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A new Co complex of a unique diamidine ligand catalyzes
asymmetric NaBH4 reduction of C3-disubstituted (E)- and (Z)-2-
propenoates, including C3-oxygen- and nitrogen-substituted
substrates with high enantioselectivity. Analysis by X-ray dif-
fraction, 1H NMR spectroscopy, ring-opening radical-clock and
D-labeling reactions, and the structure/selectivity relationship
suggest that a mechanism of CoH-involved non-single-electron
transfer 1,4-addition differentiates the C2 enantioface. Involve-
ment of CoH species has been supported by quantitative isola-
tion of a new type of CoH2(BH3)2 complex.

Asymmetric 1,4-reduction of a,b-unsaturated carboxylic esters
is an important and versatile unit operation in multistep syn-
theses of natural products and pharmaceuticals.[1] In particular,
stereo- and olefin-selective reduction of C3-disubstituted 2-
propenoates 1, yielding the saturated prenyl-type motif 2 has
considerable importance (Scheme 1). Asymmetric hydrogena-

tion has been the major approach to this reduction since 1987,
when the first success using Ru(OCOCH3)2(binap) (binap = 2,2’-
bis(diphenylphosphino)-1,1’-binaphthyl) was reported.[2,3] Two
years later, Pfaltz and co-workers reported an excellent chiral
Co semicorrin catalyst affecting asymmetric 1,4-reduction of

a,b-unsaturated carboxylic esters by NaBH4 ;[4] however, this de-
velopment did not result in a significant advance in the field.[5]

This may be due to the lower atom efficiency, as well as the
higher E factor, of NaBH4 compared with that of the H2 system.
However, hydrogenation often requires a high-pressure-resist-
ance stainless autoclave in a dedicated laboratory with special-
ized techniques for manipulating the air-sensitive catalyst pre-
cursor. By contrast, the operational simplicity of NaBH4 reduc-
tion makes experiments very easy, enabling not only small-
scale reactions, but also industrial-scale production.[6] Reconsid-
ering the advantages, we have reinvestigated the NaBH4 reduc-
tion of 1 with the CoCl2 complexes (R,R)- and (S,S)-3, as a step
towards the development of the utility of our chiral diamidine
sp2N ligand, Naph-diPIM-dioxo-R.[7]

The substrate (E)-1 a was selected as the standard, and the
concentrations were set to [(E)-1 a] = 250 mm, [(R,R)-3] =

2.5 mm, and [NaBH4] = 500 mm. The complex (R,R)-3 was pre-
pared by mixing CoCl2 and (R,R)-Naph-diPIM-dioxo-R (R = iPr,
Me, and H) in CH3OH at 25 8C for 1 h, followed by concentra-
tion (see below). To the cooled CH2Cl2 suspension of NaBH4

containing (R,R)-3 A and (E)-1 a, CH3OH at 0 8C was added to
achieve a 1:1 CH3OH/CH2Cl2 solvent system. After 1 h at 25 8C,
the yield and enantiomeric ratio (er) of the product 2 a were
analyzed.[8] The results are shown in Table 1. The standard con-
ditions quantitatively afforded 2 a with an R/S er of >99:1.
Switching the chirality of the catalyst to (S,S)-3 A gave almost
enantiopure (S)-2 a. The concentration of (R,R)-3 A could be re-
duced from 2.5 mm to 0.125 mm (substrate/catalyst (S/C) ratio
of 2000) without loss of enantioselectivity. A 1:1 CH3OH/CH2Cl2

solvent system with the Co complex provided the best results
of the conditions investigated.[8] Replacement of iPr in Naph-
diPIM-dioxo-R with Me ((S,S)-3 B) resulted in a reduction of the
er to 2:98; this decrease in er was more significant with (S,S)-
3 C (R = H). Bisoxazoline ligands, L1 and L2, and BINAP (L3),
which are recognized as privileged ligands,[9] were not effective
in this particular reaction.

Scheme 1. Asymmetric 1,4-reduction of C3-disubstituted 2-propenoates.
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As summarized in Table 2, the Naph-diPIM-dioxo-iPr–Co
complex (R,R)-3 A exhibited a high level of enantio-differentiat-
ing ability in the reduction of C3-disubstituted 2-propenoates
with alkyl, aryl, and heteroatom substitution patterns. The C3-
CH3 substituent of 1 a could be replaced by a primary or sec-
ondary alkyl group, but no reaction occurred with 1 e, which

possessed a tert-butyl group (entries 1–5). The C3-diaryl substi-
tuted substrates 1 f and 1 g were reduced with reasonable
enantioselectivity (entries 6 and 7). The C3-dialkyl-substituted
substrates 1 h–j were efficiently reduced to give the corre-
sponding saturated products with high enantioselectivities,
even with a tert-butyl substituent (entries 8–10). With the dia-
stereomeric substrates (Z)-1 a and (Z)-1 h, the enantioselectivity
was reversed without any negative effect on the er (entries 11
and 12). The present asymmetric catalysis could be also ap-
plied to C3-heterosubstituted 1. Thus, C3-CH3CONH-substitut-
ed ethyl cinnamate 1 k and crotonate 1 l were quantitatively
reduced to the corresponding b-amino acid derivatives with
R/S ratios of >97:3 (entries 13 and 14).[10] The tert-butyldi-
methylsilyl (TBDMS)-protected enol of a b-keto ester, 1 m, was
also reduced with a R/S er of >99:1 (entry 15). The esters of
tiglic acid and angelic acid were found to be poor substrates.[8]

