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Five new terpenoid glycosides, named as officinoterpenosides A1 (1), A2 (2), B (3), C (4), and D
(5), togetherwith 11 knownones, (1S,4S,5S)-5-exo-hydrocamphor 5-O-β-D-glucopyranoside (6),
isorosmanol (7), rosmanol (8), 7-methoxyrosmanol (9), epirosmanol (10), ursolic acid (11),
micromeric acid (12), oleanolic acid (13), niga-ichigoside F1 (14), glucosyl tormentate (15), and
asteryunnanoside B (16), were obtained from the aerial parts of Rosmarinus officinalis L. Their
structures were elucidated by chemical and spectroscopic methods (UV, IR, HRESI-TOF-MS, 1D
and 2D NMR). Among the new ones, 1 and 2, 3 and 4 are diterpenoid and triterpenoid glycosides,
respectively; and 5 is a normonoterpenoid. For the known ones, 6 was isolated from the
Rosmarinus genus first, and 15, 16were obtained from this species for the first time.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Rosmarinus officinalis L. (Lamiaceae), popularly known
as Rosemary in English and 迷迭香 in Chinese, is a shrub
widely distributed in Europe, Asia, and Africa. And one of its
elective growing areas is the Mediterranean basin where
spontaneous plants are diffusely distributed. Rosemary has
been traditionally used as a culinary spice, mainly to modify
or to improve food flavors as well as in folk medicine, being a
greatly valued medicinal herb [1]. Nowadays, it is one of
the most appreciated sources of natural bioactive compounds
which are of special interest in functional food industries. In
fact, this plant exerts various pharmacological activities, such as
hepatoprotective [2], antibacterial [3], antithrombotic [4],
antiulcerogenic [5], diuretic [6], antidiabetic [7], antinociceptive
[8], anti-inflammatory [9], antitumor [10], and antioxidant [11]
activities.
f TCM Chemistry and
ine, 312 Anshan Road,
5959 6163.
The two types of compounds that aremainly responsible for
the biological activities of this plant are the volatile fraction and
the phenolic constituents. The derived essential oils are mainly
used in local application for their balsamic, antispasmodic and
anti-inflammatory activities [12]. The phenolic constituents
are mainly constituted by three groups: phenolic diterpenes
of an abietic acid related structures (carnosol, carnosic acid,
rosmadial or rosmanol, etc.), and flavonoids (genkwanin,
cirsimaritin) derived from two common flavones: apigenin
and luteolin, and phenolic acids (rosmarinic acid) [13]. Some
scientists have observed that among these constituents, carnosic
acid, carnosol, and abietane diterpenes are the main antioxidant
compounds present in Rosemary [14]. Are there any other active
terpenoids in the plant? And then, the phytochemical research
for it was developed. As a result, 16 terpenoids including five
new ones, officinoterpenosides A1 (1), A2 (2), B (3), C (4), and
D (5), together with 11 known isolates, (1S,4S,5S)-5-exo-
hydrocamphor 5-O-β-D-glucopyranoside (6) [15], isorosmanol
(7) [16], rosmanol (8) [17], 7-methoxyrosmanol (9) [17],
epirosmanol (10) [18], ursolic acid (11) [19], micromeric acid
(12) [20], oleanolic acid (13) [21], niga-ichigoside F1 (14) [22],
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Table 1
1H and 13C NMR data for 1 in CD3OD.

No. δC δH (J in Hz) No. δC δH (J in Hz)

1 35.8 1.27 (ddd, 3.0, 13.5,
13.5)

17 22.6 1.18 (d, 6.5)

3.31 (m, overlapped) 18 28.5 1.02 (s)
2 28.4 1.67 (m), 1.76 (m) 19 16.0 0.92 (s)
3 78.4 3.18 (dd, 4.5, 11.5) 20 17.7 1.40 (s)
4 40.1 – 1′ 105.3 4.74 (d, 8.0)
5 51.3 1.69 (dd, 3.0, 14.0) 2′ 82.9 3.87 (dd, 8.0, 9.0)
6 36.2 2.58 (dd, 3.0, 17.0) 3′ 77.6 3.75 (dd, 9.0, 9.0)

2.62 (dd, 14.0, 17.0) 4′ 70.6 3.52 (dd, 9.0, 9.0)
7 200.9 – 5′ 78.3 3.30 (m)
8 129.6 – 6′ 62.0 3.75 (dd, 4.5, 12.0)
9 140.8 – 3.83 (br. d, ca. 12)
10 41.3 – 1″ 105.4 4.86 (d, 8.0)
11 148.8 – 2″ 75.6 3.43 (m,

overlapped)
12 150.2 – 3″ 77.5 3.43 (m,

overlapped)
13 132.5 – 4″ 71.1 3.42 (dd, 9.0, 9.0)
14 122.2 7.46 (s) 5″ 78.4 3.34 (m)
15 41.0 2.63 (m, overlapped) 6″ 62.4 3.68 (dd, 5.0, 12.0)

3.30 (dd, 6.0, 13.0) 3.83 (br. d, ca. 12)
16 68.0 4.16 (m)
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glucosyl tormentate (15) [23], and asteryunnanoside B
(16) [24] were isolated and identified. Among the new
ones, 1 and 2, 3 and 4 are diterpenoid and triterpenoid
glycosides, respectively; and 5 is a normonoterpenoid. This
paper deals with the isolation and structure elucidation of
the new compounds.

