determined by negativeion HRESI-TOF-MS (*m*/*z* 671.2899 [M–H]⁻, calcd for C₃₂H₄₇O₁₅ 671.2920). The IR spectrum of **1** suggested the presence of hydroxyl (3503 cm⁻¹), α_{β} -unsaturated ketone (1674 cm⁻¹), aromatic ring (1602, 1560, 1514, 1454 cm⁻¹), and an

Fig. 3. The main ¹H ¹H COSY and HMBC correlations of 1 and 2.

83

O-glycosidic linkage (1069 cm^{-1}). On acid hydrolysis and identification with HPLC analysis, the presence of D-glucose was determined [25]. The ¹³C NMR (CD₃OD, Table 1) spectrum displayed 32 carbons including 20 carbons for the aglycon, and 12 carbons for two sugar units. The carbon type for 20 carbons in aglycon of **1** was determined by DEPT experiment, which sorted by 4 methyls, 4 methylenes, 4 methines, and 8 quaternary carbon signals. Among them, $\delta_{\rm C}$ 122.2 (C-14), 129.6 (C-8), 132.5 (C-13), 140.8 (C-9), 148.8 (C-11), and 150.2 (C-12) revealed the presence of a penta-substituted aromatic ring. Meanwhile, in the ¹H-¹H COSY experiment, the correlations between $\delta_{\rm H}$ [1.27 (1H, ddd, $J = 3.0, 13.5, 13.5 \, {\rm Hz}$), 3.31 (1H, m), H₂-1] and $\delta_{\rm H}$ 1.67, 1.76 (1H each, both m, H₂-2); $\delta_{\rm H}$ 1.67, 1.76 (H₂-2) and $\delta_{\rm H}$ 3.18 (1H, dd, J = 4.5, 11.5 Hz, H-3); $\delta_{\rm H}$ 1.69 (1H, dd, J = 3.0, 14.0 Hz, H-5) and $\delta_{\rm H}$ [2.58 (1H, dd, J =3.0, 17.0), 2.62 (1H, dd, J = 14.0, 17.0), H₂-6]; $\delta_{\rm H}$ [2.63 (1H, m), 3.30 (1H, dd, J = 6.0, 13.0 Hz), H₂-15] and $\delta_{\rm H}$ 4.16 (1H, m, H-16); $\delta_{\rm H}$ 4.16 (H-16) and $\delta_{\rm H}$ 1.18 (3H, d, J = 6.5 Hz, H₃-17) were observed, which indicated the presence of partial structure written in bold lines (Fig. 3). In the HMBC experiment, the long-range correlations were observed between the following proton and carbon pairs: H-14 and C-9, 12; H₂-15 and C-12–14; H₃-17 and C-15, 16; H₃-18 and C-3–5, 19; H₃-19 and C-3–5, 18; and H₃-20 and C-1, 5, 9, 10 (Fig. 3). Furthermore, the relative configurations of rings A and B were elucidated by NOESY experiment. The NOE correlations were observed between δ_H 1.67 (H_{β}-2) and δ_H 0.92 (H₃-19), 1.40 (H₃-20); $\delta_{\rm H}$ 3.18 (H-3) and $\delta_{\rm H}$ 1.27 (H_{α}-1), 1.02 (H₃-18), 1.69 (H-5); $\delta_{\rm H}$ 1.69 (H-5) and $\delta_{\rm H}$ 1.27 (H_{α}-1), 2.62 (H_{α}-6), 1.02 (H₃-18); $\delta_{\rm H}$ 2.58 (H_{β}-6) and $\delta_{\rm H}$ 0.92 (H₃-19), 1.40 (H₃-20); $\delta_{\rm H}$ 0.92 (H₃-19) and $\delta_{\rm H}$ 1.40 (H₃-20), which suggested that the relative configuration of 1 was as shown in Fig. 4 with the abietane skeleton. Furthermore, the linkages of two D-glucose were determined by the observed long-range correlations between $\delta_{\rm H}$ 4.74 (1H, d, J = 8.0 Hz, H-1′) and $\delta_{\rm C}$ 150.2 (C-12), and $\delta_{\rm H}$ 4.86 (1H, d, J = 8.0 Hz, H-1") and $\delta_{\rm C}$ 82.9 (C-2'). On the basis of the above-mentioned evidence, the structure of **1** was elucidated, and named as officinoterpenoside A₁.

