Synthesis and crystal structure of methyl 2-amino-2,6-dideoxy- α -D-glucopyranoside-6-sulfonic acid

José G. Fernández-Bolaños^{a,*}, Joaquín Morales^a, Salud García^a, M. Jesús Diánez^b, M. Dolores Estrada^b, Amparo López-Castro^b and Simeón Pérez^b

^a Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apdo. 553, Sevilla (Spain)

^b Instituto de Ciencias de Materiales de Sevilla y Departamento de Física de la Materia Condensada, C.S.I.C.-Universidad de Sevilla, Apdo. 1065, Sevilla (Spain)

(Received February 5th, 1993; accepted April 21st, 1993)

ABSTRACT

Methyl 2-amino-2,6-dideoxy- α -D-glucopyranoside-6-sulfonic acid (8) was prepared by oxidation of methyl 3,4-di-O-acetyl-6-S-acetyl-2-benzamido-2-deoxy-6-thio- α -D-glucopyranoside with hydrogen peroxide in acetic acid followed by N- and O-deacylation with aqueous sodium hydroxide. Compound 8 was also obtained by oxidation of methyl 3,4-di-O-acetyl-6-S-acetyl-2-deoxy-2-[(2,2-dimethoxycarbonylvinyl)amino]-6-thio- α -D-glucopyranoside followed by deacetylation with Amberlite IR-120 (H⁺) resin. An X-ray analysis of 8, crystallised as a dihydrate, was carried out.

INTRODUCTION

There is a growing interest in the synthesis of sugar sulfonic $acids^{1-6}$ and nucleoside sulfonic $acids^7$ which are chemically and biologically more stable than the corresponding sulfates. Few natural⁸ and synthetic⁹⁻¹³ amino sugar sulfonic acids are known. They can be obtained as zwitterions^{8,9,11,12} in which the sulfonic acid is neutralised with the amino group, forming an inner salt.

We have described¹¹ the preparation of 2-amino-2,6-dideoxy-D-glucopyranose-6-sulfonic acid (5) by oxidation of 2-acetamido-1,3,4-tri-O-acetyl-6-S-acetyl-2-deoxy-6-thio- β -D-glucopyranose with hydrogen peroxide in acetic acid. We now report the preparation of methyl 2-amino-2,6-dideoxy- α -D-glucopyranoside-6sulfonic acid (8) which cannot be formed by acid-catalysed glycosylation of 5 due to the protonation of the amino group¹⁴.

^{*} Corresponding author.

¹ H NMR dati	a (ô in pț	om, J in H	tz) for so	lutions of	f 2, 4, 10,	and 11 in	cDCl ₃							
Compound	H-1	H-2	H-3	H-4	H-5	II-6a	H-6b	HN	OMe	OAc	SAc	HC	COOMe	MeAr
2	4.79	4.50	5.32	5.07	3.89	3.26	3.05	6.38	3.39	1.19	2.34			
v	1 25	C2 V	75 3	2012	4.03) 01	2 01	6 30	3 15	2.10				
r		101	2222	1012	COL	1111	1111		01-0					
										2.10				
10	4.80	3.40	5.25	4.93	4.01	4.13	4.12	9.01	3.43	1.96		7.87	3.70	2.46
										1.97			3.78	
11	4.80	3.44	5.26	4.90	3.96	3.18	3.11	9.01	3.46	1.96	2.34	7.89	3.69	
										2.07			3.77	
	$J_{1,2}$	J _{2,3}	J _{3,4}	J _{4,5}	J _{5,6a}	$J_{5,6b}$	$J_{6a,6b}$	J _{2,NH}	J _{1',NH}					
2	3.6	10.7	9.6	9.6	2.9	7.1	- 14.2	9.4						
4	3.6	10.7	9.6	9.6				9.4						
10	3.5	10.0	9.6	9.6			- 11.0	9.4	13.8					
11	3.6	10.0	9.7	9.7	3.2	6.1	- 14.2	10.0	13.9					

TABLE I

 13 C NMR data (δ in ppm) for solutions of 2, 4, 10 and 11 in CDCl₃

TABLE II

¹ H NMR data	(d in ppm,	J in Hz) for	3 and 8								
Compound	H-1	H-2	H-3	H-4	H-5	H-6a	H-6b	H	OMe	H0-2	H0-3
3 a	4.71	3.94	3.71	3,13	3.65	3.28	2.84	8.22	3.28	4.91	5.35
<i>q</i> 8	4.91	3.28	3.78	3.27	4.01	3.35	3.04		3.42		
	$J_{1,2}$	J ₂₃	J _{3,4}	J _{4,5}	J _{5,6a}	J _{5,6b}	$J_{6a,6b}$	J _{2,NH}			
3 a	3.6	10.6	8.7	9.5	2.5	8.6	-13.5	8.0			
<i>q</i> 8	3.7	10.6	0.0	9'6	1.8	9.8	- 14.8				
^a In (CD.).SO	b In D.O						1				

TABLE III

š I (LL3/20C.