2. Experimental

2.1. General

Optical rotations were measured on a Rudolph Autopol® IV
automatic polarimeter. IR spectra were recorded on a Varian
640-IR FT-IR spectrophotometer. UV spectra were obtained on
a Varian Cary 50 UV–Vis spectrophotometer. NMR spectra
were determined on a Bruker 500 MHz NMR spectrometer at
500 MHz for 1H and 125 MHz for 13C NMR, with TMS as an
internal standard. Positive- and Negative-ion HRESI-TOF-MS
were recorded on an Agilent Technologies 6520 Accurate-Mass
Q-Tof LC/MS spectrometer.

Column chromatographies (CC) were performed onmacro-
porous resin D101 (Haiguang Chemical Co., Ltd., Tianjin, China),
Silica gel (74–149 μm, Qingdao Haiyang Chemical Co., Ltd.,
Qingdao, China), and ODS (50 μm, YMC Co., Ltd., Tokyo, Japan).
Preparative HPLC (PHPLC) column (Cosmosil 5C18-MS-II
(20 mm i.d. × 250 mm, Nakalai Tesque, Inc., Tokyo, Japan))
were used to purify the constituents. Pre-coated TLC plateswith
Silica gel GF254 (Tianjin Silida Technology Co., Ltd., Tianjin,
China) were used to detect the purity of isolates achieved by
spraying with 10% aqueous H2SO4–EtOH, followed by heating.

2.2. Plant material

The dried aerial parts of R. officinalis were collected from
Butarie, Rwanda and identified by Dr. Li Tianxiang (The Hall of
TCMSpecimens, Tianjin University of TCM, China). The voucher
specimenwas deposited at the Academy of Traditional Chinese
Medicine of Tianjin University of TCM (No. 20110910).

2.3. Extraction and isolation

The dried aerial parts of R. officinalis (2.5 kg) were refluxed
with 95% EtOH. The solvent was evaporated under reduced
pressure to yield the 95% EtOH extract (455 g). Then, the
extract (379 g) was partitioned in a CHCl3–H2Omixture (1:1,
v/v) to give both CHCl3 (269 g) andH2O (100 g) partitions. Then,
the H2O layer (100 g) was subjected to D101macroporous resin
column chromatography (CC) and eluted with H2O and 95%
EtOH, successively. As a result, H2O (47 g) and 95% EtOH (45 g)
eluted fractions were obtained.

The EtOH fraction (36 g) was subjected to normal phase
silica gel CC [CHCl3 → CHCl3–MeOH (100:3→ 100:5→ 100:7,
v/v) → CHCl3–MeOH–H2O (10:3:1 → 7:3:1, v/v/v) → MeOH]
to yield 11 fractions (Fr. 1–11).

Fraction 7 (5.5 g) was subjected to ODS CC [MeOH–H2O
(20:80→ 30:70→ 40:60→ 50:50→ 60:40→ 70:30→ 100:0,
v/v)] to yield 9 fractions (Fr. 7-1–7-9). Fraction 7-5 (1610.0mg)
was also purified by PHPLC [CH3CN–1% CH3COOH (18:82, v/v)],
as a result, 19 fractions (Fr. 7-5-1–7-5-19) were obtained.
Fraction 7-5-6 (36.8 mg) was subjected to PHPLC [CH3CN–1%
CH3COOH (10:90, v/v)] to offer (1S,4S,5S)-5-exo-hydrocamphor
5-O-β-D-glucopyranoside (6, 3.5 mg). Fraction 8 (5480.0 mg)
was subjected to PHPLC through gradient elution [MeOH–H2O
(30:70 → 50:50 → 70:30 → 100:0, v/v)] to yield 22 fractions
(Fr. 8-1–8-22). Fraction 8-9 (121.6 mg) was purified by PHPLC
[CH3CN–H2O (11:89, v/v)] to yield officinoterpenoside D
(5, 44.0 mg). Fraction 8-21 (70.3 mg) was purified by
PHPLC [CH3CN–H2O (28:72, v/v)] to yield glucosyl tormentate
(15, 3.8 mg). Fraction 9 (10.0 g) was separated by ODS CC
[MeOH–H2O (20:80 → 30:70 → 40:60 → 50:50 → 60:40 →
70:30 → 100:0, v/v)] to yield 14 fractions (Fr. 9-1–9-14).
Fraction 9-10 (1510.0 mg) was purified by Sephadex LH-20 CC
[CHCl3–MeOH (1:1, v/v)] to yield 8 fractions (Fr. 9-10-1–9-10-
8). Fraction 9-10-2 (512.2 mg) was subjected to PHPLC
[MeOH–1% CH3COOH (45:55, v/v)] to obtain 14 fractions
(Fr. 9-10-2-1–9-10-2-14). Fraction 9-10-2-11 (85.0 mg) was
purified by PHPLC [CH3CN–1% CH3COOH (23:77, v/v)] to yield
officinoterpenoside C (4, 6.1 mg) and niga-ichigoside F1
(14, 34.7 mg). Fraction 10 (6.3 g) was subjected to PHPLC
through gradient elution [MeOH-H2O (25:75 → 40:60 →
60:40→ 80:20→ 100:0, v/v)] to yield 35 fractions (Fr. 10-1–
10-35). Fraction 10-26 (93.7 mg) was purified by PHPLC
[CH3CN–1% CH3COOH (16:84, v/v)] to yield officinoterpenoside
A2 (2, 7.1 mg). Fraction 10-27 (756.1 mg) was subjected to
Sephadex LH-20 CC (MeOH) to yield 9 fractions (Fr. 10-27-1–
10-27-9). Fraction 10-27-3 (217.5 mg) was purified by
PHPLC [CH3CN–1% CH3COOH (18:82, v/v)] to obtain
officinoterpenosides A2 (2, 10.7 mg) and A1 (1, 41.2 mg).
Fraction 10-31 (198.5 mg) was separated by PHPLC [CH3CN–
1% CH3COOH (26:74, v/v)] to give 5 fractions (Fr. 10-31-1–10-
31-5). Fraction 10-31-2 (14.1 mg) was purified by Sephadex
LH-20 (MeOH), and officinoterpenoside B (3, 8.2 mg) was
obtained. Asteryunnanoside B (16, 6.3 mg) was isolated from
fraction 10-33 (132.4 mg) by PHPLC [CH3CN–1% CH3COOH
(28:72, v/v)].