Officinoterpenoside A₂ (**2**) was also isolated as a white powder. The molecular formula was the same as that of **1**, which was determined by negative-ion HRESI-TOF-MS (m/z 671.2897 [M–H]⁻, calcd for C₃₂H₄₇O₁₅ 671.2920), too. From the acid hydrolysis of **2** with 1.0 M HCl, D-glucose was given, which was identified by HPLC analysis using an optical rotation detector [25]. The ¹H (500 MHz) and ¹³C NMR (125 MHz) (CD₃OD, Table 2) spectra of **2**, which were assigned by various

Fig. 4. The main NOE correlations for aglycon of 1 and 2.

NMR experiments including ¹H ¹H COSY, HSQC, HMBC, and NOESY spectra suggested that **2** had same aglycon as **1** and two β -D-glucopyranosyl moieties [δ_{H} 4.35 (1H, d, J = 8.5 Hz, H-1'), 4.56 (1H, d, J = 8.0 Hz, H-1")]. According to the long-range correlations between δ_{H} 4.35 (H-1') and δ_{C} 89.6 (C-3), and δ_{H} 4.56 (H-1") and δ_{C} 150.6 (C-12) observed in the HMBC experiment, the linkages of two D-glucose were determined. Consequently, the structure of **2** was identified, and named as officinoterpenoside A_{2} .

Officinoterpenoside B (3) was isolated as a white powder with negative rotation $[\alpha]_{D}^{25}$ -6.9° (c = 0.38, MeOH)]. Its molecular formula was determined to be C₄₂H₆₈O₁₅ by negative-ion HRESI-TOF-MS (m/z 847.4210 [M + Cl]⁻, calcd for C₄₂H₆₈O₁₅Cl 847.4252). The IR spectrum showed absorption bands at 3367, 1733, and 1641 cm⁻¹ ascribable to hydroxyl, carboxyl, and olefin functions, respectively. The ¹H NMR (C₅D₅N, Table 3) spectrum of **3** showed signals assignable to seven methyls [δ 0.96, 0.99, 1.07, 1.17, 1.38, 1.64 (3H each, all s, H_3 -25, 24, 26, 23, 29, 27), 1.06 (3H, d, J = 7.0 Hz, H_3 -30)], two methines bearing oxygen function [δ 3.32 (1H, d, J = 9.5 Hz, H-3), 4.03 (1H, m, H-2)], one tri-substituted olefin [δ 5.50 (1H, t, J = 3.5 Hz, H-12)], together with two anomeric proton signals [δ 5.64 (1H, d, J = 7.5 Hz, H-1"), δ 6.15 (1H, d, J = 7.5 Hz, H-1')]. The ¹³C NMR spectrum displayed 42 carbons including 30 carbons for the aglycon, and 12 carbons for two sugar units. ¹H and ¹³C NMR spectra suggested that **3** was an ursolic acid type triterpene saponin derivative. In conjunction with the analysis of the HSQC spectrum, ¹H and ¹³C NMR data for **3** were assigned as shown in Table 3. The ¹H ¹H COSY experiment on 3 indicated the presence of partial structure written in bold lines. And in HMBC experiment, long-range correlations were observed between the following proton and carbon pairs: H-18 and C-20, 28; H₃-23 and C-3-5, 24; H₃-24 and C-3-5, 23; H₃-25 and C-1, 5, 9, 10; H₃-26 and C-7-9, 14; H₃-27 and C-8, 13-15; H₃-29 and C-18-20; H₃-30 and C-19-21; H-1' and C-28; H-1" and C-2' (Fig. 5). On the basis of the above mentioned evidence, the planar structure of 3 was determined, which was the same

Fig. 5. The main ¹H ¹H COSY and HMBC correlations of 3.