J.G. Fernández-Bolaños et al. / Carbohydr. Res. 248 (1993) 1-14

Compound	C-1	C-2	C-3	C-4	C-5	C-6	OMe	PhCO
3 a	98.2	55.0	70.4	74.0	70.4	41.8	55.4	167.3
8 ^b	96.6	54.6	70.6	73.0	68.9	52.5	56.3	

¹³C NMR data (δ in ppm) for 3 and 8

^{*a*} In $(CD_3)_2$ SO. ^{*b*} In D_2 O.

TABLE IV

RESULTS AND DISCUSSION

Methyl 3,4-di-O-acetyl-6-S-acetyl-2-benzamido-2-deoxy-6-thio- α -D-glucopyranoside (2) was prepared from 1¹⁵ by nucleophilic displacement of the tosyloxy group with potassium thioacetate in butanone. Deacetylation of 2 with methanolic sodium methoxide afforded the crystalline disulfide 3, which was characterised as the tetraacetate 4. The structures 2–4 were assigned on the basis of analytical, IR, and NMR data (Tables I–IV). Oxidation of 2 with hydrogen peroxide in acetic acid containing sodium acetate gave sulfonate 6 together with a small amount of partially deacetylated sulfonates, as deduced by ¹H NMR spectroscopy. Compound 6 did not crystallise, and was deprotected by treatment with boiling aqueous sodium hydroxide for 60 h followed by deionisation with Amberlite IR-120(H⁺) resin to give crystalline 8.

The aminosulfonic acid 8 was also prepared by oxidation of thioacetate 11, in which the amino group is protected by the 2,2-dimethoxycarbonylvinyl group¹⁷. The oxidation of 11 with hydrogen peroxide in acetic acid buffered with sodium acetate gave 7 together with products of partial deacetylation of 7 as deduced by

¹H NMR spectroscopy. Treatment of the mixture with Amberlite IR-120 (H⁺) resin gave 8 in a quantitative yield. Deprotection of the amino group with chlorine in chloroform as the oxidising agent has been described^{16,17}.

Compound 11 was prepared from glycoside 9^{17} by conventional tosylation with tosyl chloride in pyridine followed by acetylation with acetic anhydride and nucleophilic displacement of the tosyloxy group with potassium thioacetate. The chelated structure of 10 and 11 was confirmed by NMR¹⁷ (Tables I and II) and IR data^{17,18} (see Experimental). The mass spectrum of 10 and 11 contained peaks for M⁺. The structures assigned to fragments of 10 and 11 (see Experimental) are similar to those reported for acylated 2-deoxy-2-[(2,2-diethoxycarbonylvinyl)amino]-D-glucopyranose¹⁹.

Compound 8 crystallised as a dihydrate, as deduced from the analytical data and from the X-ray crystallography study (see below). The ${}^{4}C_{1}$ conformation for 8 was evident from the ${}^{3}J_{\text{HH}}$ values (Table III). The $J_{5,6a}$ and $J_{5,6b}$ values indicate^{20,21} that the preferred conformation about the C-5–C-6 bond is gauche-trans²² (gt) (12) corresponding to $\omega = \text{O-5-C-5-C-6-S}$ values of 60°. Assignments of the ${}^{13}\text{C}$ signals of 8 (Table IV) were based on heteronuclear 2D correlated experiments.

The structure of **8** was confirmed by X-ray analysis, and an ORTEP²³ view of the molecule along the *a* axis together with the atomic numbering is shown in Fig. 1. The atomic coordinates are listed in Table V. Bond lengths and angles, shown in Table VI, conform to the tabulated values of carbohydrates^{24,25}, and the typical asymmetry of endocyclic bonds O-5–C-1 and O-5–C-5 (1.415 and 1.443 Å, respectively) caused by the anomeric effect is observed²⁶.