The CHCl3 partition (200 g) of the rosemary extract was
subjected to silica gel CC [CHCl3 → CHCl3–MeOH (100:1 →
100:3→ 100:5→ 100:7, v/v)→ CHCl3–MeOH–H2O (10:3:1→



Table 2
1H and 13C NMR data for 2 in CD3OD.

No. δC δH (J in Hz) No. δC δH (J in Hz)

1 35.8 1.42 (ddd, 4.0, 14.0, 14.0) 16 68.3 4.12 (m)
3.43 (ddd, 4.0, 4.0, 14.0) 17 22.9 1.11 (d, 6.5)

2 27.7 1.88 (m) 18 28.3 1.13 (s)
2.11 (m) 19 16.6 1.02 (s)

3 89.6 3.31 (dd, 4.5, 11.5) 20 17.6 1.41 (s)
4 40.4 – 1′ 106.7 4.35 (d, 8.5)
5 51.6 1.79 (dd, 3.0, 14.0) 2′ 75.6 3.22 (dd, 8.5, 9.0)
6 36.0 2.57 (dd, 3.0, 17.0) 3′ 78.2 3.34 (dd, 9.0, 9.0)

2.62 (dd, 14.0, 17.0) 4′ 71.6 3.32 (dd, 9.0, 9.0)
7 201.2 – 5′ 77.7 3.26 (m)
8 129.7 – 6′ 62.8 3.67 (dd, 5.0, 12.0)
9 140.9 – 3.86 (dd, 2.0, 12.0)
10 41.2 – 1″ 107.6 4.56 (d, 8.0)
11 149.3 – 2″ 75.3 3.52 (dd, 8.0, 9.0)
12 150.6 – 3″ 77.9 3.43 (dd, 9.0, 9.0)
13 132.6 – 4″ 70.8 3.47 (dd, 9.0, 9.0)
14 121.7 7.44 (s) 5″ 78.6 3.30 (m)
15 40.9 2.68 (dd, 6.5, 13.0) 6″ 62.1 3.76 (dd, 4.5, 12.0)

3.19 (dd, 6.5, 13.0) 3.83 (dd, 2.0, 12.0)

Table 4
1H and 13C NMR data for 4 in CD3OD.

No. δC δH (J in Hz) No. δC δH (J in Hz)

1 47.9 0.89 (dd, 12.0, 12.0) 19 41.4 1.10 (dd, 4.0, 13.5)
1.94 (dd, 5.0, 12.0) 1.81 (dd, 13.5, 13.5)

2 69.6 3.78 (ddd, 5.0, 9.0, 12.0) 20 36.8 –

3 85.9 3.04 (d, 9.0) 21 28.9 1.09 (m), 1.79 (m)
4 44.4 – 22 32.4 1.65 (m), 1.75 (m)
5 57.2 0.97 (dd, 3.0, 11.5) 23 23.8 1.22 (s)
6 19.9 1.40 (m), 1.62 (m) 24 66.2 3.38 (d, 11.5)
7 34.2 1.33 (m), 1.47 (m) 4.02 (d, 11.5)
8 40.7 – 25 17.6 0.99 (s)
9 49.3 1.63 (dd, 3.0, 9.0) 26 17.6 0.78 (s)
10 39.1 – 27 26.3 1.17 (s)
11 24.9 1.92 (m) 28 178.0 –

12 123.6 5.27 (t, 3.5) 29 74.3 3.19 (s)
13 144.9 – 30 19.5 0.92 (s)
14 42.9 – 1′ 95.8 5.38 (d, 8.0)
15 29.3 1.17 (m, overlapped) 2′ 73.9 3.33 (dd, 8.0, 9.0)

1.50 (m) 3′ 78.7 3.35 (dd, 9.0, 9.0)
16 24.0 1.73 (m), 2.05 (m) 4′ 71.1 3.35 (dd, 9.0, 9.0)
17 48.3 – 5′ 78.3 3.41 (m)
18 41.8 2.89 (dd, 4.0, 13.5) 6′ 62.4 3.65 (dd, 5.0, 11.5)

