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Abstract: A straightforward procedure for the synthesis of 4-meth-
yl-1,3-dioxolane-4-carbaldehydes 2 is reported. The new procedure
involves m-CPBA oxidation of 5-methyl-4H-1,3-dioxins 5 in
dichloromethane  to give 4-(m-chlorobenzoyloxy)-5-hydroxy-5-
methyl-1,3-dioxanes 6 and acid-catalyzed rearrangement of 6 to
carbaldehydes 2. By using commercially available m-CPBA the ox-
idation and rearrangement can be carried out as a one-pot reaction.
The procedure is also applicable to 4H-1,3-dioxins. Oxidation of 5
in methanol led to 4-methoxy-5-hydroxy-1,3-dioxanes 7, which did
not undergo acid-catalyzed rearrangement. 
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Derivatives  of  2-C-methylglyceraldehyde   1   such   as
4-methyl-1,3-dioxolane-4-carbaldehydes  2  and related
4-hydroxymethyl-4-methyl-1,3-dioxolanes 3 (Figure 1)
have found many applications in natural product synthe-
ses, e.g., the synthesis of brevetoxin B,1 bicyclomycin,2 to-
copherol,3 and pheromones.4 Several methods have been
developed for the preparation of 2 and 3. Enantiomerical-
ly pure carbaldehydes 2 and corresponding open-chain
derivatives have been obtained from D-mannitol,1,5 D-glu-
cose,6 penam derivatives,7 or by resolution of racemic 38

in multi-step reaction sequences. Other syntheses involve
enzymatic methods to give hydroxymethyl derivatives 3,
which have been oxidized to carbaldehydes 2.9 Sharpless
epoxidation  of  2-methyl-2-propen-1-ol and monopro-
tected 2-methylene-1,3-propanediol, respectively, or
Sharpless dihydroxylation of O-protected 2-methyl-2-
propen-1-ol derivatives gave precursors for the synthesis
of 2 with 47-95% ee.8,10

Figure 1

Recently  we  reported  a  novel nickel-catalyzed asym-
metric double-bond isomerization of 5-methylene-1,3-di-
oxanes 4, which afforded optically active 5-methyl-4H-
1,3-dioxins 5 with high ee (5d 92% ee).11 We envisaged,
that dioxins 5 might be suitable building blocks for the
synthesis of 1 by m-CPBA oxidation and subsequent hy-
drolysis (Scheme 1). To our knowledge the m-CPBA oxi-

dation of cyclic vinyl acetals has not yet been
investigated, but we concluded from the well-known m-
CPBA oxidation of cyclic vinyl ethers12 that reaction of 5
with m-CPBA should lead to acylals 6 rather than to ep-
oxides, which should be hydrolyzed to give 1.

Scheme 1

However, first experiments on the m-CPBA oxidation of
5d in dichloromethane surprisingly afforded 4-methyl-
1,3-dioxolane-4-carbaldehyde 2d in a single step upon
distillative workup of the crude reaction mixture (Scheme
1).11 Since 2d still carries the tert-butyl substituent in the
2-position of the dioxolane ring, we argued that the prim-
arily formed oxidation product immediately undergoes ei-
ther a thermal or an acid-catalyzed rearrangement. In or-
der to get further information about the mechanism of this
unexpected type of rearrangement, we studied the m-
CPBA oxidation of 5-methyl-4H-1,3-dioxins 5a-e in var-
ious solvents (Tables 1, 2). Treatment of 5-methyl-4H-
1,3-dioxins 5a-e with commercially available m-CPBA13

in methanol readily afforded a diastereomeric mixture of
4-methoxy-5-hydroxy-1,3-dioxanes 7a-e (Scheme 2, Ta-
ble 1). Acetals 7 proved to be thermally very stable.
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Scheme 2

Table 1 m-CPBA oxidation of 5-methyl-4H-1,3-dioxins 5 in MeOH

a) Reaction with 1.1 equivalents of technical m-CPBA13 at room tem-
perature for 4 h, then workup. b) Isolated yields. Values in brackets
refer to yields of the crude products (GC). c) Determined by NMR
spectroscopy; cf. Figure 2. d) The second diastereomer has not been
determined.

Figure 2

On the other hand, reaction of 5 with commercially avail-
able m-CPBA in dichloromethane followed by distillative
workup of the crude products led to aldehydes 2a-e. How-
ever, inspection of the NMR spectra indicated, that the
crude products mainly comprised m-chlorobenzoic esters
6 and less amounts of aldehydes 2. Since commercially
available m-CPBA contains a large amount of m-chlo-
robenzoic acid and water (about 30%),13 we therefore in-
vestigated the oxidation of 5 with dry m-chlorobenzoic
acid-free m-CPBA.14 In this case, the m-chlorobenzoic es-
ters 6 could be obtained in 90-98% yield (Scheme 3). At-
tempted distillation of recrystallized esters 6 only led to
decomposition, but distillation of crude 6 in the presence
of small amounts of m-chlorobenzoic acid again gave al-
dehydes 2 in high yields (Table 2). The rearrangement of
6d and 6e results in a 75:25 diastereomeric mixture of
S*,S*-2d,e and S*,R*-2d,e. From these results it can be
concluded, that attack of an acid on 6 induces ring-open-

ing to give a carboxonium ion 8, which then rearranges to
2. The appearance of an intermediate carboxonium ion in
the rearrangement step emerges from the low yields ob-
tained for the reaction of 5a, which can be rationalized by
the formation of a less favoured primary carboxonium ion
8a.

Scheme 3

Table 2 m-CPBA oxidation of 5-methyl-4H-1,3-dioxins 5 in CH2Cl2

a) Reaction  with 1.05 equivalents of dry acid-free m-CPBA14 in di-
chloromethane at room temperature for 4 h, then workup. b) Melting
of crude 6 in the presence of 2 mol-% m-chlorobenzoic acid. Distilla-
tive removal of 2 at 120 °C reaction temperature and reduced pressure
(2b: bp 64 °C/31 Torr; 2c: bp 53 °C/1 Torr; 2d: bp 56 °C/11 Torr; 2e:
52 °C/11 Torr). c) Reaction with 1.2 equivalents technical m-CPBA13

in  dichloromethane  at  room  temperature  for 4 h, then heating to
120°C and distillative removal of 2 under reduced pressure.15 d) De-
termined by NMR spectroscopy;16 cf. Figure 2.

To evaluate the applicability of this new process we also
examined the m-CPBA oxidation of 4H-1,3-dioxins
(Scheme 4). In a typical example the reaction of 4H-1,3-
dioxin 11 readily prepared from 1,3-dioxane-5-one 9 with
m-CPBA in dichloromethane again produced m-chloro-
benzoic ester 12, which rearranged upon distillation in the
presence of acid to give 1,3-dioxolane-4-carbaldehyde
13.17
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Scheme 4

In summary, m-CPBA oxidation of 5-methyl-4H-1,3-di-
oxins 5 in dichloromethane and acid-induced ring-con-
traction of the primarily formed acylals 6 provide a
practical method for the synthesis of 4-methyl-1,3-diox-
olane-4-carbaldehydes 2. The procedure is generally ap-
plicable to 4H-1,3-dioxins. Work on the synthesis of
enantiomerically pure carbaldehydes 2 by starting with
enantiomerically pure 5-methyl-4H-1,3-dioxins 5 is cur-
rently in progress.
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