The geometry observed for the pyranoid ring is consistent with a ${}^{4}C_{1}$ conformation, with no significant distortion from a perfect chair. The ring substituents O-3 and C-6 are on one side, and N, O-1, and O-4 are on the other side of the best plane defined by C-1, C-2, C-3, C-4, C-5, and O-5. In terms of ring-puckering coordinates (Cremer and Pople²⁷), amplitude and phase magnitudes are Q = 0.563(3) Å, $\phi = -82(4)^{\circ}$, and $\theta = 3.9(3)^{\circ}$ for the sequence O-5-C-1-C-2-C-3-C-4-C-5. The asymmetry parameters²⁸ are ΔC_{s} (C-2) = 0.005(2) and ΔC_{2} (C-2-C-1) = 0.009(1).

Fig. 1. ORTEP view of **8** along the a axis, showing the atomic numbering. The ellipsoids enclose 50% probability.

The C-S bond length and the bond lengths and angles about the sulfonate group are comparable to those reported for the sulfonic acid 5^{29} and for other sulfonic acid structures^{30,31}. The lengths of the three S-O bonds are practically the same, indicating that the negative charge on the the SO₃⁻ group is delocalized over all the oxygen atoms.

Some selected Newman projections are shown in Fig. 2. The glycosidic torsion angle $\phi = O-5-C-1-O-1-C-1'$ is 73° according to the exo-anomeric effect^{26,32}. The torsional angle $\omega = O-5-C-5-C-6-S$ is 85°, with a 25° deviation from the *gt*

Atom	x / a	y/b	z/c	eq U _{iso}
s	3064(1)	8615(1)	8824(1)	357(2)
N	8211(3)	8597(2)	3384(3)	338(8)
O-1	7323(2)	7992(1)	6148(3)	392(7)
O-3	6878(3)	10267(1)	3400(2)	378(7)
O-4	5085(2)	10589(1)	6057(2)	324(8)
O-5	4925(2)	8213(1)	5623(2)	336(7)
O-61	3758(3)	7768(1)	8761(3)	523(10)
O-62	1549(2)	8521(2)	9010(3)	602(11)
O-63	3705(4)	9185(2)	9943(3)	631(12)
C-1	6279(3)	8030(2)	5016(4)	326(10)
C-2	6711(3)	8742(2)	3885(4)	298(9)
C-3	6592(3)	9651(2)	4582(3)	280(9)
C-4	5131(3)	9772(2)	5255(3)	283(9)
C-5	4815(3)	9046(2)	6392(3)	278(9)
C-6	3313(3)	9124(2)	7000(4)	345(10)
C-1′	7242(5)	7227(3)	7080(5)	585(16)
OW-1	14(3)	9215(2)	5701(3)	490(10)
OW-2	1675(3)	6461(2)	9849(3)	522(10)

TABLE V

Atom coordinates ($\times 10^4$) and eq $U_{iso}(\times 10^4)$

S-C-6	1.785(3)	0-5-C-1	1.415(4)	
S-O-62	1.451(2)	C-2-C-1	1.525(4)	
S-O-61	1.454(3)	C-2-C-3	1.521(4)	
S-O-63	1.442(3)	0-1-C-1	1.398(4)	
O-3-C-3	1.422(4)	O-1-C-1'	1.427(5)	
N-C-2	1.502(4)	C-5C-6	1.522(4)	
O-4-C-4	1.432(4)	C-5-C-4	1.518(4)	
O-5-C-5	1.443(4)	C-4-C-3	1.514(4)	
O-61-S-O-63	111.9(2)	O-5-C-5C-6	107.3(2)	
O-62-S-O-63	113.5(2)	C-6-C-5-C-4	110.7(2)	
O-62-S-O-61	111.2(2)	SC-6-C-5	113.5(2)	
C-6-SO-63	106.4(2)	C-2-C-1-O-1	107.2(2)	
C-6-SO-61	107.2(1)	O-5-C-1-O-1	112.6(2)	
C-6-S-O-62	105.8(1)	O-5-C-1-C-2	110.0(2)	
C-5-O-5-C-1	114.4(2)	O-4-C-4-C-5	108.3(2)	
N-C-2-C-3	108.7(2)	C-5-C-4-C-3	110.0(2)	
N-C-2-C-1	109.6(2)	O-4-C-4-C-3	108.8(2)	
C-1-C-2-C-3	112.0(2)	C-2-C-3-C-4	109.5(2)	
C-1-O-1-C-1'	113.4(3)	O-3-C-3-C-4	111.9(2)	
O-5-C-5-C-4	109.1(2)	O-3-C-3-C-2	107.6(2)	

Bond lengths (Å) and angles (°) for 8

conformation found in solution. The torsional angles C-5–C-6–S–O-63 (75°) and C-5–C-6–S–O-61 (-45°) present a 15° deviation on the staggered form.

The crystal structure is stabilised by an extensive system of intermolecular hydrogen bonds (Table VII). The network of some of these hydrogen bonds is shown in the (a, b) projection³³ of the packing in Fig. 3.