3.81 (br. d, ca. 12)
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7:3:1, v/v/v)→MeOH] to yield 23 fractions (Fr. 1–23). Fraction
9 (56.3 g) was further subjected to silica gel CC [Pet. Ether
(PE)→ PE–EtOAc (20:1→ 15:1→ 10:1→ 5:1→ 3:1, v/v)→
EtOAc] to yield 19 fractions (Fr. 9-1–9-19). Fraction 9–16
(5024.0 mg) was purified by PHPLC [MeOH–H2O (90:10, v/v)],
and 13 fractions (Fr. 9-16-1–9-16-13) were given. Fraction
9-16-2 (415.5 mg) was subjected to PHPLC [MeOH–H2O
(70:30, v/v)] to obtain 8 fractions (Fr. 9-16-2-1–9-16-2-8),
out of which, isorosmanol (7, 68.3 mg) and rosmanol
(8, 128.3 mg) were obtained. Fraction 9-16-2-7 (32.8 mg)
was isolated by PHPLC [CH3CN–H2O (45:55, v/v)] to yield
epirosmanol (10, 3.3 mg). Fraction 9-16-4 (629.8 mg) was
Table 3
1H and 13C NMR data for 3 in C5D5N.

No. δC δH (J in Hz) No. δC δH (J in Hz)

1 48.0 1.23 (m, overlapped) 22 37.5 1.88 (ddd, 4.5, 13.0,
13.0)

2.20 (dd, 4.0, 12.5) 1.98 (m, overlapped)
2 68.6 4.03 (m) 23 29.4 1.17 (s)
3 83.9 3.32 (d, 9.5) 24 17.6 0.99 (s)
4 39.8 – 25 17.4 0.96 (s)
5 56.1 0.99 (m, overlapped) 26 16.7 1.07 (s)
6 19.0 1.36 (m), 1.54 (m) 27 24.7 1.64 (s)
7 33.6 1.50 (m), 1.65 (m) 28 177.0 –

8 40.7 – 29 27.0 1.38 (s)
9 47.9 1.90 (dd, 9.5, 9.5) 30 17.0 1.06 (d, 7.0)
10 38.5 – 1′ 93.7 6.15 (d, 7.5)
11 24.2 2.08 (m) 2′ 79.3 4.42 (dd, 7.5, 8.5)
12 128.2 5.50 (t, 3.5) 3′ 79.0 4.28 (dd, 8.5, 9.0)
13 139.5 – 4′ 70.9 4.20 (dd, 9.0, 9.0)
14 42.1 – 5′ 79.1 3.92 (m)
15 29.8 1.36 (m, overlapped) 6′ 62.4 4.32 (dd, 6.0, 11.5)

2.40 (ddd, 5.0, 14.5,
14.5)

4.40 (br. d, ca. 12)

16 26.8 1.21 (m, overlapped) 1″ 104.8 5.64 (d, 7.5)
1.97 (m, overlapped)

17 48.6 – 2″ 75.9 4.05 (dd, 7.5, 9.0)
18 54.5 2.89 (s) 3″ 78.3 4.20 (dd, 9.0, 9.0)
19 72.7 – 4″ 72.9 4.07 (dd, 9.0, 9.0)
20 42.2 1.44 (m) 5″ 78.1 3.97 (m)
21 25.9 2.23 (m, overlapped) 6″ 63.9 4.34 (dd, 6.0, 12.0)

3.08 (ddd, 4.5, 13.0,
13.0)

4.58 (dd, 3.0, 12.0)
subjected to PHPLC [MeOH–H2O (75:25, v/v)] to give 10
fractions (Fr. 9-16-4-1–9-16-4-10). Fraction 9-16-4-9
(53.4 mg) was purified by PHPLC [CH3CN–H2O (41:59, v/
v)] to give 7-methoxyrosmanol (9, 4.7 mg). Fraction 9-16-10
was isolated by PHPLC [MeOH–H2O (88:12, v/v)] to yield
micromeric acid (12, 23.7 mg), oleanolic acid (13, 28.3 mg),
and ursolic acid (11, 16.7 mg). Fraction 9-16-12 was purified
by PHPLC [MeOH–H2O (88:12, v/v)], too, and ten, oleanolic
acid (13, 22.0 mg) was obtained.

2.3.1. Officinoterpenoside A1 (1)
able 5
and 13C NMR data for 4 in C5D5N.

No. δC δH (J in Hz) No. δC δH (J in Hz)

1 47.7 1.28 (m, overlapped) 19 41.0 1.44 (m,
overlapped)

2.25 (dd, 5.0, 12.0) 2.12 (dd, 14.0, 14.0)
2 68.7 4.28 (m) 20 36.4 –

3 85.6 3.55 (d, 9.5) 21 28.9 1.28 (m,
overlapped)

4 44.0 – 1.75 (m,
overlapped)

5 56.5 1.09 (m, overlapped) 22 32.0 1.86 (m)
6 19.3 1.42 (m, overlapped) 23 24.1 1.55 (s)

1.64 (m) 24 65.6 3.71 (d, 10.5)
7 33.5 1.42 (m) 4.44 (d, 11.5)
8 40.0 – 25 17.3 0.99 (s)
9 48.3 1.75 (m, overlapped) 26 17.4 1.10 (s)
10 38.3 – 27 26.1 1.22 (s)
11 24.2 1.97 (m) 28 176.6 –

