

Il Farmaco 55 (2000) 227-232

IL FARMACO

A novel synthesis of dibenzo[c, f]chromenes, dibenzo[c, h]chromenes and benzo[7,8]chromeno[3,4-f]isoindoles as antimicrobial agents

Mohamed S.A. El-Gaby ^{a,*}, Medhat A. Zahran ^b, Magda M.F. Ismail ^c, Yousry A. Ammar ^b

^a Chemistry Department, Faculty of Science, Al-Azhar University at Assiut, Assiut 71524, Egypt

^b Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt

^c Pharmaceutical Chemistry Department, Faculty of Pharmacy (Girl's), Al-Azhar University, Nasr City, Cairo, Egypt

Received 30 July 1999; accepted 3 February 2000

Abstract

Naphtho[2,1-*b*]pyranone (**3**) was allowed to react with arylmethylenemalononitriles to yield 4-amino-5-oxo-2-aryl-5*H*-dibenzo[*c*,*f*]chromene-3-carbonitriles (**4a**,**b**); with ethyl 3,4-dichlorobenzylidene cyanoacetate to furnish dibenzo[*c*,*f*]chromene (**5**) and with elemental sulfur in dioxane containing piperidine to give thieno[3,4-*d*]naphtho[2,1-*b*]pyranone (**6**). Similarly, naphtho[1,2*b*]pyranone (**7**) was reacted with arylmethylenemalononitriles and elemental sulfur to furnish dibenzo[*c*,*h*]chromenes (**8**) and thieno[3,4-*d*]naphtho[1,2-*b*]pyranone (**10**), respectively. Compound **10** underwent cycloaddition with *N*-arylmaleimides to yield benzo[7,8]chromeno[3,4-*f*]isoindoles (**11a**-**c**). Some of these compounds were screened in vitro for their antimicrobial activities. © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Chromenes; Isoindoles; Antimicrobial

1. Introduction

Naphthopyranones are biologically interesting compounds with antimicrobial [1] and antihypertensive [2] activities. Arylmethylenemalononitriles and ethyl α cyanocinnamates are versatile reagents for the construction of carbo- and heterocyclic systems [3–6]. They are prone to react with a variety of compounds containing acidic hydrogen atoms to provide Michael adducts as intermediates, which undergo spontaneous cyclization to *o*-aminonitriles or *o*-aminocarboxylic esters, respectively [7,8]. The present study is part of our program aimed at developing new approaches for the synthesis of fused heterocyclic systems. We report here the synthesis of naphtho[2,1-*b*]pyran derivatives and their utility as building block in the synthesis of novel heterocycles to evaluate the antimicrobial activity.

* Corresponding author.

2. Chemistry

It has been found that 1-acetyl-2-naphthol (1) reacted with ethyl cyanoacetate in the presence of catalytic amount of ammonium acetate for which two products 2 and 3 seemed possible. Structure 2 was readily ruled out on the basis of analytical and spectral data. Thus, the IR spectrum of 3 exhibited absorption bands for C=N (2196 cm⁻¹) and C=O (1717 cm⁻¹), while ${}^{1}H$ NMR revealed the presence of a signal at δ 3.3 (3H, s, CH₃) and the absence of an OCH₂CH₃ fragment. The mass spectrum of **3** also exhibited a molecular ion peak m/z 235, which is the base peak in the spectrum whose fragmentation pattern is illustrated in Scheme 2. Further confirmation of the structure 3 was obtained by studying the reactivity of the reaction product towards various chemical reagents. Thus, compound 3 reacted with arylmethylenemalononitriles in ethanol containing a few drops of piperidine to afford 4-amino-2-aryl-5oxo-5*H*-dibenzo[*c*,*f*]chromene-3-carbonitriles (4a,b). The IR spectra of 4a,b revealed the presence of amino, cyano and carbonyl functions and the absence of a methyl function in ¹H NMR spectra. The formation of

E-mail address: m_elgaby@hotmail.com (M.S.A. El-Gaby)

⁰⁰¹⁴⁻⁸²⁷X/00/\$ - see front matter © 2000 Elsevier Science S.A. All rights reserved. PII: S0014-827X(00)00008-2

4 from the reaction of 3 with arylmethylenemalononitriles was assumed to proceed via Michael type addition [8] of the methyl function of 3 to the activated double bond to afford the acyclic Michael adduct that readily cyclizes and loses hydrogen cyanide to yield 4, which was observed with 3-cyano-4-methylcoumarin [9].