The molecules pack to form a compacted structure where there are two water-of-hydration molecules, accepting and donating H-bonds to symmetry-related pairs of molecules. Each molecule of 8 is hydrogen-bonded to two other molecules by bonds between N and O-61, forming "molecular chains" in which an amino group of a molecule is linked to the sulfonic group of the next one. There

TABLE VI

TABLE VII

Geometry of the hydrogen-bonding system

Donor-H · · · · acceptor	$\mathbf{D}\cdots\mathbf{A}^{a}$	D-H ^a	$H \cdots A^a$	$D-H\cdots A^{b}$
$\overline{N-H}$ · · · O-61(x + 1/2, - y + 3/2, - z + 1)	2.85	0.94	1.95	156
N-H···O-4($-x + 3/2, -y + 2, z - 1/2$)	2.87	0.96	2.03	145
$N-H\cdots OW-1(x+1, y, z)$	2.80	0.95	1.92	154
OW-1-H · · · O-63($-x + 1/2, -y + 2, z - 1/2$)	2.80	1.00	1.86	155
$OW-2-H\cdots O-61(x, y, z)$	2.96	0.97	2.05	154
OW-2-H···O-63($x - 1/2, -y + 3/2, -z + 2$)	2.98	0.94	2.24	133

^a (Å), ^b (°).

Fig. 3. PLUTO drawing of 8 in the unit cell.

are also two N \cdots O-4 hydrogen bonds between units of two chains. The two water molecules are involved in four hydrogen bonds, in three as donor and in one as acceptor, reinforcing H₂O-2 the cohesion into the chain and H₂O-1 the cohesion between the chains.

EXPERIMENTAL

General methods.—Melting points are uncorrected. Optical rotations were measured with a Perkin–Elmer 241 polarimeter. FTIR spectra (KBr discs) were recorded with a Bomem MB-120 spectrometer. ¹H (200 MHz) and ¹³C NMR (50.3 MHz) spectra were recorded with a Varian XL-200 for solutions in CDCl₃ and (CD₃)₂SO. ¹H (300 MHz) and ¹³C NMR (75.5 MHz) spectra were recorded with a Bruker AMX-300 for solutions in D₂O (internal DOH 4.75 ppm and internal 1,4-dioxane at 67.4 ppm). Heteronuclear 2D correlated spectra were obtained in order to assist in signal assignments. EI (70 eV)- and CI (150 eV)-mass spectra were obtained using a Kratos MS-80 RFA instrument, with an ionising current of 100 and 500 μ A, respectively, an accelerating voltage of 4 kV, and a resolution of 1000 (10% valley definition). The elemental composition of the ions was determined with a resolution of 10 000 (10% valley definition).

Methyl 3,4-di-O-acetyl-6-S-acetyl-2-benzamido-2-deoxy-6-thio- α -D-glucopyranoside (2).—To a solution of 1¹⁵ (10.3 g, 19.2 mmol) in butanone (80 mL) was added potassium thioacetate (3 g, 26.3 mmol), and the mixture was boiled under reflux for 4 h. Insoluble material was collected and washed with acetone (20 mL), the combined filtrate and washings were concentrated to dryness, and a solution of the residue in CH₂Cl₂ (50 mL) was washed with water (2 × 50 mL), dried (MgSO₄), and concentrated. The residue was crystallised from EtOH to give 2 (7.6 g, 90%), mp 159–161°C, $[\alpha]_D^{22} + 120^\circ$, $[\alpha]_{578}^{22} + 124^\circ$, $[\alpha]_{546}^{22} + 141^\circ$, $[\alpha]_{435}^{22} + 238^\circ$ (c 1, CH₂Cl₂); R_f 0.85 (20:1 EtOAc-hexane); ν_{max} 3350 (NH), 1746 (C=O acetate), 1694 (C=O thioacetate), 1649 (Amide I), 1543 (Amide II), 1240 (acetate), 1605, 1581, 1491, and 723 cm⁻¹ (phenyl). Mass spectrum (CI): m/z 440 (M⁺+ 1, 100%), 408 (M⁺- MeO, 86), 380 (M⁺- AcO, 8), 366 (M⁺- MeO - CH₂CO, 16), 348 (M⁺- MeO - AcOH, 5), 336 (M⁺- AcOH - Ac, 4), 304 (M⁺ - AcOH - AcS, 10), 105 (PhCO⁺, 50). The ¹H and ¹³C NMR are given in Tables I and II. Anal. Calcd for C₂₀H₂₅NO₈S: C, 54.67; H, 5.73; N, 3.19. Found: C, 54.86; H, 5.73; N, 3.37.