12 122.7 5.45 (t, 3.0) 29 73.7 3.56 (s)
13 144.3 – 30 19.7 1.09 (s)
14 42.1 – 1′ 95.8 6.32 (d, 8.0)
15 28.3 1.17 (m, overlapped) 2′ 74.1 4.21 (dd, 8.0, 8.5)

2.35 (ddd, 4.5, 14.0,
14.0)

3′ 78.9 4.30 (dd, 8.5, 9.0)

16 23.5 2.00 (m), 2.18 (m) 4′ 71.1 4.36 (dd, 9.0, 9.0)
17 47.5 – 5′ 79.3 4.04 (m)
18 41.2 3.30 (dd, 4.0, 14.0) 6′ 62.2 4.40 (dd, 5.0, 12.0)

4.46 (dd, 2.0, 12.0)
T
1H



Table 6
1H and 13C NMR data for 5 in CD3OD.

No. δC δH (J in Hz) No. δC δH (J in Hz)

1 213.4 – 8 18.8 1.02 (s)
2 130.0 5.86 (d, 1.0) 9 15.1 2.13 (s)
3 185.4 – 1′ 104.3 4.26 (d, 8.0)
4 51.7 – 2′ 74.8 3.13 (dd, 8.0, 9.0)
5 48.6 2.67 (q, 7.5) 3′ 78.1 3.32 (dd, 9.0, 9.0)
6 10.2 1.05 (d, 7.5) 4′ 71.5 3.27 (dd, 9.0, 9.0)
7 73.5 3.58 (d, 9.5) 5′ 77.9 3.26 (m)

3.92 (d, 9.5) 6′ 62.7 3.66 (dd, 5.0, 11.5)
3.87 (dd, 1.5, 11.5)
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White powder. [α]D25 +17.5° (c = 0.89, MeOH); IR νmax (KBr)
cm−1: 3503, 2931, 2867, 1674, 1602, 1560, 1454, 1422, 1320,
1251, 1069, 1023; UVλmax (MeOH) nm (log ε): 312 (3.54), 265
(3.97). 1H NMR (500 MHz, CD3OD) and 13C NMR (125 MHz,
CD3OD) spectroscopic data, see Table 1; HRESI-TOF-MS:
Negative-ion modem/z 671.2899 [M–H]− (calcd for C32H47O15

671.2920).

2.3.2. Officinoterpenoside A2 (2)
White powder. [α]D25 −0.5° (c = 0.85, MeOH); IR νmax

(KBr) cm−1: 3367, 2926, 2851, 1671, 1600, 1560, 1456, 1420,
1364, 1327, 1255, 1221, 1071, 1016; UV λmax (MeOH) nm
(log ε): 312 (3.54), 262 (3.88). 1H NMR (500MHz, CD3OD) and
13C NMR (125 MHz, CD3OD) spectroscopic data, see Table 2;
HRESI-TOF-MS: Negative-ion mode m/z 671.2897 [M–H]−

(calcd for C32H47O15 671.2920).

2.3.3. Officinoterpenoside B (3)
White powder. [α]D25 −6.9° (c = 0.38, MeOH); IR νmax

(KBr) cm−1: 3367, 2919, 2851, 1733, 1641, 1457, 1384, 1077.
1H NMR (500 MHz, C5D5N) and 13C NMR (125 MHz, C5D5N)
spectroscopic data, see Table 3; HRESI-TOF-MS: Negative-
Fig. 1. The new compounds (1–5) obtained
ion mode m/z 847.4210 [M + Cl]− (calcd for C42H68O15Cl
847.4252).

2.3.4. Officinoterpenoside C (4)
White powder. [α]D25+6.2° (c=0.78,MeOH); IRνmax (KBr)

cm−1: 3367, 2932, 2840, 1732, 1648, 1559, 1457, 1267, 1072.
1H NMR (500 MHz, CD3OD) and 13C NMR (125 MHz, CD3OD)
spectroscopic data, see Table 4; 1H NMR (500MHz, C5D5N) and
13C NMR (125 MHz, C5D5N) spectroscopic data, see Table 5;
HRESI-TOF-MS: Negative-ion mode m/z 711.3961 [M +
COOH]− (calcd for C37H59O13 711.3938).

2.3.5. Officinoterpenoside D (5)
White powder. [α]D25 −55.9° (c = 0.88, MeOH); IR νmax

(KBr) cm−1: 3382, 2970, 2916, 2877, 1690, 1618, 1434, 1381,
1320, 1285, 1218, 1162, 1077, 1039, 860; UV λmax (MeOH) nm
(log ε): 224 (4.11). 1H NMR (500 MHz, CD3OD) and 13C NMR
(125MHz, CD3OD) spectroscopic data, see Table 6; HRESI-TOF-
MS: Negative-ion mode m/z 351.1225 [M + Cl]− (calcd for
C15H24O7Cl 351.1216).

