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ABSTRACT: A novel one-pot relay glycosylation has been 
established. The protocol is characterized by the construction of 
two glycosidic bonds with only one equivalent of triflic anhydride. 
This method capitalizes on the in situ generated cyclic-
thiosulfonium ion as the relay activator, which directly activates the 
newly formed thioglycoside in one-pot. A wide range of substrates 
are well-accommodated to furnish both linear and branched 
oligosaccharides. The synthetic utility and advantage of this 
method have been demonstrated by rapid access to naturally 
occurring phenylethanoid glycoside kankanoside F and resin 
glycoside merremoside D.

In the odyssey of carbohydrate synthesis, great efforts have been 
made to promote the efficiency of the glycosidic bond 
construction.1 Among the tremendous achievements, activation of 
glycosyl sulfoxides2 and thioglycosides3 presented as the most 
popular glycosylation methods. It is well known that conventional 
activation of glycosyl sulfoxides with triflic anhydride inevitably 
generated active sulfenyl triflates (RSOTf) intermediates which are 
powerful activators for sulfinyl/thioglycosides.4 To prevent these 
side reactions resulted from the unbridled activity of RSOTf, large 
excess of scavengers were usually introduced in these reactions 
(Scheme 1a, eq 2).5 On the contrary, this chemistry shined a beam 
of light on the cascade one-pot glycosylation strategy6,7 involving 
sequential activation of glycosyl sulfoxides and thioglycosides by 
harnessing the intermediate’s reactivity, albeit it was less 
investigated.4i,8

We have recently reported an interrupted Pummerer reaction 
mediated (IPRm) glycosylation strategy with S-2-[(propan-2-
yl)sulfinyl]benzyl (SPSB) glycosides as novel glycosyl donors 
(Scheme 1b).9 It was observed that a cyclic thiosulfonium ion (B) 
was generated upon activation of the SPSB glycosides with Tf2O.9c 
Compared with sulfenyl triflates, the cyclic thiosulfonium ion (B) 
was inactive under cryogenic conditions but reactive at ambient 
temperature as a thioglycoside activator (see the ESI). Galvanized 
on this observation, we hypothesized that one equivalent of Tf2O 
can be used as an initial activator and the in situ generated 
thiosulfonium ion can serve as the relay activator, which would 
enables cascade activation of a SPSB glycoside and a thioglycoside 
to form two glycosidic bonds in one-pot. This hypothesis would 
supply a novel relay one-pot oligosaccharide assembly strategy 
(Scheme 1c). Compared to the classical one-pot glycosylation 
strategies, in which, each glycosylation step was independent, 

consequently, required portion-wisely addition of one and even 
more equivalents of activators for each glycosidic bond connection, 
this strategy features the advantage that two glycosidic linkages 
constructed by a single activator.

Scheme 1. Glycosylation with glycosyl sulfoxides
a) Direct activation of glycosyl sulfoxide

b) Remote activation of SPSB glycoside
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Obviously, the thioglycoside (2) played a crucial role in the one-
pot relay glycosylation. It not only acted as the acceptor to couple 
with the SPSB donor 6 but also served as part of newly generated 
glycosyl donor 7 for the second glycosidic bond formation. Initially, 
p-methylbenzyl thioglycoside 2ba was chose as first acceptor. The 
reaction was first carried out at – 40 °C with 1.4 equiv of Tf2O as 
activator, after 2ba was consumed completely (about 30 min), then 
the terminal sugar 8a was added dropwise and the reaction 
temperature was warmed up to 30 °C. To our delight, this one-pot 
reaction proceeded smoothly. After 14 hours, the desired 
trisaccharide 9a was isolated in 72% yield accompanied by 16% 
yield of tetrasaccharide by-product 9a’. Occurrence of this by-
product indicated that the thioglycoside 2ba was still partially 
activated by the thiosulfonium ion intermediate B even at – 40 °C. 
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Further decreased the activation temperature of the first step led to 
an inefficient coupling.

Table 1. Tune the activity and stability of the thioglycoside 2b.a
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a General procedure: Tf2O was added to the mixture of the SPSB 
glycoside donor 6a and the thioglycoside 2b at 0 oC and stirred for 
30 min., followed by the addition of acceptor 8a, then stirred at 30 
oC for an appropriate time. b Tf2O was added at -40 oC.

Consequently, we considered to tune the activity and stability of 
the thioglycoside 2b by modification of the thiophenyl groups. It 
was found that steric effect of thiophenyl group had greater impact 
on the coupling efficiency compared to electronic effect. 
Introducing ortho-methyl group on the phenyl ring (2bd) increased 
the yield of 9a to 80% while slightly inhibited the occurrence of the 
tetrasaccharide 9a’. Interestingly, warmed up the activation 
temperature of the first step to 0 °C further increase the efficiency 
of the one-pot reaction in this case. Among the test steric hindered 
thiophenyl groups, ortho-ethyl thiophenyl (2be) performed as the 
best. More hindered groups or halogen atoms located on ortho 
position although sufficiently prevented the side reaction but also 
stymied the coupling.

