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Asymmetric NaBH, 1,4-Reduction of C3-Disubstituted
2-Propenoates Catalyzed by a Diamidine Cobalt Complex

Yoshihiro Shuto,” Tomoya Yamamura,® Shinji Tanaka,” Masahiro Yoshimura,” and

Masato Kitamura*®

A new Co complex of a unique diamidine ligand catalyzes
asymmetric NaBH, reduction of C3-disubstituted (E)- and (2)-2-
propenoates, including C3-oxygen- and nitrogen-substituted
substrates with high enantioselectivity. Analysis by X-ray dif-
fraction, 'H NMR spectroscopy, ring-opening radical-clock and
D-labeling reactions, and the structure/selectivity relationship
suggest that a mechanism of CoH-involved non-single-electron
transfer 1,4-addition differentiates the C2 enantioface. Involve-
ment of CoH species has been supported by quantitative isola-
tion of a new type of CoH,(BH;), complex.

Asymmetric 1,4-reduction of a,B-unsaturated carboxylic esters
is an important and versatile unit operation in multistep syn-
theses of natural products and pharmaceuticals." In particular,
stereo- and olefin-selective reduction of C3-disubstituted 2-
propenoates 1, yielding the saturated prenyl-type motif 2 has
considerable importance (Scheme 1). Asymmetric hydrogena-
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Scheme 1. Asymmetric 1,4-reduction of C3-disubstituted 2-propenoates.

tion has been the major approach to this reduction since 1987,
when the first success using Ru(OCOCH;),(binap) (binap=2,2'-
bis(diphenylphosphino)-1,1"-binaphthyl) was reported.*® Two
years later, Pfaltz and co-workers reported an excellent chiral
Co semicorrin catalyst affecting asymmetric 1,4-reduction of
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a,B-unsaturated carboxylic esters by NaBH,;* however, this de-
velopment did not result in a significant advance in the field.”
This may be due to the lower atom efficiency, as well as the
higher E factor, of NaBH, compared with that of the H, system.
However, hydrogenation often requires a high-pressure-resist-
ance stainless autoclave in a dedicated laboratory with special-
ized techniques for manipulating the air-sensitive catalyst pre-
cursor. By contrast, the operational simplicity of NaBH, reduc-
tion makes experiments very easy, enabling not only small-
scale reactions, but also industrial-scale production.” Reconsid-
ering the advantages, we have reinvestigated the NaBH, reduc-
tion of 1 with the CoCl, complexes (R,R)- and (S5,5)-3, as a step
towards the development of the utility of our chiral diamidine
sp°N ligand, Naph-diPIM-dioxo-R.”!

Naph-diPIM-dioxo-R/CoCl,

S,

o YR < RY "0 0"y Co
RA(O Cly O7LR R)‘—O Cly O7LR
R R R R
(RR)-3 (5.5)-3

A:R=iPr,B:R=Me,C:R=H

The substrate (E)-1a was selected as the standard, and the
concentrations were set to [(E)-1a]=250mwm, [(RR)-3]=
2.5 mm, and [NaBH,]=500 mm. The complex (R,R)-3 was pre-
pared by mixing CoCl, and (R,R)-Naph-diPIM-dioxo-R (R=iPr,
Me, and H) in CH;OH at 25°C for 1 h, followed by concentra-
tion (see below). To the cooled CH,Cl, suspension of NaBH,
containing (R,R)-3A and (E)-1a, CH;OH at 0°C was added to
achieve a 1:1 CH;0H/CH,CI, solvent system. After 1 h at 25°C,
the yield and enantiomeric ratio (er) of the product 2a were
analyzed.® The results are shown in Table 1. The standard con-
ditions quantitatively afforded 2a with an R/S er of >99:1.
Switching the chirality of the catalyst to (S,5)-3A gave almost
enantiopure (S)-2a. The concentration of (R,R)-3A could be re-
duced from 2.5 mm to 0.125 mm (substrate/catalyst (S/C) ratio
of 2000) without loss of enantioselectivity. A 1:1 CH;0H/CH.Cl,
solvent system with the Co complex provided the best results
of the conditions investigated.® Replacement of iPr in Naph-
diPIM-dioxo-R with Me ((5,5)-3B) resulted in a reduction of the
er to 2:98; this decrease in er was more significant with (S,5)-
3C (R=H). Bisoxazoline ligands, L1 and L2, and BINAP (L3),
which are recognized as privileged ligands,” were not effective
in this particular reaction.
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Table 1. Co-catalyzed asymmetric NaBH, 1,4-reduction.
CHj 500 mm NaBH, CHj