2.4. Acid hydrolysis of 1–5

A solution of officinoterpenosides A1–D (1–5, 2.5 mg
each) in 1 M HCl (1 mL) was heated under reflux for 3 h,
respectively. The reaction mixture was neutralized with
Amberlite IRA-400 (OH− form) and removed by filtration.
The aqueous layer was subjected to the HPLC analysis
under the following conditions, respectively: HPLC column,
Kaseisorb LC NH2-60-5, 4.6 mm i.d. × 250 mm (Tokyo Kasei
Co. Ltd., Tokyo, Japan); detection, optical rotation [Chiralyser
(IBZ Messtechnik GMBH, Mozartstrasse 14–16 D-30173
Hannover, Germany)]; mobile phase, CH3CN–H2O (75:25,
v/v); and flow rate 1.0 mL/min. D-Glucose from 1–5 presented
in the aqueous was carried out by comparison of its retention
from the aerial parts of R. officinalis.

image of Fig.�1


Fig. 2. The known terpenes (6–16) obtained from the aerial parts of R. officinalis.
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time and optical rotation with that of authentic samples, tR
17.6 min (positive).

3. Results and discussion

The dried aerial parts of R. officinaliswere refluxedwith 95%
EtOH for 3 times. Evaporation of the solvent was done under
reduced pressure to yield the 95% ethanol extract. The extract
was partitioned in a CHCl3–H2O mixture (1:1) to give both
CHCl3 and H2O partitions. Then, the H2O layer was subjected to
D101 macroporous resin CC, and eluted sequentially with H2O
and 95% EtOH. CHCl3 partition and 95% EtOH eluate from
D101 CC were subjected to normal- and reverse-phase CC, and
finally preparative HPLC (PHPLC) to give 16 terpenoids, which
included five new ones, officinoterpenosides A1 (1), A2 (2),
B (3), C (4), and D (5), together with 11 known isolates,
Fig. 3. The main 1H 1H COSY and H
(1S,4S,5S)-5-exo-hydrocamphor 5-O-β-D-glucopyranoside
(6), isorosmanol (7), rosmanol (8), 7-methoxyrosmanol (9),
epirosmanol (10), ursolic acid (11), micromeric acid (12),
oleanolic acid (13), niga-ichigoside F1 (14), glucosyl tormentate
(15), and asteryunnanoside B (16). Among the known ones,
6 was isolated from the Rosmarinus genus first, and 15 and
16 were obtained from this species for the first time. The
structures of the new compounds 1–5 and known ones were
shown in Figs. 1 and 2, respectively.

Officinoterpenoside A1 (1) was obtained as a white powder
with positive optical rotation ([α]D25 +17.5° in MeOH). The
molecular formula C32H48O15 of it was determined by negative-
ion HRESI-TOF-MS (m/z 671.2899 [M–H]−, calcd for C32H47O15

671.2920). The IR spectrum of 1 suggested the presence of
hydroxyl (3503 cm−1), α,β-unsaturated ketone (1674 cm−1),
aromatic ring (1602, 1560, 1514, 1454 cm−1), and an
MBC correlations of 1 and 2.
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O-glycosidic linkage (1069 cm−1). On acid hydrolysis and
identification with HPLC analysis, the presence of D-glucose
was determined [25]. The 13C NMR (CD3OD, Table 1) spectrum
displayed 32 carbons including 20 carbons for the aglycon, and
12 carbons for two sugar units. The carbon type for 20 carbons
in aglycon of 1 was determined by DEPT experiment,
which sorted by 4 methyls, 4 methylenes, 4 methines, and
8 quaternary carbon signals. Among them, δC 122.2 (C-14),
129.6 (C-8), 132.5 (C-13), 140.8 (C-9), 148.8 (C-11), and
150.2 (C-12) revealed the presence of a penta-substituted
aromatic ring. Meanwhile, in the 1H-1H COSY experiment, the
correlations between δH [1.27 (1H, ddd, J=3.0, 13.5, 13.5 Hz),
3.31 (1H, m), H2-1] and δH 1.67, 1.76 (1H each, both m, H2-2);
δH 1.67, 1.76 (H2-2) and δH 3.18 (1H, dd, J=4.5, 11.5 Hz, H-3);
δH 1.69 (1H, dd, J=3.0, 14.0 Hz, H-5) and δH [2.58 (1H, dd, J=
3.0, 17.0), 2.62 (1H, dd, J=14.0, 17.0), H2-6]; δH [2.63 (1H,m),
3.30 (1H, dd, J = 6.0, 13.0 Hz), H2-15] and δH 4.16 (1H, m,
H-16); δH 4.16 (H-16) and δH 1.18 (3H, d, J = 6.5 Hz, H3-17)
were observed, which indicated the presence of partial
structure written in bold lines (Fig. 3). In the HMBC
experiment, the long-range correlations were observed be-
tween the followingproton and carbon pairs: H-14 andC-9, 12;
H2-15 and C-12–14; H3-17 and C-15, 16; H3-18 and C-3–5, 19;
H3-19 and C-3–5, 18; and H3-20 and C-1, 5, 9, 10 (Fig. 3).
Furthermore, the relative configurations of rings A and B were
elucidated by NOESY experiment. The NOE correlations were
observed between δH 1.67 (Hβ-2) and δH 0.92 (H3-19), 1.40
(H3-20); δH 3.18 (H-3) and δH 1.27 (Hα-1), 1.02 (H3-18), 1.69
(H-5); δH 1.69 (H-5) and δH 1.27 (Hα-1), 2.62 (Hα-6), 1.02
(H3-18); δH 2.58 (Hβ-6) and δH 0.92 (H3-19), 1.40 (H3-20);
δH 0.92 (H3-19) and δH 1.40 (H3-20), which suggested that the
relative configuration of 1 was as shown in Fig. 4 with the
abietane skeleton. Furthermore, the linkages of two D-glucose
were determined by the observed long-range correlations
between δH 4.74 (1H, d, J = 8.0 Hz, H-1′) and δC 150.2 (C-12),
and δH 4.86 (1H, d, J= 8.0 Hz, H-1″) and δC 82.9 (C-2′). On the
basis of the above-mentioned evidence, the structure of 1 was
elucidated, and named as officinoterpenoside A1.