Having approved the concept, we then commenced to investigate 
the substrate scope (Table 2).10 Various SPSB donors (6b-i), 
thioglycoside (2b-g) and sugar or aglycon termini (8a-h) were then 
examined. Among the tested SPSB donors, the peracylated 
pyranoses, furanoses, deoxysugars and 2-aminosugars were all 
performed very well. With respect to the thioglycoside 2, it was 
found that o-ethylphenylsulfanyl (SoEP) group presented as better 
leaving group for active thioglycosides (2be, 2c and 2d) while i-
propylsulfanyl (Si-Pr) is more suitable for inactive (disarmed) 
thioglycosides (2e and 2f). Combination of these components with 
the one-pot

  

Table 2. Substrate scopea
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a General procedure: Tf2O (1.0 equiv. to SPSB glycosides) was added to the mixture of 6 and 2 in DCM (0.1 M), 0 oC, 15 min, followed by 
the addition of 8, then stirred at 30 oC for an appropriate time. bDTBMP (1.5 equiv) and CaCO3 (1.5 equiv) was added, SPSB donor 6 was 
activated at -20 oC. c 3.0 equiv of terminal sugar or aglycon was used. d 2.2 equiv of 6b was used. e 6b (1.05 equiv), 2g (1.0 equiv), 8f (1.0 
equiv), SPSB glycoside was activated at 0 oC.
 relay glycosylation protocol auspiciously provided various 
trisaccharides. It is worth noting that in certain cases, small amount 
of tetrasaccharidal side-products composed of two repeated 
tethering sugars (glycosyl part of thioglycoside 2) were still 
observed. Lowering the activation temperature of the first step and 
addition of 1.5 equiv of DTBMP as well as 1.5 equiv of CaCO3 was 
able to suppress this type of side products and provided 9e-j in good 
to excellent yield. The combination of these organic base and 
inorganic base is essential to suppress the side reaction as which was 
presumed to be resulted from the strong acid conditions. 
Considering that the first step of the one-pot protocol was a fast 
reaction and the second step is a slow reaction, the organic base was 
used to speedily neutralize the acidity of the first step while the 
inorganic base was used to buffer the acidity of the second step. 
Undoubtedly, these conditions should augur well for acid-labile 
substrates. Simply increasing the amount of DTBMP to 3.0 equiv 
although was amenable to reduce the side reaction but at the 
expense of attenuated overall yield because of the formation of the 
orthoester by-products. In addition, 1,6-anhydro by-products were 
observed when C6-benzyl substituted thioglycosides employed as 
tethering sugars (see the ESI). It could be avoided by rising the 
amount of the terminal sugar to 3.0 equiv (9f, 9g and 9i). Extended 
this protocol to synthesize sugar moieties of natural occurring 
glycoconjugates successfully offered asiaticoside11 and i-Gb3

12 
trisaccharides (9i, 9j). Most importantly, the latent 2-[(propan-2-
yl)sulfanyl]benzyl (OPTB) group located at the reducing terminus 
would allow the downstream installation of the aglycons by means 
of IPRm glycosylation. By employing 2d possessing two free 
hydroxy groups as tethering sugar, the assembling of a desired 
tetrasaccharide 9k with three newly formed glycosidic bonds was 
achieved in 63% yield. This success stimulated us to take chances 
to assembly a branched sugar, that is activation of disarmed 6b with 
Tf2O to couple at O-6 position of 8h followed by subsequent 
activation of armed 2g to link at O-4 position of newly formed 
disaccharide. To our delight, this protocol effectively furnished the 
branched trisaccharide 9l in 71% yield.

Scheme 2. Construction of three different glycosidic linkages in one-
pot
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Encouraged by the successes on the construction of two 
glycosidic linkages in one-pot by virtue of the relay-glycosylation 
strategy, we then embarked on the building of three linkages in one-
pot. We conjectured that 2-[(propan-2-yl)sulfinyl]benzyl (OPSB) 
glycosides would be orthogonal to the one-pot relay glycosylation 
conditions. Consequently, employing OPSB glycoside (such as 11) 
as the third sugar in the one-pot relay glycosylation sequence would 
successfully create trisaccharide with an OPSB terminal which 
could be activated by additional of Tf2O for the formation of the 

third glycosidic bond. With this idea in mind, SPSB glycoside 6i, 
thioglycoside 2f and OPSB glycoside 11a was then coupled 
sequentially under the one-pot relay glycosylation conditions. 
Subsequently, additional Tf2O as well as 8a was introduced into the 
reaction system. Unfortunately, although the first three sugars 
linked smoothly, the desired tetrasaccharide 12 was only isolated in 
20% yield, along with 48% yield of 9j, in which, the terminal OPSB 
group of 11a was reduced to OPTB group. This unexpected side 
product was possibly raised form a competitive reduction reaction 
of the sulfoxide group by a disulfide compound (10) released from 
the SPSB group (see the ESI), because of the slow cyclization rate 
in the OPSB activation step. A lot of efforts have been made to 
suppress this side reaction. Finally, it was found that installing an 
ethyl group on the ortho position of the OPSB (11b) auspiciously 
increased the yield of tetrasaccharide 12 to 62%.