- )\/COOCH;; 2.5 mM catalyst - )\/COOCH:;
o 1:1 CH3OH/CH,Cl, S

(E)-1a o

250 mM 1h25°C
Catalyst S/C NMR vyield [%] R/S
(RR)-3A 100 >99 >99:1
(5,5)-3A 100 >99 1:>99
(RR)-3A 2000 88 99:1
(RR)-3A® 10000 53 91:9
(55)-3B 100 >99 2:98
(55)-3C 100 >99 10:90
L1/CoCl, 100 54 42:58
L2/CoCl, 100 35 35:65
L3/CoCl, 100 9 70:30
[al [(RR)-3A]=0.125mm; 7h. [bl[(E)-1al=1Mm; [NaBH]=2wm; -

3A]=0.1mm; 24 h.

CEsTetiRies M

(CeHs)2 P(CeHs)2
L1 L2

Table 2. (R,R)-Naph-diPIM-dioxo-iPr-Co-catalyzed asymmetric NaBH, 1,4-
reduction of C3-disubstituted methyl 2-propenoates.®

Substrate Product
Entry R R? Yield erd Config.
[%][b]

1) (E)-1a  CH, CeHs 98 99:1 R
2 (B-1b  GHs CeHs 93 982 R
3 (B-1c  i-CH, CeHs 92 982 S
4 (B1d  c-CyHs CeHs 98 >99:1 -
5 (E)-1e  t-CH, CeHs <5 - -
6" (B)1f  CgHs 4-CH,0CH, 959 96 S
7 (B-1g  CeHs 4-CF,CH, 97 92:8 -
8 (E-1h  CH, CeHs(CH,), 94 99:1 S
9 (B-1i CH, c-CeHy, 90 97:3 -
10 (B)-1j CH, t-C,Hy 72 98:2 -
11 (2-1a  CeHs CH, 90 99:1 S
12 (2-1h  CHs(CH,), CH; 93 99:1 R
130 21k CH;CONH  CgHs 89 97:3 R
1401 (211 CH,CONH  CH, 86 982 -
15 (2-1m  TBDMSO  CH, 98 >99:19 R

[a] Unless specified otherwise, all reactions were carried out in 1:1
CH;0H/CH,Cl, under conditions on a 0.5 mmol scale; [1]1=250+10 mm;
[NaBH,1=500 mm; [(RR)-3A]=2.5mm; 25°C; 1h. [b]lsolated yield.
[c] Chiral HPLC or GC analyses of the product 2, or '"H NMR analyses of
the diastereomeric amides derived from 2.®' [d] 50 mmol scale; S/C=
1000. [e] Not determined. [f] 28 h. [g] '"H NMR yield. [h] Ethyl esters (R®=
C,Hs;) were used in 1:1 CH;OH/CH,Cl,. [i] 3 h. [jl Determined by chiral
HPLC analysis after desilylation.®

