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Abstract: Raw and modified albite catalysts, including Pb/Albite and Fe/Albite catalysts, have 

been investigated for methane conversion to C2 hydrocarbons under non-oxidative conditions. 

Introduction of Pb to albite improved the activity and selectivity to non-coke products. Based on 

characterization, it was found that Pb entered into the alkali and alkaline-earth metal sites of albite, 

while partial Fe doped in the tetrahedron sites and the other loaded on the surface of albite. At the 

reaction temperature of 1073 K, methane gas hourly space velocity (GHSV) of 2 liter·gcat-1·h-1, 

catalyst dosage of 0.25 g (300 mesh), the methane conversion catalyzed by raw albite in the 

fixed-bed micro reactor exhibited a methane conversion of 3.32%. Notably, introducing a Pb 

content of 3.4wt% into albite greatly enhanced the conversion of methane up to 8.19%, and the 

selectivity of C2 hydrocarbons reached to 99% without any coke under the same reaction conditions. 

While Fe-doping could weakly heighten the methane conversion to 3.97%, and coke was formed. 

Thus, a comparison of Pb/Albite and Fe/Albite catalysts demonstrates that the catalytic activity of 

albite is mainly decided by alkali and alkaline-earth metal sites, and lead-modification can 

effectively improve the catalytic activity of albite. 
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1. Introduction 

The conversion of natural gas (typically 75% by weight methane) into other valuable higher 

hydrocarbons, including C2 hydrocarbons, is of significant importance to the petrochemical industry. 

Being an important chemical raw material, C2 hydrocarbons are increasingly demanded in both 

developed and developing countries. Including ethylene, the most produced organic compound in 

the world [1], C2 hydrocarbons have a large market and can be obtained by direct conversion of 

methane [2-4]. Methane is an elementary building block for organic synthesis, and considerable 

interest has been paid to convert methane into more commercially useful C2 hydrocarbons. 

Therefore, how to activate CH4 and realize the conversion into high value-added products under 

mild conditions has become one of the most challenging subjects in the field of chemical industry 

[5,6]. 

In order to solve the problem, several different approaches based on catalysis and reaction 

engineering have been proposed and tested. Oxidative coupling of methane (OCM) [7] is a 

promising direct route for the production of C2 hydrocarbons by oxidation of methane, which is 

thermodynamically feasible (exothermic process). However, the active sites in the coupling 

catalysts also activate the C-H bond in C2H6 and C2H4 and result in the formation of CO2 by 

combustion, which leads to a low selectivity towards C2 (50%-55%) and high selectivity of CO and 

CO2 [8]. With respect to a higher selectivity of C2 hydrocarbons, methane can be converted to C2 

hydrocarbons by the direct pyrolysis: 2CH4 → C2H6+H2 →  C2H4+2H2 → C2H2+3H2 →

2C+4H2 [9,10]. According to the thermodynamics, the methane cracking is weak at the temperature 

of 1300 K below, and when the temperature increase to 2000 K above, methane can be pyrolyzed to 
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ethyne with a yield up to 85% [11]. Nevertheless, the increasing pyrolysis temperature will raise the 

cost and is not conducive to industrialization. Fortunately, the cracking temperature of methane can 

be reduced by adding suitable catalysts to activate the C-H bond [12], just as the catalyst showed in 

this paper. Compared with these two approaches, non-oxidative conversion of methane to C2 

hydrocarbons (NOCM) firstly defined by Belgued et al [13]. in 1990 avoids the deep oxidation of 

the products without CO or CO2 and has achieved the direct and efficient conversion of methane to 

ethane, so the process has attracted the attention of many researchers [14,15]. 

The catalysts utilized for NOCM are usually over monometallic catalysts that are composed of 

or modified by compounding them together [16,17], where metals include precious metals, 

rare-earth metals and transition metals, including Ru, Co [18], Re [19], Pt [20], Pd [21], and Ni [22], 

then Al2O3 [23], SiO2 [24] and molecular sieve [25] are applied as general carriers. Unfortunately, 

accumulation of coke on the catalyst surface results in deactivation and loss of selectivity from 91% 

to 66% [23]. 