In addition, treatment of compound **3** with ethyl 3,4-dichlorobenzylidene cyanoacetate gave a product, which was confirmed to be the ethyl 4-amino-5-oxo-2-(3,4-dichlorophenyl)-5H-dibenzo[c,h]chromene-3-carboxylate (**5**) on the basis of its elemental analysis and spectral data. Compound **3** also reacts with elemental sulfur in dioxane-piperidine solution to yield 3-amino-4H-thieno[3,4-d]naphtho[2,1-b]pyran-4-one (**6**). The IR spectrum of **6** revealed the presence of a mino and carbonyl functions and the absence of a cyano group. The formation of **6** is related to the Gewald synthesis of alkylheterocyclic carbonitriles [10] (Scheme 1).

4-Methyl-2-oxo-3*H*-naphtho[1,2-*b*]pyran-3-carbonitrile (7) was obtained by fusion of 2-acetyl-1-naphthol with ethyl cyanoacetate in the presence of ammonium acetate [11]. Reaction of 7 with arylmethylenemalononitriles in ethanol in the presence of piperidine gave 7-amino-6-oxo-9-aryl-6*H*-dibenzo[c,h]chromene-8-carbonitriles (8) as established from their elemental analyses and spectral data. Compound 7 also reacted with ethyl 4-chlorobenzylidenecyanoacetate to afford dibenzo[c,h]chromenes (9). In addition, compound 7 reacted with sulfur in dioxane in the presence of few drops of piperidine to yield 3-aminothieno[3,4-d]naphtho[1,2b]pyran-2-one (10) [11]. Treatment of compound 10 with N-arylmaleimides as electron-poor [11] olefins in dioxane containing a few drops of glacial acetic acid to yield 7-amino-9-(4-substitutedphenyl)-6,8,9,10-tetrahydrobenzo[7,8]chromeno[3,4-f]isoindole - 6,8,10 - trione derivatives (11a-c). Analytical and spectral data were consistent with the assigned structure. The formation of these products is assumed to proceed via a [4+2] cycloadduct, which is aromatized by hydrogen sulfide liberation [11,12] to yield 11. Refluxing 10 with acetic anhydride afforded 3-acetylamino-2H-thieno[3,4-d]naphtho[1,2-b]pyran-2-one (12) in high yield (Scheme 3).

3. Experimental

Melting points were measured by Griffen melting point apparatus (England) and are uncorrected. IR spectra v_{max} . (cm⁻¹) were recorded on a Shimadzu 440 infrared spectrophotometer (Shimadzu, Japan) using the KBr technique. ¹H NMR spectra δ (ppm) were measured on a Varian Em 360 (90 MHz) spectrophotometer (Varian, UK) using TMS as internal standard. The mass spectra were performed by a Shimadzu GC– MS-GP 100 EX using the direct inlet system. Analytical data were obtained from the Microanalytical Data Center at Cairo University.

Scheme 1.

Scheme 2. Fragmentation pattern of compound 3.

3.1. Synthesis of 1-methyl-3-oxo-3H-naphtho-[2,1-b]pyran-2-carbonitrile (3)

A mixture of equimolar amounts of **1** (1.86 g, 0.01 mol), ethyl cyanoacetate (1.13 g, 0.01 mol) and anhydrous ammonium acetate (1 g) was fused at 120°C for 15 min. The resulting product was then triturated with ethanol and the solid product formed was collected by filtration and recrystallized from dioxane to form green crystals. Yield 1.65 g (70%); m.p. 260°C. Found: C, 76.50; H, 3.80; N, 5.90. C₁₅H₉NO₂ requires: C, 76.59; H, 3.86; N, 5.96%. IR: 2196 (CN), 1717(CO). ¹H NMR (DMSO-*d*₆): 3.35 (3H, s, CH₃), 7.54–8.63 (m, 6H, Ar-H); MS: *m/z* 235 [*M*⁺].