6,6'-Dithiobis(methyl 2-benzamido-2,6-dideoxy- α -D-glucopyranoside) (3).—A mixture of 2 (7.6 g, 17.3 mmol) and methanolic 1% NaOMe (25 mL, 4.6 mmol) was stirred overnight at room temperature. TLC (9:1 CH₂Cl₂-MeOH) showed complete conversion of 2 into the thiol (R_f 0.75) together with the disulfide 3 (R_f 0.43). The mixture kept at 0°C gave several crops of crystalline 3 (4.5 g, 84%), mp 258–260°C (from MeOH), $[\alpha]_D^{22} + 265^\circ$, $[\alpha]_{578}^{22} + 272^\circ$, $[\alpha]_{546}^{22} + 315^\circ$, $[\alpha]_{435}^{22} + 548^\circ$ (*c* 1, pyridine); ν_{max} 3450, 3300 (NH, OH), 2834 (MeO), 1638 (Amide I), 1535, 1531 (Amide II), 1603, 1578, 1489, 716, and 690 cm⁻¹ (phenyl). Mass spectrum (EI): m/z 312 (M⁺/2, 0.5%), 262 (M⁺/2 - S - H₂O, 5), 105 (PhCO⁺, 100), 77 (Ph⁺, 38). The ¹H and ¹³C NMR are given in Tables III and IV. Anal. Calcd for $C_{28}H_{36}N_2O_{10}S_2$: C, 53.84; H, 5.81, N, 4.47, S, 10.27. Found: C, 53.64; H, 5.94; N, 4.16; S, 10.41.

6,6'-Dithiobis(methyl 3,4-di-O-acetyl-2-benzamido-2,6-dideoxy- α -D-glucopyranoside) (4).—Conventional acetylation of 3 (0.15 g, 0.24 mmol) with pyridine (1.5 mL) and Ac₂O (1.5 mL) gave 4 (0.16 g, 93%), mp 224–226° (from EtOH), $[\alpha]_D^{22} + 249°$, $[\alpha]_{578}^{22} + 257°$, $[\alpha]_{546}^{22} + 295°$, $[\alpha]_{435}^{22} + 511°$ (c 1, CH₂Cl₂), R_f 0.92 (10:1 ethyl ether-hexane); ν_{max} 3339 (NH), 2838 (MeO), 1753, 1740 (C=O acetate), 1649 (Amide I), 1526 (Amide II), 1242, 1225 (acetate), 1603, 1582, 1490, 716, and 692 cm⁻¹ (phenyl). Mass spectrum (EI): m/z 792 (M⁺, 5%), 429 (M⁺/2 + SH, 2), 397 (M⁺/2 + 1, 5), 276 (M⁺/2 - 2AcOH, 10), 105 (PhCO⁺, 100), 77 (Ph⁺, 20). The ¹H and ¹³C NMR are given in Tables I and II. Anal. Calcd for C₃₆H₄₄N₂O₁₄S₂: C, 54.53; H, 5.59; N, 3.53. Found: C, 54.43; H, 5.70; N, 3.75.

Methyl 3,4-di-O-acetyl-2-deoxy-2-[(2,2-dimethoxycarbonylvinyl)amino]-6-Otoluene-p-sulfonyl- α -D-glucopyranoside (10).—To a stirred solution of 9^{17} (0.7 g, 2.09 mmol) in pyridine (7 mL) at -15° C was added slowly solid *p*-toluenesulfonyl chloride (0.79 g, 4.18 mmol) followed, after 3 h, by Ac₂O (7 mL). The mixture was stored for 12 h at 0°C, poured into ice-water and extracted into CH₂Cl₂ (15 mL), washed with 2 M HCl, satd aq NaHCO₃, and water, and dried (MgSO₄). Flash chromatography (CH₂Cl₂) gave 10 (0.59 g, 55%) as a syrup, $[\alpha]_{D}^{21} + 144^{\circ}$, $[\alpha]_{578}^{21}$ + 151°, $[\alpha]_{546}^{21}$ + 175°, $[\alpha]_{435}^{21}$ + 334° (c 1, CH₂Cl₂); R_f 0.27 (5:1 ethyl ether-hexane); v_{max} 3280, 3202 (NH), 2846 (CH₃O), 1755 (C=O acetate), 1719 (C=O free), 1665 (C=O chelated), 1610 (C=C and NH), 1232 (acetate), 1190, 1179 (SO₂), 804 (aromatic and C-O-S). Mass spectrum (EI): m/z 573.1494 (M⁺, 19%, calcd 573.1516), 542 (M⁺- MeO, 17), 513 (M⁺- AcOH, 8), 453 (M⁺- 2AcOH, 6), 411 $(M^+ - 2AcOH - CH_2CO, 7), 201$ [CHOCH₂NHC(COOMe)⁺₂, 100], 169 $[CNCHC(COOMe)_{2}^{+}, 39], 155 (MeC_{6}H_{4}SO_{2}^{+}, 41), 91 (MeC_{6}H_{4}^{+}, 44).$ The ¹H and ¹³ C NMR are given in Tables I and II. Anal. Calcd for $C_{24}H_{31}NO_{13}S$: C, 50.26; H, 5.45; N, 2.46, S, 5.59. Found: C, 50.27; H, 5.55; N, 2.87; S, 5.48.