Fig. 6. The main ¹H ¹H COSY, HMBC and NOE correlations of 4.

as pruvuloside A [22] with 2α , 3α , 19α -trihydroxyl groups. But the 13 C NMR data in 1–5 positions of **3** [δ 48.0 (C-1), 68.6 (C-2), 83.9 (C-3), 39.8 (C-4), 56.1 (C-5)] were significantly different from those of pruvuloside A [δ 43.0 (C-1), 66.2 (C-2), 79.1 (C-3), 38.7 (C-4), 48.7 (C-5)] [22], which suggested that the configuration of hydroxyl groups at 2,3-position for the two compounds was not the same as each other. Meanwhile, the coupling constant (I = 9.5 Hz) between H-2 and H-3 of **3** indicated that hydroxyl groups at 2,3-position mutually trans configuration. On the other hand, the proton and carbon signals in the ¹H and ¹³C NMR spectra of **3** were very similar to those of glucosyl tormentate (15) [23], except for the signals due to another β -D-glucopyranosyl part. Finally, acid hydrolysis of it yielded D-glucose, which was identified by retention time and optical rotation using chiral detection by HPLC analysis [25]. On the basis of the above mentioned evidence, the structure of 3 was characterized to be officinoterpenoside B.

Officinoterpenoside C (**4**) was isolated as a white amorphous powder having a positive rotation $[[\alpha]_D^{25} + 6.2^{\circ} (c = 0.78, MeOH)]$. The molecular formula of **4** was determined to be C₃₆H₅₈O₁₁ by negative-ion HRESI-TOF-MS (*m*/*z* 711.3961 [M + COOH]⁻, calcd for C₃₇H₅₉O₁₃ 711.3938). The IR spectrum of **4** indicated the presence of hydroxyl, carboxyl, and olefinic groups. The ¹H and ¹³C NMR (CD₃OD, Table 4) spectrum of **4** suggested that it was a triterpene monoglycoside with an oleanane skeleton. The ¹H ¹H COSY experiment on **4** indicated the presence of partial structure written in bold lines. The long-range correlations (Fig. 6) observed in HMBC experiment indicated that there were two oxymethine groups (δ_C 69.6, 85.9) and an oxymethylene group (δ_C 66.2) in ring A, and an

oxymethylene group (δ_{C} 74.3) in ring E. Finally, the relative configuration for 4 was determined by NOESY experiment, which showed NOE correlations between the following proton pairs: H-2 and H₂-24, H₃-25; H-3 and H-5, H₃-23; H-5 and H₃-23; H-12 and H-18, H₃-26; H-18 and H₃-30; H₂-24 and H₃-25; and H₃-25 and H₃-26. Furthermore, the chemical shifts of 3, 5, 23, and 24-positions in ring A (Table 5, in C₅D₅N) were in accordance with those of known sericoside compounds with 2α , 3β , 24-OH [δ _C 24.4 (C-23), 56.4 (C-5), 65.4 (C-24), 85.7 (C-3)] [26], but different from those of quadranoside IV $(2\alpha, 3\beta, 23$ -trihydroxyurs-12-en-28-oic acid β -glucopyranosyl ester) [δ_C 14.4 (C-24), 48.2 (C-5), 66.5 (C-23), 78.2 (C-3)] [27]. In addition, comparison of the ¹³C NMR signals for 29 and 30-positions in **4** [δ_{C} 19.7 (C-30), 73.7 (C-29)] with those of 3α ,29-dihydroxy-23-oxo-olean-12-en-28-oic acid-28-O- α -L-rhamnopyranosyl $(1 \rightarrow 4)$ - β -D-glucopyranosyl $(1 \rightarrow 6)$ - β -D-glucopyranosyl ester [δ_c 19.7 (C-30), 73.6 (C-29)] and 3α , 30-dihydroxy-23-oxo-olean-12-en-28-oic acid-28-O- α -L-rhamnopyranosyl($1 \rightarrow 4$)- β -D-glucopyranosyl($1 \rightarrow 6$)- β -D-glucopyranosyl ester $[\delta_{C} 28.2 (C-29), 65.4 (C-30)]$ [28], the relative configuration of hydroxymethyl group at 20-position was determined as α . The acid hydrolysis experiment gave D-glucose as the sugar moiety [25]. Consequently, the structure of officinoterpenoside C was elucidated as (4) 2α , 3 β , 24, 29tetrahydroxyolean-12-en-28-oic acid-28-0-β-D-glucopyranosyl ester.

Officinoterpenoside D (**5**) was obtained as a white powder with a negative rotation $[[\alpha]_D^{25} - 55.9^\circ (c = 0.88, \text{MeOH})]$. It had the molecular formula, C₁₅H₂₄O₇ as deduced from the negative-ion HRESI-TOF-MS (*m*/*z* 351.1225 [M + Cl]⁻, calcd for

Fig. 7. The main ¹H ¹H COSY, HMBC and NOE correlations of 5.