3.2. General procedure for the preparation of 4a,b

To a solution of **3** (2.35 g, 0.01 mol) in 20 ml of absolute ethanol, arylmethylenemalononitriles (0.01 mol) and a catalytic amount of piperidine were added. The reaction mixture was heated under reflux for 3 h, then poured into ice-HCl to give 4a,b.

3.2.1. 4-Amino-5-oxo-2-phenyl-5Hdibenzo[c,f]chromene-3-carbonitrile (4a)

Compound **4a** was obtained as yellow crystals from ethanol. Yield 2.17 g (60%); m.p. 110°C. Found: C, 79.40; H, 3.70; N, 7.70. $C_{24}H_{14}N_2O_2$ requires: C, 79.54; H, 3.84; N, 7.73%. IR: 3335, 3184 (NH₂), 2058 (Ar–H), 2205 (CN), 1706 (CO). ¹H NMR (DMSO-*d*₆): 3.4 (2H, s, NH₂; exchangeable), 7.1–7.9 (12H, m, Ar–H); MS: m/z 362 [M^+].

3.2.2. 4-Amino-5-oxo-2-(3,4,5-trimethoxyphenyl)-5H-dibenzo[c,f]chromene-3-carbonitrile (**4b**)

Compound **4b** was obtained as yellow crystals from ethanol. Yield: 2.94 g (65%); m.p. 125°C. Found: C,

71.70; H, 4.50; N, 6.20. $C_{27}H_{20}N_2O_5$ requires: C, 71.68; H, 4.42; N, 6.19%. IR: 3420, 3380 (NH₂), 2935 (CH–aliph), 2207 (CN), 1724 (CO). ¹H NMR (DMSO-*d*₆): 4.0 (3H, s, OCH₃), 4.1 (6H, s, 2OCH₃), 4.8 (2H, broad, NH₂; exchangeable), 7.2–8.4 (9H, m, Ar–H).

3.3. Ethyl 4-amino-5-oxo-2-(3,4-dichlorophenyl)-5Hdibenzo[c,f]chromene-3-carboxylate (5)

To a solution of **3** (2.35 g, 0.01 mol) in 20 ml of dioxane, ethyl 3,4-dichlorobenzylidene cyanoacetate (2.71 g, 0.01 mol) and a catalytic amount of piperidine were added. The reaction mixture was refluxed for 4 h, then poured into ice–HCl. The solid product was collected by filtration to give **5** as yellow crystals from benzene–petroleum ether. Yield: 2.87 g (60%); m.p. 70°C. Found: C, 65.30; H, 3.40; N, 2.70%. C₂₆H₁₇Cl₂NO₄ requires: C, 65.28; H, 3.58; N, 2.93%. IR: 3350, 3210 (NH₂), 1720, 1690 (CO). ¹H NMR (DMSO-*d*₆): 0.8(3H, t, CH₃), 3.2 (2H, s, NH₂; exchangeable), 4.1 (2H, q, OCH₂), 7.25–7.89 (10H, m, Ar–H). MS: m/z 478 [M^+].

3.4. Synthesis of 3-amino-4H-thieno[3,4-d]naphtho-[2,1-b]pyran-4-one (6)

To a solution of **3** (2.35 g, 0.01 mol) in 30 ml dioxane, elemental sulfur (0.32 g, 0.01 mol) and a catalytic amount of piperidine were added. The reaction mixture was heated under reflux for 3 h. The solid product formed on dilution with water was collected by filtration and crystallized from ethanol. Yield: 2.14 g, (80%); m.p. 240°C. Found: C, 67.30; H, 3.40; N, 5.30. C₁₅H₉NO₂S requires: C, 67.40; H, 3.39; N, 5.24%. IR: 3410, 3330 (NH₂), 1677 (CO); MS: m/z 267 [M^+].