Methyl 3,4-di-O-acetyl-6-S-acetyl-2-deoxy-2-[(2,2-dimethoxycarbonylvinyl)amino]-6-thio- α -D-glucopyranoside (11).—To a solution of 10 (0.8 g, 1.47 mmol) in butanone (10 mL) was added potassium thioacetate (0.2 g, 1.75 mmol), and the mixture was boiled under reflux for 4 h. Insoluble material was collected and washed with acetone, the combined filtrate and washings were concentrated to dryness, and a solution of the residue in CH₂Cl₂ was washed with water, dried (MgSO₄), and concentrated to yield 11 (0.62 g, 93%) which was sufficiently pure for the next step. An analytical sample, purified by preparative TLC (5:1 ethyl ether-hexane), was isolated as a syrup, $[\alpha]_D^{22} + 130^\circ$, $[\alpha]_{578}^{22} + 137^\circ$, $[\alpha]_{546}^{22} + 161^\circ$, $[\alpha]_{435}^{22} + 314^\circ$ (c 1, CH₂Cl₂); R_f 0.48 (5:1 ethyl ether-hexane); ν_{max} 3279, 3260 (NH), 2841 (MeO), 1753 (C=O acetate), 1719 (C=O free), 1695 (thioacetate), 1665 (C=O chelated), 1609 (C=C and NH), 1231 (acetate). Mass spectrum (EI): m/z477.1313 (M⁺, 32%; calcd 477.1305), 446 (M⁺ – MeO, 20), 417 (M⁺ – AcOH, 10), 201 [OCHCH₂NHCHC(COOMe)₂⁺, 92], 198 [AcSCH₂CHCOAcCCH⁺, 100], 169 $[CNCHC(COOMe)_2, 40]$. The ¹H and ¹³C NMR are given in Tables I and II. Anal. Calcd for C₁₉H₂₇NO₁₁S: C, 47.79; H, 5.70; N, 2.93; S, 6.72. Found: C, 48.15; H, 5.37; N, 3.00; S, 6.47.

Methyl 2-amino-2,6-dideoxy- α -D-glucopyranoside-6-sulfonic acid (8).—Procedure A. To a solution of 2 (2.27 g, 5.16 mmol) and NaOAc (0.423 g, 5.16 mmol) in AcOH (20 mL) was added aq 33% w/v hydrogen peroxide (4.8 mL, 46.44 mmol). After 24 h at 35°C, TLC (6:2:1:1 EtOAc-MeOH-AcOH-water) showed complete conversion of 2 (R_f 1) into a major product (6, R_f 0.72) together with a small amount of a more polar by-product. The solution was concentrated (0.5 mmHg) and then coconcentrated with EtOH (3 × 10 mL). A solution of the residue (2.40 g) in 1 M NaOH (5 mL) was boiled under reflux for 60 h, then deionised with Amberlite IR-120(H⁺) resin and concentrated. The residue was washed with ethyl ether and hot EtOH, and crystallised from EtOH-water to give 8 (1.09 g, 72%), $[\alpha]_{D}^{21} + 104^{\circ}, [\alpha]_{578}^{21} + 105^{\circ}, [\alpha]_{546}^{21} + 124^{\circ}, [\alpha]_{435}^{21} + 208^{\circ}$ (c 1, H₂O), R_f 0.15; ν_{max} 3528, 3455, 3310, 3130 (NH₃⁺, OH), 2845 (CH₃O), 1638, 1630, 1538 (NH₃⁺), 1232, 1204 and 1169 cm⁻¹ (SO₃⁻). The ¹H and ¹³C NMR are given in Tables III and IV. Anal. Calcd for C₇H₁₅NO₇S · 2H₂O: C, 28.67; H, 6.52; N, 4.77; S, 10.93. Found: C, 29.01; H, 6.58; N, 4.73; S, 11.44.

