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Abstract: The BC-rings of taxol can be synthesized using an intramolecular [5+2]-pywlium ylide-alkene cyclization, 
followed by gern-methylcyclopropanation and r~u~ive cleavage of the internal cyclopropane bond. 

At first sight the synthesis of taxol 1 appears to present some formidable stereochemical 

problems. 1 Traditionally, quatemaw carbon atoms are the most difficult stereogenic centers to 

install in te~enoid synthesis. Consequently, we considered that the absolute stereochemist~ of 

the C-19 methyl group should be established at an early stage. Scheme 1 outlines our 

retrosynthetic analysis. 
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To implement Scheme 1 requires Claisen condensation of 2-furoyl chloride 8 with 6- 

methyl-heptenoate 9 [(Xc is a chiral auxiliary, X = OH or H (7-deoxy series)], followed by reduction 

to 7. Oxidative fuwIca~inol rearrangement of 7 to 6, intramolecular pywlium ylide cyclization 2,3 

via 5 to 4 and cyclopropanation leads to 3. Reductive cleavage of the internal cyclopropane 

bond 4 and alkylation of the C-2 enolate provides the seco-ring-A compound 2 (Z = OH or H). 

Classical Claisen-Dieckmann condensation or more modem methods would complete the A-ring. 

This letter describes the synthesis of the BC-nngs of taxol using this strategy. 
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Conditions:-a) n-Bu4N+l'/Zn dustlTMSCI/1,2-bromoethanelPhMelN, N-dimethylacetamide185°C/12h, followed by 
methacryloyl chloridelPd(PPh3)2CI2140°CI2h. 5 b)BH3.SMe21(R)-(-)-diphenyl-2-pyrrolidino methanol oxazaborole 
(cat)/THF/-2O°C/18h, (81%, from 10). c) TBSCIIImidazolelDMFI25°CI4h (86%). d) i. NaOH/Me2CHOH/82°C ii. 
(COCI)2/PhMe/CH2CI2/DMF (cat)/-10°C to 25°C/12h. iii. LiXclTHFIPhMel-78°CI4h (99% from 13). e) LiN(TMS)2/THF/- 
78°C/2h, followed by 2-furoyl chloride/2h, f) i. LiBH4/MeOH/-20 to 0°C/12h (85%, from 14). ii. TBSCI/Imidazole/DMF/- 
18°C/1 h (87%). g) 102/ros e bengal/MeOH/CH2Cl2/hv/12h, Me2S work-up (80%). h) Ac20/NEt3/DMAP/CH2CI2/0°C to 
25°C/0.75h (91%). i) DBU/PhMe/110°C/l.5h (77%, 19 and 20, 10:1). 

S c h e m e  2, outlines the synthesis of the pyrylium-ylide precursor 18 and its cyclization to 

19. Reduction of the enone carbonyl group in 11 with Me2S.BH3/THF in the presence of a 

catalytic amount of the chiral reagent (R)-(-)-diphenyl-2-pyrrolidino methanol oxazaborole catalyst 

gave 5S-12 >93%ee (81% from 10). 6 Treatment of 14 with LiN(TMS)2/THF at -78 °C and 

quenching the resulting amide enolate with 2-furoyl chloride gave 15. 7 It proved unnecessary to 

isolate 15, which could be reduced in situ by the addition of LiBH4/MeOH to give the diol 16 (R = 

H) (85% from 14) in a single operation. The chirel auxiliary was recovered (>70%) and recycled. 

Oxidative rearrangement of 16 (R = TBS) by treatment with singlet oxygen, followed by a reductive 

work-up gave 17 (80%). 3 Heating 18 in toluene in the presence of DBU gave 19 and 20 (77%, 

10:1 respectively). There were other minor components present (<5%) that were clearly 

diastereoisomers of the major products. The absolute configuration of 19 was confirmed by 

comparison of the CD/ORD curve with an analog, whose absolute stereochemistry was 

determined by X-ray crystallography.8 A similar sequence of transformations allowed us to convert 

21 into the 7-deoxy analog 22. In both cases, the formation of 19 and 22 as the major products, 
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corresponds to the least strained (MM2) cycloaddition adduct. The C-4 substituent controls the 

stereochemistry of the C-19 angular methyl group. 
Bromination of lg, and treatment with tdethylamine gave the ¢-bromoenone 23 (100%). 

Exposure of 23 to an aqueous solution of sodium cyanide under phase transfer conditions gave 
the 13-cyanoenone 24 (96%). Treatment of 24 with isopropylidenetriphenylphosphorane/'l'HF/-78 ° 

to 25°C gave 25 (95%) as a single stereoisomer (Figure 1, Chem 3D from X-ray coordinates, X = 

H). 9 Treatment of 25 with sodium naphthalenide/THF/-78°C cleaved the internal cyclopropane 
bond to generate a dianion, which upon protonation with sat. aq. NH4CI gave a mixture of 26~- 

and 2613- (100%, 5:2, for X = H; 95%, 2:1, for X = OTBS). 10 
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Scheme 3 (X = OTBS or H) 
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Conditions>a) Br2/Et3N/CH2CI 2 (100%). b) NaCN/PTC (96%). c) Me2C=PPh3/THF/-78 ° to 25°C (95%). 
d) Sodium naphthalenide/THF/-78°C (100%). 

The structure of the derived C-20 p-nitrobenzoate of 26~ (X = H) was established by X-ray 
crystallography (Figure 2, Chem 3D from X-ray coordinates). Treatment of the mixture of 26c~ and 
261~ with MeONa/MeOH resulted in equilibration to give 26~ as the major epimer (ca. 10:1).11 

FIGURE 1 

from X-ray coordinates • 
Chem 3D of 26~ (-PNB) 
from X-ray coordinates 

As will be seen in the accompanying paper, both nitrile epimers 26~/1~ can be used to 

construct the A-ring of taxol. This unique strategy for the assembly of the taxol BC-rings with 
correct absolute stereochemistry is readily amenable to analog variations since the 7-hydroxy, and 

the 16, 17, and 19 methyl groups can be replaced by other substituents. 
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