Up to date, the study of the single-atom active center catalyst has become one of the new 

frontiers and hotspots in the field of catalysis [26]. The NOCM to C2 hydrocarbons can be 

catalyzed by single site catalyst, which is generally supported catalyst [27]. As a result, the active 

components are not stable under the condition of high temperature and easy to coke. Accordingly, 

the reaction temperature should be below 873 K, which leads to methane conversion occurs at a 

fairly low rate (<1%) [13]. Unlike the supported catalysts, Xinhe Bao et. al achieved a high 

efficient conversion of methane under high temperature by the construction of Fe-Si bond in 

Fe©SiO2, a single-atom active center catalyst, which did not deactivate in an 60-hour test [28]. In a 

word, without any coke deposition, the catalytic activity of the catalyst can be heightened through 
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the construction of the single-atom active center catalyst, which probably solve the problem of 

NOCM catalyst. 

Based on above, a new catalyst for NOCM, which is employed under mild conditions and do 

not produce any coke, has been considered in this paper. Albite, a natural mineral with a chemical 

formula of A[T4O8] (major elements shown in Table 1), was studied as a catalyst for NOCM here 

[29]. Albite consists of vertex-shared [SiO4] and [AlO4] tetrahedra that form tetra-atomic and 

octatomic rings tunnels. Cationic Na(Ⅰ), K(Ⅰ), Ca(Ⅱ), Mg(Ⅱ) and so on occupy the interspace 

between the tetra-atomic ring, forming A site (see Fig. 1) [30]. Owing to the natural structural 

properties of albite, the alkali and alkaline-earth metal sites have not only positive and negative 

charge attraction with [TO4] (T=Al, Si), but also a induced force with the oxygen bridge, so it can 

keep stable at the high temperature. Alkali and alkaline-earth metal sites (A sites) can be 

ion-exchanged with metal ions of large radius, offering a variety of possible active sites for 

methane activation. Importantly, albite has a good cleavage in the direction of parallel to the chain. 

As a result, it is likely that alkali metal sites are exposed on the external and become active, which 

may directly contact with methane molecular to catalyze NOCM. In theory, alkali and 

alkaline-earth metal sites in albite are the steady sites of coordinatively unsaturated metal center, 

and can be introduced into reactive metal by ion-exchange to form the active center for NOCM. 

Table 1. The ionic radius of the major elements in albite. 

Site   T site      A site 

Element   Si (Ⅳ) Al (Ⅲ) K (Ⅰ) Na (Ⅰ) Ca(Ⅱ) Mg (Ⅱ) 

Radius(nm)  0.034 0.047 0.159 0.124 0.120 0.097 

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e

T

high

in th

and 

struc

NOC

conv

2. E

2.1 R

T

furna

Chen

China

2.2 C

2.2.1 

I

impur

This paper is 

her activity w

he NOCM to 

stability for 

cture, the mo

CM were ex

version. 

xperimenta

Reagents 

The Pb/Albit

ce (SXW-5-

gdu, China),

a), deionized 

Catalyst prep

Pb/Ab catal

In a typical p

rities in natur

devoted to th

were applied to

C2 hydrocarb

production o

orphology an

xamined in 

al 

e (Pb/Ab) an

17Z, Shangh

, Fe2O3 (Nan

water (labora

paration 

lyst 

procedure, for

ral albite (see

     Fig. 1

he catalytic p

o make albite

bons was stu

of C2 hydroc

nd the catalyt

order to fin

d Fe/Albite (

hai, China). 

no-scale, Ala

atory homem

remost the alb

e Fig. S1 in S

1 Basic structur

erformance s

e modified. T

died, which e

arbons witho

tic property o

nd the actin

Fe/Ab) cataly

Albite (100 

addin, Shang

made) were use

bite powder w

Supporting M

 

re of albite. 

study of albite

The catalytic t

exhibits high

out any coke.

of Pb- and F

ng active site

ysts were pre

mesh, Hebe

ghai, China),

ed in catalyst

was calcined 

Material). Then

e, and Pb and

test of raw an

er selectivity

. For compar

e-modified a

e for non-ox

epared by calc

ei, China), P

, HF (39%, 

t preparation.

at 1373 K fo

n it was mill

d Fe elements

nd modified a

y (>99%), act

rison purpose

albite catalyst

xidative met

cination in M

PbCl2 (AR, K

Kelon, Chen

 

or 5 h to elim

ed in the ball

 with 

albite 

ivity, 

e, the 

ts for 

thane 

Muffle 

Kelon 

ngdu, 

minate 

l mill 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
(QM-1SP2, Nanjing, China) with a speed of 5000 r/min for 2 h to obtain the fine albite powder 

(300 mesh). Afterwards, special amount (mass ratio of PbCl2/albite was 0.1, 0.5 and 1) of PbCl2 

was mixed with the albite powder. After an intermediate grinding, the powder was further calcined 

at 773 K for 25 h in air to finish ion-exchange. Then the powder was adequately washed to remove 

redundant PbCl2 and finally dried in an oven at 383 K to obtain the final Pb/Ab catalyst. 