3.5. General procedure for the preparation of (8a-c)

To a solution of 7 [11] (2.35 g, 0.01 mol) in 20 ml ethanol, arylmethylenemalononitriles (0.01 mol) and a catalytic amount of piperidine were added. The reaction mixture was heated for 4 h, then poured into ice-HCl. The solid product was collected by filtration and crystallized from dioxane to give 8a-c.

3.5.1. 7-Amino-6-oxo-9-phenyl-6Hdibenzo[c,h]chromene-8-carbonitrile (8a)

Compound **8a** was obtained as green crystals from dioxane. Yield: 2.17 g, (60%); m.p. 270°C. Found: C, 79.50; H, 3.70; N, 7.60. $C_{24}H_{14}N_2O_2$ requires: C, 79.54; H, 3.89; N, 7.73%. IR: 3405, 3330 (NH₂), 3035 (CH–Ar); 2185 (CN), 1687 (CO). ¹H NMR (DMSO- d_6): 3.57 (2H, s, NH₂; exchangeable), 7.43–8.11 (12H, m, Ar–H); MS: m/z 362 $[M^+]$.

3.5.2. 7-Amino-6-oxo-9-(3,4,5-trimethoxyphenyl)-6H-dibenzo[c,h]chromene-8-carbonitrile (**8b**)

Compound **8b** was obtained as yellow crystals from ethanol. Yield: 2.26 g (50%); m.p. 120°C. Found: C, 71.60; H, 4.50; N, 6.20. $C_{27}H_{20}N_2O_5$ requires: C, 71.68; H, 4.42; N, 6.19%. IR: 3334, 3310 (NH₂), 2204(CN); 1705(CO). ¹H NMR (DMSO- d_6): 4.1 (3H, s, OCH₃), $4.2(6H, s, 2OCH_3)$; 5.0 (2H, broad, NH₂; exchangeable), 7.1–8.4 (9H, m, Ar–H).

3.5.3. 7-Amino-6-oxo-9-(1-naphthyl)-6Hdibenzo[c,h]chromene-8-carbonitrile (8c)

Compound **8c** was obtained as yellow crystals from ethanol. Yield: 2.07 g (55%); m.p. 130°C. Found: C, 81.60; H, 3.60; N, 6.90. $C_{28}H_{16}N_2O_2$ requires: C, 81.54; H, 3.88; N, 6.80%. IR: 3328, 3300 (NH₂), 2199 (CN); 1702 (CO). ¹H NMR: 4.0 (2H, broad, NH₂; exchangeable), 7.2–8.3 (14H, m, Ar–H).

3.6. Synthesis of ethyl 7-amino-6-oxo-9-(4-chlorophenyl)-6H-dibenzo[c,h]chromene-8-carboxylate (9)

To a solution of 7 (2.35 g, 0.01 mol) in 20 ml of dioxane, ethyl 4-chlorobenzylidene cyanoacetate (2.35 g, 0.01 mol) and a catalytic amount of piperidine were added. The reaction mixture was refluxed for 4 h, then poured into ice–HCl. The solid product was collected by filtration and crystallized from benzene–petroleum ether to give 9 as yellow crystals. Yield: 2 g, (45%); m.p. 275°C. Found: C, 70.40; H, 4.10; N, 3.00. C₂₆H₁₈ClNO₄ requires: C, 70.35; H, 4.20; N, 3.16%. IR: 3438, 3317 (NH₂), 3057 (CH–Ar), 2931 (CH–aliph), 1709, 1680

Scheme 3.

Table 1

Diameter of inhibition zones (mm) as a criterion of antibacterial and antifungal activity of the tested compounds

Comp.	Staphylococcus aureus	Escherichia coli	Candida albicans
3	16		17
4b	18	19	15
5		12	
6	15		21
7	17	11	17
8a	18		16
9	18	14	14
10	15	18	19
11b	16	10	11
Reference ^a	24	22	24

^a For bacteria: streptomycin (25 µg) For fungi: mycostatin (30 µg).

