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Abstract: Synthesis and cytotoxicity properties of novel C-2' analogues of paclitaxel are described. 
The analogues were synthesized using Holton's 13-1actam approach to append the side chain on 
baccatin III. The key intermediate to the synthesis of novel analogues was prepared employing an 
unprecedented stereocontrolled addition of Griguard reagent to a chiral azetidine-2,3-dinne. 
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Recent approval of Taxol ® (paclitaxei) (1) for the treatment of metastatic carcinoma of the ovary has 

generated considerable interest to synthesize novel analogues with the goal of designing more effective 

antitumor drugs) Paclitaxel, a naturally occurring diterpene, 2 inhibits cell replication in the mitotic phase of 

the cell cycle by promoting polymerization of microtubules which are stable and abnormally resistant to 

depolymerization. 3 To understand the features of the paclitaxel binding site on microtubules and to develop 

compounds having more desirable properties than the prototype, we were interested in designing analogues 

with modified C-13 amino acid side chains. Conformational studies on paelitaxei suggest that the C-13 side 

chain has a high degree of freedom, and therefore, adopts a variety of conformations. 4 To probe the 

conformation necessary for binding to microtubules, we decided to introduce a methyl group at the C-2' 

position. This group should create some additional torsional strain (vs. H) for rotation around C-2'/C-3', thus 

reducing the number of viable conformations, and therefore providing some indirect information on the nature 

of the active conformation. This letter describes the synthesis, biological evaluation, and NMR studies of our 

target compound 2. 
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We decided to use Holton's chemistry s to append the C-I 3 

side chain on 7-(triethylsilyl)baccatin III (3) 4. Therefore, 

the chiral azetidinone 4 was viewed as an ideal synthon 

for 2. The synthesis of 4 was envisioned via an 

unprecedented addition of methylmagnesium bromide (MeMgBr) to azetidine-2,3-dione (5), readily available 

from 6. 7 To put our proposal to practice and to determine the stereochemical outcome of the reaction between 

the Grignard reagent and azetidine-2,3-dione, racemic 7 s was treated with MeMgBr in THF at -40 °C for 60 

rain. Interestingly, the reaction afforded only one diastereomer in 90% yield along with recovered starting 

material. Preliminary hOe studies indicated the azetidinone to be 8 which was unequivocally confirmed by X- 

ray analysis. 9 The high degree of diastereofacial selectivity can be attributed to the phenyl group which is 

directing the transfer of the methyl group to the less hindered face of the carbon-oxygen double bond. 
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Next, we focused on the synthesis of our chiral key intermediate 13; after protectiorddeprotection 

sequence followed by oxidation and the addition of MeMgBr, we were able to synthesize azetidinone 13 from 

6 in good yield and high diastereoselectivity (>99%) (Scheme I). Since the 1,2-addition of MeMgBr 

proceeded with a high diastereoselectivity, we decided to explore the scope of this reaction. 

Scheme I 
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Conditions: a 2-methoxypropene ppts acetone 20h (90%); b LiHMDS TBDMSiCl -40 °C THF 2h (92%); 
c 01N HCI THF rt 60 rain (100%); d Me2S.Br 2 CH2CI 2 0 °C 2h (80%); e RMgBr THF 40 °C 23h 
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Interestingly, treatment of 12 with a variety of Grignard reagents afforded 1,2-addition products (14- 

17) as single diastereomers in moderate yields along with 11 (10-20%). The formation of 11 was not 

surprising as Grignard reagents containing ~3-proton are known to reduce ketones via a six centered transition 

state. 1° The reaction was found to be general enough to be utilized in organic synthesis, especially in 13-1actam 

and peptide chemistry." To proceed with the synthesis of our target analogues, the chiral lactam 13 was 

subjected to a deprotection-reprotection sequence before the N-acylation step. Treatment of 3 with n-BuLl 

followed by the addition of ~3-1actams 20 and 21, for the elaboration of paclitaxel and docetaxel (Taxotere TM) 

side chains, afforded novel analogues 22 and 23 in good yields. (Scheme II). 
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Conditions: a. TBAF, THF, 0 *C, 2h (90%); b. TESCI, Imidazole, THF, 16h (91%); BzCI, NEt i-Pr2 C. 

DMAP(cat),  CH2CI 2, 0 *C, 2h (65%); d. BOC20, i-Pr2NEt, DMAP(cat), CH2CI 2, 0 °C, 2h (85%); e LiHMDS, 
0 0 0 t 0 0 0 THF, 20 or 21, -40 C to 0 C, 60 rain (R=Ph, 55 ~/o, R=OBu, 6B Vo); f. 6N HCI, CH3CN, -5 C, 3h (60-65 ~). 

Compound 

Paclitaxel 3.2 
22 2.0 
23 1.7 

ICs0 (nM) Tubulin 
HCT 116 Ratio 

1.0 
0.7 
0.7 

The 2' methyl paclitaxel 22 and docetaxel 23 analogues were found 

to be more cytotoxic than the parent paclitaxel when evaluated in 

an in -v i t ro  assay using HCTll6  human colon carcinoma cell 

lines) 2 The analogues also displayed increased binding affinity to 

microtubules compared to paclitaxel. 13 The tH NMR of 22 and 23 

were found to be similar to paclitaxel in the d6-DMSO solvent system: strong to moderate nOe interactions 

were observed between H-3'/OAc-4, H-3'/o-Ph-3', and o-Ph-3'/OAc-4 in 22 and 23; similar nOe's have been 

observed in paclitaxel.~4 Interestingly, these analogues exhibited better microtubule assembly properties (ca. 

1.5 fold increase) than paclitaxel; the enhanced potency due to the presence of the C-2' methyl group may be a 

result of the postulated reduction in the degree of freedom of rotation at the C-2'/C-3' bond, or simply to some 

additional hydrophobic binding interaction of the methyl group with the microtubule binding site. These 

interesting C-2' methyl analogues open avenues for further studies which will be reported in the future. 15 
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