2.2.2 Fe/Ab catalyst 

To be brief, special amount (depends on the specific catalyst; e.g. mass fraction of Fe was 0.5, 

1 and 3 wt%) of nono-scale Fe2O3 was mixed with albite. Then the mixture was milled in the ball 

mill with a speed of 5000 r/min for 2 h. Subsequently, the powder mixture was calcined at 1373 K 

in air for 5 h to dope Fe into albite. After being crashed into 50-100 mesh by using universal 

high-speed smashing machines (FW-80, Beijing, China), the powder was grinded into 300 mesh in 

a mortar to obtain the final Fe/Ab catalyst. 

2.3 Catalyst characterization 

A series of ion-changed Pb/Ab catalysts were detected by inductively coupled plasma spectra 

(ICP) (Agilent, 7700x) to measure the content of ion exchange between Pb and Na in albite. The 

test conditions were RF power of 1450 W, pump speed of 0.1 rpm, atomizing chamber temperature 

of 2 °C, sampling depth of 8.0 mm, plasma gas flow rate of 15 L/min and nebulizer gas flow rate of 

0.75 L/min. Before measurement, all the obtained catalysts powder was digested using HF acid 

according to the method in literature [31]. 

To determine the coordination state of the iron element, Fe/Ab catalysts were measured by 

Brook EMX-10/12 Electron spin resonance (ESR) spectrometer with an operating frequency of 

9.76 MHz.  
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The phase characterization of raw and modified albite catalysts were analyzed by X-ray 

diffraction (XRD) analysis on a Panalytical X’Pert PRO diffractometer (The Netherlands). The 

samples were scanned from 10 to 60° 2θ. Cu Kα radiation (λ = 0.15406 nm) generated at 40 kV and 

30 mA was used as the X-ray source. 

X-ray photoelectron spectroscopy (XPS) (Thermo SCIENTIFIC ESCALAB 250, USA) 

analysis was performed to estimate the surface composition and binding energy between atoms of 

catalysts. The instrument was equipped with a monochromatic Al Kα radiation source operated at a 

power of 300 W. The binding energy was calibrated using the adventitious carbon (C 1s peak at 

284.6 eV).  

The morphology of modified albite was observed by Libra 200FE field emission transmission 

electron microscopy (TEM), with an acceleration voltage of 200 KV.  

The total amount of coke accumulated in the spent catalysts was obtained from the weight loss 

in the 50-1050 K range determined by thermogravimetric analysis (TGA) in a TQ500 equipment 

under a flow of air and heating from room temperature to 1050 K at a rate of 10 K/min. 

2.4 Catalyst testing 

The catalytic NOCM reaction was implemented at 873-1073 K and atmospheric pressure in a 

fixed-bed flow reactor (see Fig. S2 in Supporting Information). Specifically, 0.25 g of Pb/Ab or 

Fe/Ab catalyst (300 mesh) was mixed with 2 g quartz sand (50-100 mesh), then the mixture was 

filled in the middle of quartz tube (7 mmi.d.) and both ends were fixed with silica wool. Firstly, the 

catalyst was heated to a predetermined temperature with a speed of 4 °C/min at air atmosphere, 

then the feeding gas (90vol% CH4/10vol% Ar) was continuously injected at a determined gas 

hourly space velocity (GHSV) for 0.5 h as prereaction. After that, it was time to collect the reaction 
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gas. Subsequently the reaction gas was analyzed by Agilent7890A gas chromatography (GC) 

equipped with FID detector and PLOT-Q capillary column. The activity of the Pb/Ab and Fe/Ab 

catalysts was characterized by the yield of C2 hydrocarbons. 

2.5 Analysis 

The percentage of various components of the reaction gas was obtained by normalization 

method [32,33], the formula is as follows:  

iii fAX ×=                                                              (1) 

Where Xi is the molar concentration of chemical i, Ai represents the peak area of chemical i, 

and fi is the correction factor of chemical i. 

Methane conversion is given: 

4 4

4
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CH bef

X X
CH

X
−

= ×                                      (2) 

Where CH4(conv)	is the conversion of methane, 
4 ( )CH befX and 

4 ( )CH aftX are the initial and 

final molar concentration of methane, respectively. 