Officinoterpenoside A2 (2) was also isolated as a white
powder. The molecular formula was the same as that of 1,
which was determined by negative-ion HRESI-TOF-MS (m/z
671.2897 [M–H]−, calcd for C32H47O15 671.2920), too. From the
acid hydrolysis of 2with 1.0MHCl, D-glucosewas given, which
was identified by HPLC analysis using an optical rotation
detector [25]. The 1H (500 MHz) and 13C NMR (125 MHz)
(CD3OD, Table 2) spectra of 2, which were assigned by various
Fig. 4. The main NOE correlations for aglycon of 1 and 2.
NMR experiments including 1H 1H COSY, HSQC, HMBC, and
NOESY spectra suggested that 2 had same aglycon as 1 and two
β-D-glucopyranosyl moieties [δH 4.35 (1H, d, J = 8.5 Hz, H-1′),
4.56 (1H, d, J = 8.0 Hz, H-1″)]. According to the long-range
correlations between δH 4.35 (H-1′) and δC 89.6 (C-3), and
δH 4.56 (H-1″) and δC 150.6 (C-12) observed in the HMBC
experiment, the linkages of two D-glucose were determined.
Consequently, the structure of 2 was identified, and named as
officinoterpenoside A2.

Officinoterpenoside B (3) was isolated as a white powder
with negative rotation [[α]D25 −6.9° (c = 0.38, MeOH)]. Its
molecular formula was determined to be C42H68O15 by
negative-ion HRESI-TOF-MS (m/z 847.4210 [M + Cl]−, calcd
for C42H68O15Cl 847.4252). The IR spectrum showed absorption
bands at 3367, 1733, and 1641 cm−1 ascribable to hydroxyl,
carboxyl, and olefin functions, respectively. The 1H NMR
(C5D5N, Table 3) spectrum of 3 showed signals assignable to
sevenmethyls [δ 0.96, 0.99, 1.07, 1.17, 1.38, 1.64 (3H each, all s,
H3-25, 24, 26, 23, 29, 27), 1.06 (3H, d, J = 7.0 Hz, H3-30)], two
methines bearing oxygen function [δ 3.32 (1H, d, J = 9.5 Hz,
H-3), 4.03 (1H, m, H-2)], one tri-substituted olefin [δ 5.50
(1H, t, J = 3.5 Hz, H-12)], together with two anomeric proton
signals [δ 5.64 (1H, d, J=7.5Hz, H-1″), δ 6.15 (1H, d, J=7.5Hz,
H-1′)]. The 13C NMR spectrum displayed 42 carbons including
30 carbons for the aglycon, and 12 carbons for two sugar units.
1H and 13C NMR spectra suggested that 3 was an ursolic acid
type triterpene saponin derivative. In conjunction with the
analysis of theHSQC spectrum, 1H and 13C NMR data for 3were
assigned as shown in Table 3. The 1H 1H COSY experiment on
3 indicated the presence of partial structure written in bold
lines. And in HMBC experiment, long-range correlations were
observed between the following proton and carbon pairs: H-18
and C-20, 28; H3-23 and C-3–5, 24; H3-24 and C-3–5, 23; H3-25
and C-1, 5, 9, 10; H3-26 and C-7–9, 14; H3-27 and C-8, 13–15;
H3-29 and C-18–20; H3-30 and C-19–21; H-1′ and C-28; H-1″
and C-2′ (Fig. 5). On the basis of the abovementioned evidence,
the planar structure of 3was determined, which was the same
Fig. 5. The main 1H 1H COSY and HMBC correlations of 3.
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Fig. 6. The main 1H 1H COSY, HMBC and NOE correlations of 4.
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as pruvuloside A [22] with 2α,3α,19α-trihydroxyl groups. But
the 13C NMR data in 1–5 positions of 3 [δ 48.0 (C-1), 68.6 (C-2),
83.9 (C-3), 39.8 (C-4), 56.1 (C-5)] were significantly different
from those of pruvuloside A [δ 43.0 (C-1), 66.2 (C-2), 79.1
(C-3), 38.7 (C-4), 48.7 (C-5)] [22], which suggested that the
configuration of hydroxyl groups at 2,3-position for the two
compounds was not the same as each other. Meanwhile, the
coupling constant (J = 9.5 Hz) between H-2 and H-3 of
3 indicated that hydroxyl groups at 2,3-positionmutually trans
configuration. On the other hand, the proton and carbon signals
in the 1H and 13C NMR spectra of 3were very similar to those of
glucosyl tormentate (15) [23], except for the signals due to
another β-D-glucopyranosyl part. Finally, acid hydrolysis of it
yielded D-glucose, which was identified by retention time and
optical rotation using chiral detection by HPLC analysis [25].
On the basis of the above mentioned evidence, the structure of
3 was characterized to be officinoterpenoside B.