As summarized in Table 2, the Naph-diPIM-dioxo-iPr-Co
complex (R,R)-3 A exhibited a high level of enantio-differentiat-
ing ability in the reduction of C3-disubstituted 2-propenoates
with alkyl, aryl, and heteroatom substitution patterns. The C3-
CH, substituent of 1a could be replaced by a primary or sec-
ondary alkyl group, but no reaction occurred with 1e, which
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possessed a tert-butyl group (entries 1-5). The C3-diaryl substi-
tuted substrates 1f and 1g were reduced with reasonable
enantioselectivity (entries 6 and 7). The C3-dialkyl-substituted
substrates 1h-j were efficiently reduced to give the corre-
sponding saturated products with high enantioselectivities,
even with a tert-butyl substituent (entries 8-10). With the dia-
stereomeric substrates (2)-1a and (2)-1h, the enantioselectivity
was reversed without any negative effect on the er (entries 11
and 12). The present asymmetric catalysis could be also ap-
plied to C3-heterosubstituted 1. Thus, C3-CH;CONH-substitut-
ed ethyl cinnamate 1k and crotonate 11 were quantitatively
reduced to the corresponding f-amino acid derivatives with
R/S ratios of >97:3 (entries 13 and 14)."" The tert-butyldi-
methylsilyl (TBDMS)-protected enol of a -keto ester, Tm, was
also reduced with a R/S er of >99:1 (entry 15). The esters of
tiglic acid and angelic acid were found to be poor substrates.®
The stereochemical outcome obtained by the substrate-struc-
ture/enantioface-selectivity relationship (Table 2) is outlined in
Scheme 2, and implies that the Naph-diPIM-dioxo-iPr-Co spe-

R R
. _COOR3 __COOR?
R2 )3\/1 R27 N

(E)1 T _— (R)-2
(S,S)-Naph-diPIM-dioxo-R-Co

(R,R)-Naph-diPIM-dioxo-R-Co

R! R
R2 X2 /'\/COOR3
1CO0R? (R,R)-Naph-diPIM-dioxo-R-Co R?
(2)1 (S)-2

Scheme 2. General rule of enantioface selection. R* > CH,CO,R* >R".

cies differentiates the C2 enantiofaces at a certain stage of the
catalysis. Both R and S enantiomers are accessible either by
changing the geometry of the olefin or by switching the chiral-
ity of the catalysts.

We assume that the Naph-diPIM-dioxo-iPr-CoH, (n=1 or 2)
species is generated by the action of NaBH, on the Co'Cl, pre-
cursor," and that the hydride is delivered to C3 of 1 in a 1,4
addition manner by a two-electron-transfer mechanism, rather
than by single-electron transfer (SET), to generate the corre-
sponding Co enolate,*®'? as suggested by the following four
observations. i) The reaction of (E)-1a with (R,R)-3 A under stan-
dard conditions using NaBD,/1:1 CH,;OH/CH,Cl, gave (R)-[3-*HI-
2a as the sole product within the error range, and under the
conditions of NaBH,/1:1 CH,;0D/CH,Cl, gave (25,3R)-[2-°H]-2a
and (2R,3R)-[2-’H]-2a in a 1:1 ratio. i) The electronic effect on
the reactivity observed for (E)-1f/(E)-1g (Table 2, entries 6 and
7) is in agreement with a 1,4-addition mechanism. ii Both the
SET mechanism™ and H addition onto the C2 atom can be ex-
cluded by the fact that the C3-cyclopropyl-substituted sub-
strate 1d (Table 2, entry 4) and ethyl 2-cyclopropylideneacetate
(4) are quantitatively converted to the corresponding 1,4-re-
duction products 5 without cleavage of the cyclopropyl ring.
iv) A Co hydride complex, CoH,(BH,),((R,R)-Naph-diPIM-dioxo-
iPr), with the same catalyst performance as that of (R,R)-3A,
was quantitatively prepared by reaction of the CoCl, precursor

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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(R,R)-3A with a 2 mol amount of NaBH, in dimethoxyethane
(DME).B

WCOOCHS ©)>'S/COOCH3 ©)>R/COOCH3
H

(R)-[3-2H]-2a (2S,3R)-[2-?H]-2a (2R,3R)[2-2H]-2a

%COOCZH5 A/cooczH5
4 5

Considering these results together with the molecular struc-
tures of (R,R)-3A and CoH,(BH,),((R,R)-Naph-diPIM-dioxo-iPr)
complexes in the crystals (Figure 1), the enantioface of 1 is

a W-shape conformation

side view

top view

Figure 1. Molecular structures of a) CoCl,((R,R)-Naph-diPIM-dioxo-iPr)-thf
((R,R)-3 A-thf) (thf omitted) and b) CoH,(BH,),((R,R)-Naph-diPIM-dioxo-
iPr)-ether (ether omitted). Hydrogen atoms on Co and B were located by
Fourier differences and isotropically refined.