(2C=O). ¹H NMR (DMSO- d_6): 0.8(3H, t, CH₃), 1.5 (2H, broad, NH₂; exchangeable); 4.0 (2H, q, OCH₂), 7.38-8.00 (11H, m, Ar-H); MS: m/z 444 [M^+].

3.7. General procedure for the preparation of 11a-c

To a solution of **10** [11] (2.67 g, 0.01 mol) in 20 ml dioxane, *N*-arylmaleimides (0.01 mol) and 2 ml glacial acetic acid were added. The reaction mixture was heated under reflux for 3 h. The solid obtained was filtered to give 11a-c.

3.7.1. 7-Amino-9-(4-methylphenyl)-6,8,9,10tetrahydrobenzo[7,8]chromeno[3,4-f]isoindole-6,8,10-trione (**11a**)

Compound **11a** was obtained as brown crystals from ethanol. Yield: 2.1 g (50%); m.p. 130°C. Found: C, 74.30; H, 3.8; N, 6.70. $C_{26}H_{16}N_2O_4$ requires: C, 74.28; H, 3.8; N, 6.67%. IR: 3403, 3302 (NH₂), 1710, 1660, 1650 (CO). ¹H NMR (DMSO-*d*₆): 2.2 (3H, s, CH₃), 4.2 (2H, broad, NH₂; exchangeable); 7.4–8.6 (11H, m, Ar–H); MS: *m/z* 420 [*M*⁺].

3.7.2. 7-Amino-9-(4-chlorophenyl)-6,8,9,10tetrahydrobenzo[7,8]chromeno[3,4-f]isoindole-6,8,10-trione (**11b**)

Compound **11b** was obtained as brown crystals from ethanol. Yield: 2.42 g (55%); m.p. 120°C. Found: C, 68.00; H, 2.80; N, 6.20. $C_{25}H_{13}ClN_2O_4$ requires: C, 68.11; H, 2.97; N, 6.36%. IR: 3410, 3279 (NH₂), 1730, 1665, 1650 (CO). ¹H NMR (DMSO-*d*₆): 4.0 (2H, broad, NH₂; exchangeable), 7.2–8.3 (11H, m, Ar–H).

3.7.3. 7-Amino-9-(4-bromophenyl)-6,8,9,10tetrahydrobenzo[7,8]chromeno[3,4-f] isoindole-6,8,10-trione (**11c**)

Compound **11c** was obtained as brown crystals from ethanol. Yield: 2.76 g (57%); m.p. 128°C. Found: C,

61.70; H, 2.70; N, 5.60. $C_{25}H_{13}BrN_2O_4$ requires: C, 61.87; H, 2.70; N, 5.77%). IR: 3406, 3277 (NH₂), 1708, 1695, 1650 (CO). ¹H NMR (DMSO-*d*₆): 4.4 (2H, broad, NH₂; exchangeable), 7.3–8.5 (11H, m, Ar–H).

3.8. Formation of 1-acetylamino-11Hthieno[3,4-d]naphtho[1,2-b]pyran-11-one (12)

A solution of **10** (2.67 g, 0.01 mol) in 8 ml acetic anhydride was heated under reflux for 0.5 h. The solid product was collected by filtration and crystallized from ethanol to give **12** as brown crystals. Yield: 1.85 g (90%); m.p. 260°C. IR: 3273 (NH), 2935 (CH–aliph), 1697, 1670 (CO). ¹H NMR: (DMSO- d_6), 3.25 (3H, s, COCH₃), 7.39–7.9 (6H, m, Ar–H), 8.6 (1H, d, thiophene proton), 10.9 (1H, s, NH; exchangeable).