 $C_{15}H_{24}O_7Cl$ 351.1216). The IR absorption band at 1690 cm⁻¹ and the characteristic UV maxima absorption at 224 nm (4.11) revealed the presence of an α_{β} -unsaturated ketone group in **5**. On the acid hydrolysis, D-glucose was yielded [25]. The ¹H NMR and ¹³C NMR (CD₃OD, Table 6) spectra of it showed signals ascribable to three methyls [δ 1.02, 2.13 (3H each, both s, H₃-8, 9), 1.05 (3H, d, J = 7.5 Hz, H₃-6)], one methene bearing oxygen function [δ 3.58, 3.93 (1H each, both d, J = 9.5 Hz, H₂-7)], one methine bearing methyl group [δ 2.67 (1H, q, J = 7.5 Hz, H-5)], one $\alpha_{,\beta}$ -unsaturated ketone moiety [$\delta_{\rm H}$ 5.86 (1H, d, J = 1.0 Hz, H-2); $\delta_{\rm C}$ 130.0 (C-2), 185.4 (C-3), 213.4 (C-1)], together with a β -D-glucopyranosyl group [δ 4.26 (1H, d, I = 8.0 Hz, H-1')]. In HMBC experiment, long-range correlations were observed between the following proton and carbon pairs: H-2 and C-1, 3-5; H₃-6 and C-1, 4, 5; H₂-7 and C-4, 5, 8; H₃-8 and C-3-5, 7; H_3 -9 and C-2–4 (Fig. 7). On the basis of the above-mentioned evidence, the planar structure of 5 was determined as shown in Fig. 7. Furthermore, on the NOESY experiment, the NOE correlations between the following proton pairs: H-2 and H₃-8, H_3 -9; H-5 and H_2 -7; H_3 -8 and H_3 -6, H_3 -9 were observed, which suggested that **5** has 2Z,3S*,4S* configuration. Consequently, the structure of officinoterpenoside D was elucidated, which is a normonoterpenoid glycoside.

Acknowledgments

This research was supported by the Program for New Century Excellent Talents in University (NCET-12-1069) and the Program for Tianjin Innovative Research Team in University (TD12-5033).

References

- [1] Borrás LI, Arráez-Román D, Herrero M, Ibáñez E, Segura-Carretero A, Fernández-Gutiérrez A. Comparison of different extraction procedures for the comprehensive characterization of bioactive phenolic compounds in by reversed-phase high-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight mass spectrometry. J Chromatogr A 2011;1218:7682–90.
- [2] Sotelo-Félix JI, Martinez-Fong D, De la Torre PM. Protective effect of carnosol on CCl₄-induced acute liver damage in rats. Eur J Gastroenterol Hepatol 2002;14:1001–6.
- [3] Bozin B, Mimica-Dukic N, Samojlik I, Jovin E. Antimicrobial and antioxidant properties of rosemary and sage (*Rosmarinus officinalis L.* and *Salvia officinalis L.*, Lamiaceae) essential oils. J Agric Food Chem 2007;55:7879–85.
- [4] Yamamoto J, Yamada K, Naemura A, Yamashita T, Arai R. Testing various herbs for antithrombotic effect. Nutrition 2005;21:580–7.
- [5] Cowea Dias P, Foglio MA, Possenti A, de Carvalho JE. Antiulcerogenic activity of crude hydroalcoholic extract of *Rosmarinus officinalis* L. J Ethnopharmacol 2000;69:57–62.
- [6] Haloui M, Louedec L, Michel JB, Lyoussi B. Experimental diuretic effects of Rosmarinus officinalis and Centaurium erythraea. J Ethnopharmacol 2000; 71:465–72.