The stereochemical outcome obtained by the substrate-struc-
ture/enantioface-selectivity relationship (Table 2) is outlined in
Scheme 2, and implies that the Naph-diPIM-dioxo-iPr–Co spe-

cies differentiates the C2 enantiofaces at a certain stage of the
catalysis. Both R and S enantiomers are accessible either by
changing the geometry of the olefin or by switching the chiral-
ity of the catalysts.

We assume that the Naph-diPIM-dioxo-iPr–CoHn (n = 1 or 2)
species is generated by the action of NaBH4 on the CoIICl2 pre-
cursor,[11] and that the hydride is delivered to C3 of 1 in a 1,4-
addition manner by a two-electron-transfer mechanism, rather
than by single-electron transfer (SET), to generate the corre-
sponding Co enolate,[4g, 12] as suggested by the following four
observations. i) The reaction of (E)-1 a with (R,R)-3 A under stan-
dard conditions using NaBD4/1:1 CH3OH/CH2Cl2 gave (R)-[3-2H]-
2 a as the sole product within the error range, and under the
conditions of NaBH4/1:1 CH3OD/CH2Cl2 gave (2S,3R)-[2-2H]-2 a
and (2R,3R)-[2-2H]-2 a in a 1:1 ratio. ii) The electronic effect on
the reactivity observed for (E)-1 f/(E)-1 g (Table 2, entries 6 and
7) is in agreement with a 1,4-addition mechanism. iii) Both the
SET mechanism[13] and H addition onto the C2 atom can be ex-
cluded by the fact that the C3-cyclopropyl-substituted sub-
strate 1 d (Table 2, entry 4) and ethyl 2-cyclopropylideneacetate
(4) are quantitatively converted to the corresponding 1,4-re-
duction products 5 without cleavage of the cyclopropyl ring.
iv) A Co hydride complex, CoH2(BH3)2((R,R)-Naph-diPIM-dioxo-
iPr), with the same catalyst performance as that of (R,R)-3 A,
was quantitatively prepared by reaction of the CoCl2 precursor

Table 1. Co-catalyzed asymmetric NaBH4 1,4-reduction.

Catalyst S/C NMR yield [%] R/S

(R,R)-3 A 100 >99 >99:1
(S,S)-3 A 100 >99 1:>99
(R,R)-3 A[a] 2000 88 99:1
(R,R)-3 A[b] 10000 53 91:9
(S,S)-3 B 100 >99 2:98
(S,S)-3 C 100 >99 10:90
L1/CoCl2 100 54 42:58
L2/CoCl2 100 35 35:65
L3/CoCl2 100 9 70:30

[a] [(R,R)-3 A] = 0.125 mm ; 7 h. [b] [(E)-1 a] = 1 m ; [NaBH4] = 2 m ; [(R,R)-
3 A] = 0.1 mm ; 24 h.

Table 2. (R,R)-Naph-diPIM-dioxo-iPr–Co-catalyzed asymmetric NaBH4 1,4-
reduction of C3-disubstituted methyl 2-propenoates.[a]

Substrate Product
Entry R1 R2 Yield

[%][b]

er[c] Config.

1[d] (E)-1 a CH3 C6H5 98 99:1 R
2 (E)-1 b C2H5 C6H5 93 98:2 R
3 (E)-1 c i-C3H7 C6H5 92 98:2 S
4 (E)-1 d c-C3H5 C6H5 98 >99:1 –[e]

5[f] (E)-1 e t-C4H9 C6H5 <5 – –
6[f] (E)-1 f C6H5 4-CH3OC6H4 95[g] 94:6 S
7 (E)-1 g C6H5 4-CF3C6H4 97 92:8 –[e]

8 (E)-1 h CH3 C6H5(CH2)2 94 99:1 S
9 (E)-1 i CH3 c-C6H11 90 97:3 –[e]

10 (E)-1 j CH3 t-C4H9 72 98:2 –[e]

11 (Z)-1 a C6H5 CH3 90 99:1 S
12 (Z)-1 h C6H5(CH2)2 CH3 93 99:1 R
13[h,i] (Z)-1 k CH3CONH C6H5 89 97:3 R
14[h,i] (Z)-1 l CH3CONH CH3 86 98:2 –[e]

