

0040-4039(95)01083-1

New Strategy for the Synthesis of the Taxane Diterpenes : Formation of the BC-Rings of Taxol *via* a [5+2]-Pyrylium Ylide-Alkene Cyclization, Ring Expansion Strategy

William Bauta, John Booth, Mary Ellen Bos, Mark DeLuca, Louis Diorazio, Timothy Donohoe, Nicholas Magnus, Philip Magnus^{*}, José Mendoza, Philip Pye, James Tarrant, Stephen Thom and Feroze Ujjainwalla

Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712.

Abstract: The BC-rings of taxol can be synthesized using an intramolecular [5+2]-pyrylium ylide-alkene cyclization, followed by gem-methylcyclopropanation and reductive cleavage of the internal cyclopropane bond.

At first sight the synthesis of taxol 1 appears to present some formidable stereochemical problems.¹ Traditionally, quaternary carbon atoms are the most difficult stereogenic centers to install in terpenoid synthesis. Consequently, we considered that the absolute stereochemistry of the C-19 methyl group should be established at an early stage. **Scheme 1** outlines our retrosynthetic analysis.

To implement **Scheme 1** requires Claisen condensation of 2-furoyl chloride **8** with 6methyl-heptenoate **9** [(Xc is a chiral auxiliary, X = OH or H (7-deoxy series)], followed by reduction to **7**. Oxidative furylcarbinol rearrangement of **7** to **6**, intramolecular pyrylium ylide cyclization^{2,3} *via* **5** to **4** and cyclopropanation leads to **3**. Reductive cleavage of the internal cyclopropane bond⁴ and alkylation of the C-2 enolate provides the *seco*-ring-A compound **2** (Z = OH or H). Classical Claisen-Dieckmann condensation or more modern methods would complete the A-ring. This letter describes the synthesis of the BC-rings of taxol using this strategy.

OTBS

14

d

Conditions:-a) n-Bu4N+1-/Zn dust/TMSCI/1,2-bromoethane/PhMe/N,N-dimethylacetamide/85°C/12h, followed by methacryloyl chloride/Pd(PPh3)2Cl2/40°C/2h.5 b) BH3.SMe2/(R)-(-)-diphenyl-2-pyrrolidino methanol oxazaborole (cat)/THF/-20°C/18h, (81%, from 10). c) TBSCI/Imidazole/DMF/25°C/4h (86%). d) i. NaOH/Me2CHOH/82°C ii. (COCI)2/PhMe/CH2CI2/DMF (cat)/-10°C to 25°C/12h. iii. LiXc/THF/PhMe/-78°C/4h (99% from 13). e) LiN(TMS)2/THF/-78°C/2h, followed by 2-furoyl chloride/2h. f) i. LiBH4/MeOH/-20 to 0°C/12h (85%, from 14). ii. TBSCI/Imidazole/DMF/-18°C/1h (87%). g) ¹O2/rose bengal/MeOH/CH2Ci2/hv/12h, Me2S work-up (80%). h) Ac2O/NEt3/DMAP/CH2Ci2/0°C to 25°C/0.75h (91%). i) DBU/PhMe/110°C/1.5h (77%, 19 and 20, 10:1).

Scheme 2, outlines the synthesis of the pyrylium-ylide precursor 18 and its cyclization to 19. Reduction of the enone carbonyl group in 11 with Me₂S.BH₃/THF in the presence of a catalytic amount of the chiral reagent (R)-(-)-diphenyl-2-pyrrolidino methanol oxazaborole catalyst gave 5S-12 >93%ee (81% from 10).6 Treatment of 14 with LiN(TMS)₂/THF at -78 °C and quenching the resulting amide enolate with 2-furoyl chloride gave 15.7 It proved unnecessary to isolate 15, which could be reduced in situ by the addition of LiBH4/MeOH to give the diol 16 (R = H) (85% from 14) in a single operation. The chiral auxiliary was recovered (>70%) and recycled. Oxidative rearrangement of 16 (R = TBS) by treatment with singlet oxygen, followed by a reductive work-up gave 17 (80%).³ Heating 18 in toluene in the presence of DBU gave 19 and 20 (77%, 10:1 respectively). There were other minor components present (<5%) that were clearly diastereoisomers of the major products. The absolute configuration of 19 was confirmed by comparison of the CD/ORD curve with an analog, whose absolute stereochemistry was determined by X-ray crystallography.⁸ A similar sequence of transformations allowed us to convert 21 into the 7-deoxy analog 22. In both cases, the formation of 19 and 22 as the major products,

corresponds to the least strained (MM2) cycloaddition adduct. The C-4 substituent controls the stereochemistry of the C-19 angular methyl group.

Bromination of **19**, and treatment with triethylamine gave the α -bromoenone **23** (100%). Exposure of **23** to an aqueous solution of sodium cyanide under phase transfer conditions gave the β -cyanoenone **24** (96%). Treatment of **24** with isopropylidenetriphenylphosphorane/THF/-78° to 25°C gave **25** (95%) as a single stereoisomer (**Figure 1**, Chem 3D from X-ray coordinates, X = H).⁹ Treatment of **25** with sodium naphthalenide/THF/-78°C cleaved the internal cyclopropane bond to generate a dianion, which upon protonation with sat. aq. NH₄Cl gave a mixture of **26** α - and **26** β - (100%, 5:2, for X = H; 95%, 2:1, for X = OTBS).¹⁰

Conditions:-a) Br₂/Et₃N/CH₂Cl₂ (100%). b) NaCN/PTC (96%). c) Me₂C=PPh₃/THF/-78° to 25°C (95%). d) Sodium naphthalenide/THF/-78°C (100%).