thought to be selected by the catalyst/substrate complexes
cat/subg;; and cat/subg.. (R?>=CHCO,R*> R'; X=H, H(BH,),
Cl, solvent, substrate, product). The CoH species would interact
with the C2=C3 bond of 1 in parallel to the Co—H bond. In this
case, cat/subgg is more stereo-complementary than cat/
subg.q., which is affected by steric repulsion from the dioxo-
lane ring of the RR ligand, yielding (R)-2 (R?>>CH,CO,R*>R")
as the major product. The higher enantioselectivity achieved
with 3A can be ascribed to the W-shape conformation of the
five-carbon system of the two iPr groups (Figure 1, side view),
which extend a methyl group toward the reaction site. Swap-
ping R' and R? leads to formation of the enantiomeric product,
because only the Si C2 enantioface is recognized by (R,R)-3A.
Neither the configuration nor the valency of Co"" is clear, and
the involvement of a CoH/BH, bridged species™® cannot be
excluded. Nevertheless, by assuming cat/subg;; and cat/subg,g,,
the stereochemical outcome in Scheme 2 can be well ex-
plained. A detailed mechanistic study is now underway.

In summary, we have developed a high-performance molec-
ular asymmetric catalyst for the 1,4-reduction of various C3-di-
substituted 2-propenoates by NaBH,. The success of this cata-
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cat/subg;s; R cat/subpepre

lyst is ascribed to the following characteristics of Naph-diPIM-
dioxo-R, which differ from those of conventional sp?N-based
bidentate ligands: i) high o-donating ability derived from two
amidine units fixed to the same side on the highly rigid and
planar ligand, enhancing the hydride properties of the CoH
species; i) an almost 90° bite angle to stabilize the CoH com-
plex; iii)) an extended m-conjugated system to accept the back
donation from the low-valence CoH species; and iv) clear chir-
ality constructed by the C2-iPr-substituted dioxolane rings
pointing up and down on the core 5,5,6,6,5,5 ring system. The
reaction pathway, as well as the mechanism of enantioface se-
lection, has been assumed on the basis of the substrate-struc-
ture/enantioselectivity relationship, deuterium-labeling experi-
ments, radical-clock experiments, and X-ray crystallographic
analysis of a new type of CoH,(BH;), complex. The present
method is operationally simple, and will provide organic syn-
thetic chemists with a powerful tool for the multistep synthe-
ses of natural products and pharmaceuticals.

Experimental Section

A solution of (R,R)-3A (5.00 mm in CH;OH, 10.0 mL, 50.0 umol) was
added to a 1000 mL Young-type Schlenk flask and concentrated in
vacuo, leaving a blue solid in the tube. NaBH, (3.78 g, 100 mmol),
CH,Cl, (100 mL), and (E)-methyl 3-phenylbut-2-enoate ((E)-1a)
(8.81 g, 50.0 mmol) were then added. After cooling the mixture to
0°C, CH;0H (100 mL) was slowly added. After removal from the ice
bath, the mixture was stirred at RT for 1 h. After this time the reac-
tion was quenched by the addition of 1M aqueous HCl (200 mL)
and extracted by CH,Cl, (3x100 mL). The aqueous layer was con-
centrated to half its volume and extracted by CH,Cl, (3x 100 mL).
The combined organic layers were concentrated to give a crude
product (9.25 g, >99%), which was dissolved in diethyl ether and
passed through a short silica gel column (5cm¢x10cm; 254g;
eluent; ether). The filtrate was concentrated to give (R)-methyl 3-
phenylbutanoate ((R)-2a) (8.72 g, 98% vyield) with a 99:1 R/S er as
a colorless oil ([a]? =—29.4 (c=1.0 in CHCl,)).
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