- [7] Bakirel T, Bakirel U, Keles OU, Ulgen SG, Yardibi H. In vivo assessment of antidiabetic and antioxidant activities of rosemary (*Rosmarinus officinalis*) in alloxan-diabetic rabbits. J Ethnopharmacol 2008;116:64–73.
- [8] González-Trujano ME, Peña El, Martínez AL, Moreno J, Guevara-Fefer P, Déciga-Campos M, et al. Evaluation of the antinociceptive effect of *Rosmarinus officinalis* L. using three different experimental models in rodents. J Ethnopharmacol 2007;111:476–82.
- [9] Nogueira de Melo GA, Grespan R, Fonseca JP, Farinha TO, Silva EL, Romero AL, Bersani-Amado CA, Cuman RK. *Rosmarinus officinalis* L. essential oil inhibits *in vivo* and *in vitro* leukocyte migration. J Med Food 2011;14: 944–9.
- [10] Huang SC, Ho CT, Lin-Shiau SY, Lin JK. Carnosol inhibits the invasion of B16/F10 mouse melanoma cells by suppressing metalloproteinase-9 through down-regulating nuclear factor-kappa B and c-Jun. Biochem Pharmacol 2005;69:221–32.
- [11] Pérez-Fons L, Garzón MT, Micol V. Relationship between the antioxidant capacity and effect of rosemary (*Rosmarinus officinalis* L.) polyphenols on membrane phospholipid order. J Agric Food Chem 2010;58:161–71.
- [12] Escop M. Rosmarini folium. The scientific foundation for herbal medicinal products. Thieme Med Pub2nd ed.; 2009 429–36.
- [13] Cuvelier ME, Richard H, Berset C. Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. J Am Oil Chem Soc 1996;73:645–52.
- [14] Cuvelier ME, Berset C, Richard H. Antioxidant constituents in sage (Salvia officinalis). J Agric Food Chem 1994;42:665–9.
- [15] Kim KH, Choi JW, Choi SU, Lee KR. Terpene glycosides and cytotoxic constituents from the seeds of *Amomum xanthioides*. Planta Med 2010;76: 461–4.
- [16] Nakatani N, Inatani R. Two antioxidative diterpenes from rosemary (*Rosmarinus officinalis* L.) and a revised structure for rosmanol. Agric Biol Chem 1984;48:2081–5.
- [17] Arisawa M, Hayashi T, Ohmura K, Nagayama K, Shimizu M, Morita N, et al. Chemical and pharmaceutical studies on medicinal plants in Paraguay: studies on Romero, part 2. J Nat Prod 1987;50:1164–6.
- [18] Han G, Li Z, Sun L, Hua H. Chemical constituents of the whole herbs of Salviaplebeia R. Br. Shenyang Yaoke Daxue Xuebao 2009;26:896–9.
- [19] Lv H, Chen J, Li WL, Zhang HQ. Studies on the triterpenes from Loquat leaf (*Eriobotrya japonica*). Chin Tradit Herb Drugs 2008;31:1351–4.
- [20] Altinier G, Sosa S, Aquino RP, Mencherini T, Della Loggia R, Tubaro A. Characterization of topical antiinflammatory compounds in *Rosmarinus* officinalis L. J Agric Food Chem 2007;55:1718–23.
- [21] Wu S, Ma Y, Luo X, Hao X, Wu D. Studies on chemical constituents in root bark of *Paeonia suffruticosa*. Chin Tradit Herb Drugs 2002;33:679–80.
- [22] Zhang Y-J, Yang C.R. Two new ursane glycosides from Prunella vulgaris in France. Yunnan Zhiwu Yanjiu 1995;17:468–72.
- [23] Li J, Liu H, Wang N, Yao X, Li M. Research of chemical constituents from *Geum japonicum* Thunb. var. chinense F. Bolle (II). Chin J Med Chem 2009; 19:135–9.
- [24] Shao Y, Zhou BN, Lin LZ, Cordell GA. Triterpene saponins from Aster yunnanensis. Phytochemistry 1995;38:1487–92.
- [25] Zhang Y, Wu C, Guo L, Chen Y, Han L, Liu E, et al. Triglyceride accumulation inhibitory effects of phenylpropanoid glycosides from *Boschniakia rossica* Fedtsch et Flerov. Fitoterapia 2013;85:69–75.
- [26] Wang Y, Ye WC, Yin ZQ, Zhao SX. Triterpene saponins from Adinandra nitida. Yao Xue Xue Bao 2008;43:504–8.
- [27] Adnyana IK, Tezuka Y, Banskota AH, Xiong Q, Tran KQ, Kadota S. Quadranosides I–V, new triterpene glucosides from the seeds of *Combretum quadrangulare*. J Nat Prod 2000;63:496–500.
- [28] Miyakoshi M, Isoda S, Sato H, Hirai Y, Shoji J, Ida Y. 3α-Hydroxy-oleanene type triterpene glycosyl esters from leaves of *Acanthopanax spinosus*. Phytochemistry 1997;46:1255–9.