The structure of the derived C-20 *p*-nitrobenzoate of 26α (X = H) was established by X-ray crystallography (**Figure 2**, Chem 3D from X-ray coordinates). Treatment of the mixture of 26α and 26β with MeONa/MeOH resulted in equilibration to give 26β as the major epimer (*ca.* 10:1).¹¹

As will be seen in the accompanying paper, both nitrile epimers $26\alpha/\beta$ can be used to construct the A-ring of taxol. This unique strategy for the assembly of the taxol BC-rings with correct absolute stereochemistry is readily amenable to analog variations since the 7-hydroxy, and the 16, 17, and 19 methyl groups can be replaced by other substituents.

Acknowledgments. The National Institutes of Health and the Welch Foundation are thanked for their support of this research. W. B and J. M thank the NIH for postdoctoral fellowships. Dr. Vince Lynch is thanked for X-ray crystallographic structural determinations.

References and footnotes

1. Nicolaou, K. C.; Dai, W-M.; Guy, R. K., Angew. Chem. Int. Ed. Engl. **1994**, *33*, 15. Swindell, C. S., Organic Preparations and Procedures Int. **1991**, *23(4)*, 465. Guénard, D.; Guéritte-Voegelein, F.; Potier, P., Acc. Chem. Res. **1993**, *26*, 160. Nicolaou, K. C.; Yang, Z.; Liu, J. J.; Ueno, H.; Nantermet, P. G.; Guy, R. K.; Clairborne, C. F.; Renaud, J.; Couladouros, E. A.; Paulvannan, K.; Sorensen, E. J., Nature **1994**, *367*, 630. Holton, R. A.; Somoza, C.; Kim, H.-B.; Liang, F.; Biediger, J.; Boatman, P. D.; Shindo, M.; Smith, C. C.; Kim, S.; Nadizadeh, H.; Suzuki, Y.; Tao, C.; Vu, P.; Tang, S.; Zhang, P.; Murthi, K. K.; Gentile, L. N.; Liu, J. H., *J. Am. Chem. Soc.* **1994**, *116*, 1597. Holton, R. A.; Kim, H.-B.; Somoza, C.; Liang, F.; Biediger, J.; Boatman, P. D.; Shindo, M.; Smith, C. I.; Liu, J. H., J. Am. Chem. Soc. **1994**, *116*, 1597. Holton, R. A.; Kim, H.-B.; Suzuki, Y.; Tao, C.; Vu, P.; Tang, S.; Nadizadeh, H.; Suzuki, Y.; Tao, C.; Liang, F.; Biediger, J.; Boatman, P. D.; Shindo, M.; Smith, C. N.; Liu, J. H., J. Am. Chem. Soc. **1994**, *116*, 1597. Holton, R. A.; Kim, H.-B.; Suzuki, Y.; Tao, C.; Vu, P.; Tang, S.; Zhang, P.; Murthi, K. K.; Gentile, L. N.; Liu, J. H., J. Am. Chem. Soc. **1994**, *116*, 1599.

Wender, P. A.; Mascarenas, J. L., *J. Org. Chem.* 1991, *56*, 6267. Wender, P. A.; Lee, H. Y.;
Wilhelm, R. S.; Williams, P. D., *J. Am. Chem. Soc.* 1989, *111*, 8954. Hendrickson, J. B.; Farina, J. S., *J. Org. Chem.* 1980, *45*, 3359. Sammes, P. G.; Street, L. J., *J. Chem. Soc., Chem. Commun.* 1983, 666. Sammes, P. G.; Street, L. J., *J. Chem. Soc., Chem.* 1982, 1056.

3. Williams, D. R.; Benbow, J. W.; Allen, E. E., Tetrahedron Lett. 1990, 31, 6769.

4. For a general review of the uses of cyclopropanes in synthesis see:- Reissig, H-U., "Organic synthesis *via* cyclopropanes: principles and applications," in The Chemistry Of the Cyclopropyl Group Part 1. Ed., Rappoport, Z., John Wiley, New York, **1987**.

5. Tamaru, Y.; Ochai, H.; Nakamura, T.; Yoshida, Z., *Org. Synth.* **1988**, *67*, 98. Jubert C.; Knochel, P., *J. Org. Chem.* **1992**, *57*, 5425.

6. Corey, E. J.; Bakshi, R. K.; Shibata, S.; Chen P.; Singh, V. K., *J. Am. Chem. Soc.* **1987**, *109*, 7925.

7. Evans, D. A.; Ennis, M. D.; Le, T.; Mandel, N.; Mandel, G., *J. Am. Chem. Soc.* **1984**, *106*, 1154.

8. All structures are drawn in their correct absolute configuration. The details of this aspect of this research will be described in a full account.

9. Grieco, P. A.; Finkelhor, R. S., *Tetrahedron Lett.* 1972, 3781. Devos, M. J.; Hevesi, L.; Bayet, P.; Krief, A., *Tetrahedron Lett.* 1976, 3911.

10. Dauben, W. G.; Deviny, E. J., *J. Org. Chem.* 1966, *31*, 3794. Zimmerman, H. E.; Hancock, K. G.; Licke, G. C., *J. Am. Chem. Soc.* 1968, *90*, 4892. Stork, G.; Uyeo, S.; Wakamatsu, T.; Grieco, P. A.; Labovitz, J., *J. Am. Chem. Soc.* 1971, *93*, 4945. Gompper, R.; Schwarzensteiner, M. L., *Angew. Chem. Int. Ed. Engl.* 1982, *21*, 438.

11. All new compounds were purified by chromatography and/or crystallization, and characterized by IR, NMR, MS and HRMS. The numbering system used for the taxanes is as shown.

(Received in USA 13 February 1995; revised 19 April 1995; accepted 6 June 1995)