Selectivities of C2 hydrocarbons are as follows: 
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C H

X X
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−

                                    (5) 

2 ( ) 2 6( ) 2 4( ) 2 2( )sel sel sel selC C H C H C H= + +                                    (6)
 
 

Where C2H6(sel) , C2H4(sel) , C2H2(sel), and C2(sel)  represent the selectivity of ethane, 

ethylene, ethyne, and C2 hydrocarbons, respectively;	XC2H6, XC2H4, and XC2H2 are the molar 
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It is depicted that the intensities of the two absorption peaks increase with the increasing Fe (Ⅲ) 

content, and the peak height of g=2.3 significantly increases at 3wt%Fe. Especially, it might be 

illustrated that the absorption peak of g=4.3 shows partial iron atoms doped into the albite 

framework [TO4], forming a tetrahedral structure [39]. 

 

Fig. 4 XRD spetra of modified albite with different metal contents. (a) Pb/Ab; (b) Fe/Ab. 

XRD spetra of Pb/Ab and Fe/Ab catalysts with different Pb or Fe contents are depicted in Fig. 

4. As shown in Fig. 4a, the typical diffraction peaks at 2θ=20°‒34° indicates that the framework of 

the albite was still retained without obvious changes of relative crystallinity in all the samples, 

which can be indexed to pure albite Na(Al Si3O8) (JCPDS 99-0001). Futhermore, the absence of 

peak of lead chloride or lead oxide indicates that Pb(Ⅱ) was well dispersed in albite and did not 

appear in the albite framework so that it had no effect on albite structure. In this sense, lead element 

successfully entered into the A site of the albite A[T4O8], and achieved the purpose of ion exchange, 

which has borne out the ICP analysis. 

In different iron-doped proportions, XRD spectra of albite did not change obviously (Fig. 4b), 

which can be indexed to pure Albite Na(Al Si3O8) (JCPDS 99-0001). A comparision of the albite 

spectra with different iron contents demonstrates that the diffraction peaks of Fe/Ab shift toward 

the lower angle followed the iron content increasing. As report goes, when the heteroatom of larger 

radius than Al and Si atom was introduced in the molecular sieve, heteroatom in molecular sieve 
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framework often caused lattice constants and unit cell volume become larger, resulting in that the 

diffraction peaks of the sample shifted to lower angles than that of the undoped sample [40]. In 

effect, albite and molecular sieve are both connected with silicon-oxygen or alumina-oxygen 

tetrahedrons, so the diffraction peaks of Fe/Ab shifted toward the lower angle direction. This 

further shed light on that Fe element successfully entered into the albite framework [TO4]. 

Specifically, only some of iron oxide doped into the tetrahedron framework [TO4] in albite and the 

other failed, which is obvious for the new peak at 33.2° in XRD attributed to iron oxide (JCPDS 

89-0599) in the spectrum of 3wt% Fe/Ab. This may be due to that the melting point of iron oxide 

(1838 K) is much higher than that of albite (1373 K), resulting that partial iron oxide can not fully 

melt into albite at 1373K. 

 

Fig. 5 XPS patterns of modified albite with different modified-metal contents. (a) Pb/Ab; (b) Fe/Ab. 

Fig. 5 demonstrates the XPS patterns of Pb/Ab and Fe/Ab catalysts with different Pb or Fe 

contents. As shown, the peaks at 138.9 eV and 1072.1 eV should be attributed to Pb 4f7/2 and Na 1s, 

respectively (Fig. 5a). Of these, the peak of Pb 4f7/2 at 138.9 eV is close to that of lead silicate. It 

can be observed that the peak intensity of Pb 4f7/2 increases while Na 1s decreases. In combination 

with ICP and XRD analysis, it is again verified that Pb(Ⅱ) successfully ion-exchanged with Na(Ⅰ) 

in albite and entered into alkali metal site of albite [37,41]. 

The Fe 2P3/2 peak position of the albite moves to the direction of high binding energy, and the 
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flaky dissociation of albite. The obvious appearance of spherical particle on the surface of 

3wt%Fe/Ab indicates that partial iron oxide did not melt into albite and loaded on the surface of 

albite (Fig. 6f). This is consistent with the XRD results, and also corroborates the reason why XPS 

diagram of Fe 2P3/2 peak of 3wt%Fe/Ab moved to lower binding energy direction is that partial iron 

oxide failed to enter into albite. Thus, it is reliably ascertained that partial iron oxide did not enter 

into the albite flamework [TO4] after Fe-doping, which can be intuitively reflected in 3wt%Fe/Ab 

catalyst. 

Compared with the characterization of Pb/Ab and Fe/Ab catalysts, it was found that Pb(Ⅱ) 

smoothly entered into A site of albite, while partial Fe(Ⅲ) successfully doped into T site of albite 

and the remaining loaded on the surface of albite. 