15[h,i] (Z)-1 m TBDMSO CH3 98 >99:1[j] R

[a] Unless specified otherwise, all reactions were carried out in 1:1
CH3OH/CH2Cl2 under conditions on a 0.5 mmol scale; [1] = 250�10 mm ;
[NaBH4] = 500 mm ; [(R,R)-3A] = 2.5 mm ; 25 8C; 1 h. [b] Isolated yield.
[c] Chiral HPLC or GC analyses of the product 2, or 1H NMR analyses of
the diastereomeric amides derived from 2.[8] [d] 50 mmol scale; S/C =

1000. [e] Not determined. [f] 28 h. [g] 1H NMR yield. [h] Ethyl esters (R3 =

C2H5) were used in 1:1 C2H5OH/CH2Cl2. [i] 3 h. [j] Determined by chiral
HPLC analysis after desilylation.[8]

Scheme 2. General rule of enantioface selection. R2>CH2CO2R3>R1.
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(R,R)-3 A with a 2 mol amount of NaBH4 in dimethoxyethane
(DME).[8, 14]

Considering these results together with the molecular struc-
tures of (R,R)-3 A and CoH2(BH3)2((R,R)-Naph-diPIM-dioxo-iPr)
complexes in the crystals (Figure 1),[8, 15] the enantioface of 1 is

thought to be selected by the catalyst/substrate complexes
cat/subSiSi and cat/subReRe (R2>=CHCO2R3> R1; X = H, H(BH3),
Cl, solvent, substrate, product). The CoH species would interact
with the C2=C3 bond of 1 in parallel to the Co¢H bond. In this
case, cat/subSiSi is more stereo-complementary than cat/
subReRe, which is affected by steric repulsion from the dioxo-
lane ring of the R,R ligand, yielding (R)-2 (R2>CH2CO2R3>R1)
as the major product. The higher enantioselectivity achieved
with 3 A can be ascribed to the W-shape conformation of the
five-carbon system of the two iPr groups (Figure 1, side view),
which extend a methyl group toward the reaction site. Swap-
ping R1 and R2 leads to formation of the enantiomeric product,
because only the Si C2 enantioface is recognized by (R,R)-3 A.
Neither the configuration nor the valency of Co[11] is clear, and
the involvement of a CoH/BH3 bridged species[11d] cannot be
excluded. Nevertheless, by assuming cat/subSiSi and cat/subReRe,
the stereochemical outcome in Scheme 2 can be well ex-
plained. A detailed mechanistic study is now underway.

In summary, we have developed a high-performance molec-
ular asymmetric catalyst for the 1,4-reduction of various C3-di-
substituted 2-propenoates by NaBH4. The success of this cata-

lyst is ascribed to the following characteristics of Naph-diPIM-
dioxo-R, which differ from those of conventional sp2N-based
bidentate ligands: i) high s-donating ability derived from two
amidine units fixed to the same side on the highly rigid and
planar ligand, enhancing the hydride properties of the CoH
species; ii) an almost 908 bite angle to stabilize the CoH com-
plex; iii) an extended p-conjugated system to accept the back
donation from the low-valence CoH species; and iv) clear chir-
ality constructed by the C2-iPr-substituted dioxolane rings
pointing up and down on the core 5,5,6,6,5,5 ring system. The
reaction pathway, as well as the mechanism of enantioface se-
lection, has been assumed on the basis of the substrate-struc-
ture/enantioselectivity relationship, deuterium-labeling experi-
ments, radical-clock experiments, and X-ray crystallographic
analysis of a new type of CoH2(BH3)2 complex. The present
method is operationally simple, and will provide organic syn-
thetic chemists with a powerful tool for the multistep synthe-
ses of natural products and pharmaceuticals.

Experimental Section

A solution of (R,R)-3 A (5.00 mm in CH3OH, 10.0 mL, 50.0 mmol) was
added to a 1000 mL Young-type Schlenk flask and concentrated in
vacuo, leaving a blue solid in the tube. NaBH4 (3.78 g, 100 mmol),
CH2Cl2 (100 mL), and (E)-methyl 3-phenylbut-2-enoate ((E)-1 a)
(8.81 g, 50.0 mmol) were then added. After cooling the mixture to
0 8C, CH3OH (100 mL) was slowly added. After removal from the ice
bath, the mixture was stirred at RT for 1 h. After this time the reac-
tion was quenched by the addition of 1 m aqueous HCl (200 mL)
and extracted by CH2Cl2 (3 Õ 100 mL). The aqueous layer was con-
centrated to half its volume and extracted by CH2Cl2 (3 Õ 100 mL).
The combined organic layers were concentrated to give a crude
product (9.25 g, >99 %), which was dissolved in diethyl ether and
passed through a short silica gel column (5 cmfÕ 10 cm; 25 g;
eluent; ether). The filtrate was concentrated to give (R)-methyl 3-
phenylbutanoate ((R)-2 a) (8.72 g, 98 % yield) with a 99:1 R/S er as
a colorless oil (½a¤25

D =¢29.4 (c = 1.0 in CHCl3)).
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