Procedure B. To a solution of 11 (0.23 g, 0.48 mmol) and NaOAc (0.044 g, 0.54 mmol) in AcOH (3 mL) was added aq 33% w/v hydrogen peroxide (0.6 mL, 5.8 mmol). After 24 h at 35°C, the solution was concentrated (0.5 mmHg) and then coconcentrated with EtOH. The ¹H NMR spectrum of the crude mixture showed a mixture of two main compounds lacking the enamino group. A solution of the mixture (0.223 g) in water (20 mL) containing Amberlite IR-120(H⁺) resin was heated under reflux for 5 h, filtered, concentrated, and coconcentrated with EtOH. The NMR spectrum of the residue (0.143 g, 100%) showed pure 8.

Crystal analysis^{*}.—Compound 8 crystallised as prisms from EtOH-water. A systematic search in reciprocal space, using an Enraf-Nonius CAD-4 diffractometer, showed that crystals belonged to the orthorhombic system. The unit-cell dimensions and their standard deviations, obtained and refined at room temperature with MoK α radiation ($\lambda = 0.7107$ Å) by using 25 selected reflections and the standard CAD-4 software, were a = 9.466(1), b = 15.299(6), c = 8.715(1) Å, Z = 4. The unit cell volume (V) was 1262.1(5) Å³ and the absorption coefficient (μ) was 2.86 cm⁻¹. D_c was 1.54 g cm⁻³ and D_m measured by flotation was 1.53 g cm⁻³; F(000) = 624; space group $P2_12_12_1$.

A single crystal of $0.32 \times 0.32 \times 0.56$ mm³ was glued at the end of a glass wire mounted on a rotation-free goniometer head. All quantitative data were obtained using graphite-monochromated radiation. The vertical and horizontal apertures in front of the scintillation counter were adjusted so as to minimize the background

^{*} Atomic coordinates for this structure have been deposited with the Cambridge Crystallographic Data Centre. The coordinates may be obtained, on request, from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK.

counts without loss of the net peak intensity. The $\omega/2\theta$ scan mode was used; 2100 reflections were recorded ($2^{\circ} < \theta < 30^{\circ}$). The resulting data-set was transferred to a VAX computer; for all subsequent calculations, the X-Ray System package³⁴ was used.

Two standard reflections measured every hour during the entire data collection period showed no significant trend. The raw step-can data were converted into intensities and corrected for Lorentz and polarization factors. From 2100 measured reflections, 1742 having $I > 3\sigma(I)$ were used to determine and refine the structure, $R_{int} = 0.005$. The structure was solved using MULTAN-80³⁵. Isotropic least-squares refinement converged to R = 0.11. Further empirical absorption correction DIFABS³⁶ was applied. Maximum and minimum absorption correction factors were 1.40 and 0.80, respectively. Anisotropic refinement, followed by difference Fourier synthesis, allowed the location of most of the H atoms. Positional parameters and anisotropic thermal parameters of the non-H atoms were refined. The H atoms were introduced in the structure factor calculations with isotropic thermal parameters as the atoms to which they were bonded, but not refined. The final conventional agreement factors were R = 0.042 and $R_w = 0.043$ for 1742 observed reflections and 163 variables; maximum shift/error = 0.012 and the goodness of fit = 1.97. The function minimised was $\sum w(|F_0| - |F_c|)^2$ with $\omega = 1/\sigma^2$ (F_o). A final difference map revealed no significant maxima ($\Delta \rho = \pm 0.4$ $e^{A^{-3}}$). Atomic scattering factors were taken from the International Tables for X-Ray Crystallography³⁷.

ACKNOWLEDGMENTS

We thank the Dirección General de Investigación Científica y Técnica (PB-88-0268 and PB-89-0540) and the Junta the Andalucía for financial support. El Monte, Caja de Ahorros de Huelva y Sevilla is thanked for a grant (to S.G.).