Having established the general applicability of the relay one-pot 
glycosylation protocol in the efficient assembly of oligosaccharides, 
we turned our attention to the synthesis of natural carbohydrates. 
Kankanoside F (15) which showed vasorelaxant activity was 
isolated from the Orobanchaceae parasitic plant (Cistanche 
tubulosa).13 Kankanoside F bears a branched trisaccharide moiety 
and a phenylethanoid aglycon. A regioselective glycosylation and 
relay glycosylation approach was incorporated into the synthesis of 
this molecular. Initially, two SPSB glycosides 6b and 6j was 
regioselectivity coupled with 3,6-diol acceptor 2h successively, then 
phenylethanoid aglycon 13 was introduced. This procedure 
afforded trisacchridal glycoconjugate 14 in 63% yield in one-pot. 
The global deprotection of 14 eventually furnished kankanoside F 
efficiently.

Scheme 3. Total synthesis of kankanoside F
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As a final endeavor to demonstrate the utilitarian potential of the 
protocol, a structurally more complex resin glycoside merremoside 
D14 was chose as synthetic target. Merremoside D displayed 
significant activity capable of transporting Na+, K+, and Ca2+ ions 
across human erythrocyte membranes and antiserotonic activity.15 

It possesses a tetra-rhamnose backbone which were connected by 
1,4-α-linkages and a 21-membered macrolactone. O’Doherty and 
co-workers have reported an elegant synthetic route toward the first 
total synthesis and the structural refinement of Merremoside D by 
virtue of the de novo synthetic strategy.16 We intended to synthesize 
this molecular with two key one-pot relay glycosylations. The first 
one-pot comprised the coupling of SPSB glycoside 6h, 
thioglycoside 2i and a long-chained alcohol, 11(s)-jalapinolate 16. 
This protocol furnished 17 in overall 83% yield albeit in an  to  
ratio of 2.8:1. Further hydrolyzation of the ester groups of 17 
produced acid 18 possessing three continuous free hydroxy groups. 
The ensuing site-selective macrolactonization of 18 presented as a 
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large obstacle as witnessed by the failures of known 
macrolactonization conditions (see the ESI). Draw inspiration 
from the cation-n interaction mediated site-selective acylation 
reaction reported by Tang et al,17 utilization of 1.5 equiv of (S)-
BTM (benzotetramisole) along with 1.0 equiv of Piv2O as 
esterification reagents surprisingly accomplished the site-selective 
macrolactonization to afford 19 in 72% yield. The following site-
selective installing levulinoyl (Lev) group on C2’ position was 
relied on the (R)-BTM mediated acylation reaction, which 
produced 20 readied for the second one-pot reaction. Subsequent 
second one-pot glycosylation promisingly produced the desired 
tetrasccharide 21 in 72% yield. Global deprotection eventually 
furnished the merremoside D (22) in 84% yield. 

Scheme 4. Total synthesis of merremoside D
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In conclusion, we have developed a novel one-pot relay 
oligosaccharide and glycoconjugate assembly strategy. This 
strategy relied on the hypothesis that an in situ generated cyclic 
thiosulfonium ion (B) from the activation of SPSB glycosides was a 
mild activator for thioglycosides. Compared to the classical one-pot 
sequential glycosylation strategies, this strategy highlighted the 
advantage that only one equivalent of exogenous activator was 
required for construction of two glycosidic linkages. In a typical 
activation process, the exogeneous activator Tf2O activated SPSB 
glycosides to construct the first glycosidic linkage accompanied by 
the in situ generation of cyclic thiosulfonium ion B. The cyclic 
sulfonium ion then acted as a relay activator for the subsequent 
activation of thioglycoside at a warmer temperature, consequently 
created the second glycosidic linkage. Wide range of SPSB 
glycosides, thioglycosides and terminal sugars or aglycones were 
well accommodated to the protocol to furnish various liner or 
branched oligosaccharides. The comprehensively application of 
this protocol and a sites-elective macrolactonization reaction 
allowed the expedient synthesis of resin glycoside merremoside D, 
which extensively demonstrated the potential of this protocol.
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