Officinoterpenoside C (4) was isolated as a white amor-
phous powder having a positive rotation [[α]D25 +6.2° (c =
0.78, MeOH)]. The molecular formula of 4 was determined to
be C36H58O11 by negative-ion HRESI-TOF-MS (m/z 711.3961
[M+ COOH]−, calcd for C37H59O13 711.3938). The IR spectrum
of 4 indicated the presence of hydroxyl, carboxyl, and olefinic
groups. The 1H and 13C NMR (CD3OD, Table 4) spectrum of
4 suggested that it was a triterpene monoglycoside with an
oleanane skeleton. The 1H 1H COSY experiment on 4 indicated
the presence of partial structurewritten in bold lines. The long-
range correlations (Fig. 6) observed in HMBC experiment
indicated that there were two oxymethine groups (δC 69.6,
85.9) and an oxymethylene group (δC 66.2) in ring A, and an
Fig. 7. The main 1H 1H COSY, HMB
oxymethylene group (δC 74.3) in ring E. Finally, the relative
configuration for 4 was determined by NOESY experiment,
which showed NOE correlations between the following proton
pairs: H-2 and H2-24, H3-25; H-3 and H-5, H3-23; H-5 and
H3-23; H-12 and H-18, H3-26; H-18 and H3-30; H2-24 and
H3-25; and H3-25 and H3-26. Furthermore, the chemical shifts
of 3, 5, 23, and 24-positions in ring A (Table 5, in C5D5N) were
in accordancewith those of known sericoside compoundswith
2α,3β,24-OH [δC 24.4 (C-23), 56.4 (C-5), 65.4 (C-24), 85.7
(C-3)] [26], but different from those of quadranoside IV
(2α,3β,23-trihydroxyurs-12-en-28-oic acid β-glucopyranosyl
ester) [δC 14.4 (C-24), 48.2 (C-5), 66.5 (C-23), 78.2 (C-3)] [27].
In addition, comparison of the 13C NMR signals for 29 and
30-positions in 4 [δC 19.7 (C-30), 73.7 (C-29)] with those of
3α,29-dihydroxy-23-oxo-olean-12-en-28-oic acid-28-O-α-
L-rhamnopyranosyl(1 → 4)-β-D-glucopyranosyl(1 → 6)-β-
D-glucopyranosyl ester [δC 19.7 (C-30), 73.6 (C-29)] and
3α,30-dihydroxy-23-oxo-olean-12-en-28-oic acid-28-O-α-
L-rhamnopyranosyl(1 → 4)-β-D-glucopyranosyl(1 → 6)-β-
D-glucopyranosyl ester [δC 28.2 (C-29), 65.4 (C-30)] [28], the
relative configuration of hydroxymethyl group at 20-position
was determined as α. The acid hydrolysis experiment gave
D-glucose as the sugarmoiety [25]. Consequently, the structure
of officinoterpenoside C was elucidated as (4) 2α,3β,24,29-
tetrahydroxyolean-12-en-28-oic acid-28-O-β-D-glucopyranosyl
ester.

Officinoterpenoside D (5) was obtained as a white powder
with a negative rotation [[α]D25 −55.9° (c = 0.88, MeOH)]. It
had the molecular formula, C15H24O7 as deduced from the
negative-ionHRESI-TOF-MS (m/z 351.1225 [M+Cl]−, calcd for
C and NOE correlations of 5.
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C15H24O7Cl 351.1216). The IR absorption band at 1690 cm−1

and the characteristic UVmaxima absorption at 224 nm (4.11)
revealed the presence of an α,β-unsaturated ketone group in 5.
On the acid hydrolysis, D-glucose was yielded [25]. The 1HNMR
and 13C NMR (CD3OD, Table 6) spectra of it showed signals
ascribable to three methyls [δ 1.02, 2.13 (3H each, both s, H3-8,
9), 1.05 (3H, d, J=7.5 Hz, H3-6)], onemethene bearing oxygen
function [δ 3.58, 3.93 (1H each, both d, J = 9.5 Hz, H2-7)], one
methine bearingmethyl group [δ 2.67 (1H, q, J=7.5 Hz, H-5)],
one α,β-unsaturated ketone moiety [δH 5.86 (1H, d, J=1.0 Hz,
H-2); δC 130.0 (C-2), 185.4 (C-3), 213.4 (C-1)], together with a
β-D-glucopyranosyl group [δ 4.26 (1H, d, J = 8.0 Hz, H-1′)].
In HMBC experiment, long-range correlations were observed
between the following proton and carbon pairs: H-2 and C-1,
3–5; H3-6 and C-1, 4, 5; H2-7 and C-4, 5, 8; H3-8 and C-3–5, 7;
H3-9 and C-2–4 (Fig. 7). On the basis of the above-mentioned
evidence, the planar structure of 5 was determined as shown
in Fig. 7. Furthermore, on the NOESY experiment, the NOE
correlations between the following proton pairs: H-2 and H3-8,
H3-9; H-5 andH2-7; H3-8 andH3-6, H3-9were observed, which
suggested that 5 has 2Z,3S*,4S* configuration. Consequently,
the structure of officinoterpenoside D was elucidated, which is
a normonoterpenoid glycoside.
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