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Abstract: Two new taxol analogs 6 and 10 have been prepared from baccatin III (1) and taxol (7a), 
respectively. Like taxol, both compounds were found to promote microtubule formation and stabilization, 
although they were less active than taxol. Both 6 and 10 exhibited cytotoxicity against J774.2 cells; 6 was 
~60-fold less active and 10 was -15-fold less active. © 1997 Elsevier Science Ltd. 

Taxol ®l is a novel diterpenoid extracted from the bark of the westem yew, Taxus brevifolia, 2 and a 

particularly significant new lead for the treatment of cancer. 3 Thus far, it has been approved by the FDA for 

the treatment of advanced ovarian and metastatic breast cancer and is currently in phase II and III clinical 

trials for lung and other cancers. 4 Adding to the medicinal significance of this compound is the finding that it 

operates through a novel mode of action involving facilitated assembly and stabilization of microtubules. 5 

While the molecular basis for this action is not understood, advances in recent years have done much to 

define which structural features of taxol are required for activity. 6 Photoaffinity labeling studies with taxol 

analogs indicate that taxol binds to the N-terminal region of [~-tubulin and a peptide containing ~-tubulin 

amino acid residues 217-231. 7 

One of the principal goals associated with research in this area is the identification of the structural 

features of taxol required for its biochemical and physiological performance. Ultimately, such research can be 

expected to lead to the identification of structurally simpler and clinically more effective analogs that could be 

made in a practical fashion through total synthesis. 8 Toward this end, we now report the synthesis and assay 

of the novel taxol analogs 6 and 10. The former is a representative member of a new analog class, the first to 

incorporate selenium and is readily derived from baccatin III (1). The latter is a novel C-ring contracted 

analog which has also been independently obtained from taxol (7a) by the Kingston group. 9 

The synthesis of 6 started with baccatin III (1) (Scheme I). Reductive cleavage of the 10-acetoxy group 

was achieved with samarium diiodide and acetic acid in THF. 10 Treatment of the resultant product (2) with 

an excess amount (10-15 equiv) of selenium dioxide in pyridine at 85 °(2 yielded the selenophene-containing 

compound 3 ~1 in 45% yield together with 10-deacetoxy-13-oxo-baccatin III (4) (25%). Coupling of 3 with 

[~-lactam 512 in the presence of sodium hexamethyldisilazide (2.5 equiv) in THF followed by deprotection 

with hydrogen fluoride in pyridine led to the selenophene-contalning taxol analog 6 in 85% yield. The 

structure of 6 was assigned on the basis of 1H, 13C, 77Se NMR spectra, and FAB-HRMS 13 and by 

comparison with the 7[~-epimer, which was independently obtained through the coupling procedure by using 

only one equivalent of sodium hexamethyldisilazide. 

For the preparation of the 5-membered C-ring taxol analog (10), taxol (Ta) was treated with t- 

butyldimethylsilyl chloride and imidazole in dimethyl fonnamidO 4 to give 2'-(t-butyldimethylsilyl)taxol (To) 
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in 99% yield (Scheme II). Treatment of 7b with trifluoromethanesulfonic anhydride and pyridine in 

dichloromethane at 25 °C and subsequently with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) at the same 

temperature for 20 h afforded 7-deoxy-2'-(t-butyldimethylsilyl)-A6,7-taxol (8a) in 70% yield together with 

24% of the deprotected compound 8b. Dihydroxylation of 8a with osmium tetroxide in pyridine-THF (1:1) 

at 25 °C yielded 2'-(t-butyldimethylsilyl)-6~-hydroxy-7-epitaxol (9) in 85% yield. 15 Cleavage of diol 9 with 

lead tetraacetate in the presence of sodium bicarbonate in benzene at 25 °C yielded three compounds. 
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(a) TBSCI, Imid~zole, DMF; (b) Tf20, Pyr then DBU; (c) OsO4, Pyr-THF 
(d) Pb(OAc) 4, NaHCO 3, Phil; (e) HF, Pyr 

The major component was isolated in 40% yield after deprotection of the t-butyldimethylsilyl group. 

Extensive spectroscopic characterization of this compound 16 led to the structural assignment as the C ring- 

contracted taxol 10. 

Both structurally modified taxol analogs 6 and 10 were directly compared to taxol for their biological 

activities. At identical concentrations, both analogs were found to promote polymerization of tubulin and 

stabilize the microtubules, although neither was as active as taxol. Both analogs are also less cytotoxic than 

taxol for J774.2 cells. ED50 values for taxol and analogs 6 and 10 are shown in Table I. These results show 

that activity is retained in A- and C-ring modified taxol analogs 6 and 10. Both analogs can mimic the active 
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binding conformation of taxol. Conformational analyses of 6 and 10 by NMR spectroscopy and molecular 

modeling indicated that both assume conformations similar to taxol in chloroform.17 

Table I: Cytotoxicity of taxol analogs 6 and 10 versus taxol 

compound EDso(gM) 
taxol 0.016 

6 0.90 
10 0.25 

Exponentially growing J774.2 cells (2 x 104 / mL) were placed in multi-well plates. Either taxol, 6, or 
10 was added at various concentrations and incubated at 37°C. After 72h the cell number was determined. 

Previous work has shown that taxol-like activity is retained in taxol analogs with partially modified or 

deleted functionality. The current and related studies suggest that activity can also be retained through 

modifications of the taxol carbotricyclic core. Further studies are in progress. 
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