REFERENCES

- 1 M. Miyano and A.A. Benson, J. Am. Chem. Soc., 84 (1962) 59-62.
- 2 J. Lehmann and W. Weckerle, Carbohydr. Res., 22 (1972) 23-35.
- 3 R. Gigg, A.A.E. Penglis, and R. Conant, J. Chem. Soc., Perkin Trans. 1, (1980) 2490-2493.
- 4 M. Hoch, E. Heinz, and R.R. Schmidt, Carbohydr. Res., 191 (1989) 21-28.
- 5 B. Fraser-Reid, K.M. Sun, R.Y.-K. Tsang, P. Sinaÿ, and M. Pietraszkiewicz, *Can. J. Chem.*, 59 (1981) 260-263.
- 6 B. Musicki and T.S. Widlanski, Tetrahedron Lett., 32 (1991) 1267-1270; J. Huang and T.S. Widlanski, *ibid.*, 33 (1992) 2657-2660.
- 7 P.A. Crooks, R.C. Reynolds, J.A. Maddry, A. Rathore, M.S. Akhtar, J.A. Montgomery, and J.A. Secrist, III, J. Org. Chem., 57 (1992) 2830–2835.
- 8 R. Reistad, Carbohydr. Res., 54 (1977) 308-310.
- 9 P. Weber and R.J. Winzler, Arch. Biochem. Biophys., 137 (1970) 421-427.
- 10 A.S.B. Edge and P. Weber, Carbohydr. Res., 126 (1984) 279-285.
- 11 J. Fernández-Bolaños, I. Maya Castilla, and J. Fernández-Bolaños Guzmán, Carbohydr. Res., 147 (1986) 325-329.

- 12 H. Iida, N. Yamazaki, and C. Kibayashi, J. Org. Chem., 52 (1987) 3337-3342.
- 13 J. Fernández-Bolaños, I. Maya Castilla, and J. Fernández-Bolaños Guzmán, Carbohydr. Res., 173 (1988) 33-40.
- 14 D. Horton, in R.W. Jeanloz (Ed.), The Amino Sugars, Vol IA, Academic, New York, 1969, pp 88-95.
- 15 R. Khan and L. Hough, Carbohydr. Res., 24 (1972) 147-151.
- 16 B. Halpern and L.B. James, Aust. J. Chem., 17 (1964) 1282-1287.
- 17 A. Gómez-Sánchez, P. Borrachero Moya, and J. Bellanato, Carbohydr. Res., 135 (1984) 101-116.
- 18 A. Gómez-Sánchez, M.G. García Martín, P. Borrachero, and J. Bellanato, J. Chem. Soc., Perkin Trans. 2, (1987) 301-306.
- 19 J. Fuentes, T. Cuevas, and M.A. Pradera, J. Carbohydr. Chem., 11 (1992) 539-552.
- 20 C.A.G. Haasnoot, F.A.A.M. de Leeuw, and C. Altona, Tetrahedron, 36 (1980) 2783-2792.
- 21 H. Hori, Y. Nishida, H. Ohrui, and H. Meguro, J. Carbohydr. Chem., 9 (1990) 601-618.
- 22 R.H. Marchessault and S. Pérez, Biopolymers, 18 (1979) 2369-2374.
- 23 C.K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA, 1976.
- 24 S. Arnott and W.E. Scott, J. Chem. Soc., Perkin Trans. 2, (1972) 324-335.
- 25 F.H. Allen, Acta Crystallogr., Sect. B, 42 (1986) 515-522.
- 26 G.A. Jeffrey, ACS Symp. Ser., 87 (1979) 50-62.
- 27 D. Cremer and J.A. Pople, J. Am. Chem. Soc., 97 (1975) 1354-1358.
- 28 M. Nardelli, Acta Crystallogr., Sect. C, 39 (1983) 1141-1142.
- 29 R. Vega, A. López-Castro, and R. Márquez, Acta Crystallogr., Sect. C, 42 (1986) 1066-1068.
- 30 S. Chidambaram, G. Aravamudan, and M. Seshasayee, Acta Crystallogr., Sect. C, 44 (1988) 898-900.
- 31 P.N. Rodier, N.T. Xoung, and P. Reynaud, Acta Crystallogr., Sect. C, 45 (1989) 1199-1201.
- 32 G.A. Jeffrey and J.H. Yates, Carbohydr. Res., 96 (1981) 205-213.
- 33 W.D.S. Motherwell and W. Clegg, PLUTO, Program for Plotting Molecular and Crystal Structures, University of Cambridge, United Kingdom, 1978.
- 34 J.M. Stewart, F.A. Kundell, and J.C. Baldwin, The X-Ray 70 System, Computer Science Center, University of Maryland, USA, 1970.
- 35 P. Main, S.J. Fiske, S.E. Hull, L. Lessinger, G. Germain, J.P. Declerq, and M.M. Woolfson, MULTAN-80, A System of Computer Programs for Automatic Solution of Crystal Structures from X-Ray Diffraction Data, Universities of York (United Kingdom) and Louvain (Belgium), 1980.
- 36 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 39 (1983) 158-166.
- 37 International Tables for X-Ray Crystallography, Vol. IV, Kynoch Press, Birmingham, UK, 1974.