4. Antimicrobial activity

The antimicrobial activity of the nine naphthopyranone derivatives **3**, **4b**, **5**, **6**, **7**, **8a**, **9**, **10** and **11b** was determined by the agar diffusion technique [13,14]. The organisms tested were *Staphylococcus aureus* (gram positive), *Escherichia coli* (gram negative) and *Candida albicans* (pathogenic fungus). The agar media were inoculated with the test organisms and a solution of the tested compound in DMSO (3 mg/ml) was placed separately in cups (8 mm diameter) in the agar medium. Streptomycin (25 μ g) and mycostatin (30 μ g) were used as a reference for antibacterial and antifungal activities, respectively. The inhibition zones were measured after 24 h incubation. The results are represented in Table 1.

The antimicrobial activity of the naphthopyranone derivative **3** was assumed as the base level of activity. Enhanced activity was obtained with dibenzochromene **4b**. The thienonaphthopyranone **6** offered an improvement over the parent **3** against *C. albicans*. While, on the contrary, the ester derivative **5** showed a marked decrease in activity. It is interesting to note that the naphtho[1,2-b]pyran derivative (7) showed higher activity than the parent naphtho[2,1-b]pyran (3). However, none of the tested compounds showed superior activity than the reference.

References

- J. Crutze, K. Thomas, D. Tercha, Antimicrobial cyclic ketones, S. African 173 (1969) 6808 [Chem. Abstr. 72 (1970) 90290h].
- [2] J.S. Tandon, P. Painuly, S. Katti, S. Singh, Chemistry and antihypertensive activity of coleonol derivatives, Indian J. Chem., Sect. B 23B (1) (1984) 67.
- [3] F. Freemon, Reactions of malononitrile derivatives, Synthesis (1981) 925.
- [4] F. Freeman, Properties and reactions of ylidenemalononitriles, Chem. Rev. 80 (1980) 329–350.

- [5] A.J. Fatiadi, New applications of malononitrile in organic chemistry: Part III, Synthesis (1978) 241–282.
- [6] A.J. Fatiad, New applications of malononitrile in organic chemistry: Part I, Synthesis (1978) 165–204.
- [7] F.F. Abdel-Latif, Synthesis of heterocycles through reactions of nucleophiles with acrylonitriles: a convenient one-step synthesis of benzo[c]coumarins, Gazz. Chim. Ital. 121 (1991) 9–10.
- [8] M.H. El-Nagdi, A.M. Negam, K.U. Sadek, Alkylheteroaromatics as building blocks for the synthesis of condensed polyfunctionally substituted heterocycles, Synlett 1 (1994) 27–37.
- [9] E.A. Hafez, M.H. El-Nagdi, A.G.A. Elagamey, F.M.A. El-Taweel, Nitriles in heterocyclic synthesis: novel synthesis of benzo[c]coumarin and benzo[c]pyrano[3,2-c]quinoline derivatives, Heterocycles 26 (1987) 903–907.
- [10] K. Gewald, Methods for the synthesis of 2-aminothiophenes and

their reactions, Khim. Getereocycl. Soed. (Russ.) 10 (1976) 1299-1315.

- [11] F. Al-Omran, M.M. Abdel Khalik, H. Al-Awadhi, M.H. El-Nagdi, Reactivity of condensed thiophenes in the Diels–Alder reaction: the reactivity of 3-aminothieno[3,4:3',4']benzo[b]pyranone, 3-aminothieno[3,4-c]quinoline and 5-amino-7-substituted thieno[3,4-d]pyridazinone toward electron-poor olefins and acetylenes, Tetrahedron 52 (1996) 11915–11928.
- [12] A.M. Hussein, Utility of cyano acid hydrazide in heterocyclic chemistry: a new route for the synthesis of new 1,2,4-triazino[1,5*a*]pyridines and 1,2,4-triazolo[1,5-*a*]isoquinolines, Z. Naturforsch., Teil B 53 (1998) 488–494.
- [13] L.P. Carrod, F.D. Grady, Antibiotic and Chemotherapy, 3rd ed., Churchill Livingstone, Edinburgh, 1972, p. 477.
- [14] A. Cremer, Antibiotic, Sensitivity and Assay Tests, 4th ed., Butterworth, London, 1980, p. 521.