3.2 Catalytic performance on NOCM 

3.2.1 Study on catalytic properties of albite 

First of all, the catalytic effects of raw albite under different temperatures and space velocities 

were investigated, which are depicted in Fig. 7. The albite dosage was 0.25 g, and the reaction time 

was 1 h. 
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Fig. 7 Catalytic activity of raw albite with different conditions including (a) GC chromatography (b) temperatures 

ranging from 873 to 1073 K, (c) methane GHSV varied from 1to 3 liter·gcat-1·h-1 at temaperature of 1073 K. (d) 

catalytic performance of quartz sand at temaperature of 1073 K and methane GHSV of 2 liter·gcat-1·h-1. 

Fig. 7a shows the GC spetra of the products of methane conversion catalyzed by albite at 

different temaperatures. Intuitively, the products contain C2 hydrocarbons (ethane, ethylene and 

ethyne) and C3 hydrocarbons (propane and propylene). Of these, ethane and ethylene were the main 

products. What’s more, the content of C3 hydrocarbons was so little that the study focus has been 

C2 hydrocarbons in this paper.  

Fig. 7b demonstrates the calculation results of GC pattern at Fig. 7a. As shown in Fig. 7b, the 

conversion of methane increased apparently from 0.86% to 3.32% followed the reaction 

temaperature increasing from 873 K to 1073 K. This might be attributed to that the increasing 

reaction temaperature improved the activity of catalytic site in albite, which was favor to methane 

conversion. Meanwhile, at the reaction temperature ranging among 873 K and 1073 K, ethane 

selectivity decreased from 90.1% to 51.4%, while ethylene selectivity increased from 9.9% to 47.8% 
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and ethyne selectivity increased from 0 to 0.6% without any coke. It might be ascribed that ethane 

is so unstable in high temperature that would further dehydrogenate to produce ethylene and ethyne 

[10]. Remarkably, the methane conversion at 1073 K was greatly higher than that of 973 K. 

The effects of methane GHSV (from 1 to 3 liter·gcat-1·h-1) on the catalytic performance of 

albite for NOCM are depicted in Fig.7c. It can be seen that the conversion of methane decreased 

from 4.62% to 1.05% while the selectivity of C2 hydrocarbons did not decrease obviously when 

methane GHSV increased from 1 to 3 liter·gcat-1·h-1 at temaperature of 1073 K. Specifically, 

besides a bit of ethyne, the selectivity of ethane was improved from 30.4% to 61.6%, while the 

selectivity of ethylene decreased from 66.5% to 38.1%. This could be explained that when the feed 

gas spacevelocity increased, the residence time of the product gas in the high temperature region 

was shortened, so methane molecule had less time to be converted and the continuous 

dehydrogenation of C2 hydrocarbons was weakened. 

By comparison, a blank experiment (an empty reactor with no catalyst) under the same 

conditions showed a methane conversion of only 0.75% (Fig. 7d). A test with quartz sand as the 

catalyst yielded virtually the same result. Therefore, quartz sand had no obvious effect on methane 

conversion, and it can be mixed with finer albite powder to make methane gas pass through. 

In conclusion, the best catalytic effect of raw albite for NOCM is that the methane conversion 

rate was up to 3.32% and the main products were ethane and ethylene without any coke at the 

optimal experimental conditions of the temperature of 1073 K, methane GHSV of 2 liter·gcat-1·h-1, 

reaction time of 1 h and catalyst dosage of 0.25 g. 

3.2.2 Pb/Ab catalyst 
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Fig. 8 Catalytic activity of Pb/Ab with different Pb contents. Reaction conditions: the reaction temperature of 1073 

K, the methane GHSV of 2 liter·gcat-1·h-1, and the catalyst dosage of 0.25 g (300 mesh). 

The NOCM tests of modified-albite were implemented under the optimal experimental 

conditions for the highest catalytic activity of albite. The results of catalytic activity test of Pb/Ab 

with different Pb contents are decpited in Fig. 8. As shown, when the Pb content increased from 0 

to 3.4wt%, the conversion of methane increased from 3.32% to 8.19%. Meanwhile, C2 

hydrocarbons yield increased from 3.31% to 8.11% (Fig. 8a). It shows that Pb-modification can 

significantly enhance the catalytic activity of albite. Combined with the characterizations above, 

this may be attributed to that Pb(Ⅱ), an ion with higher activity than Na(Ⅰ), ion-exchanged with 

Na(Ⅰ) to enter into A site and improved the catalytic activity of A site, which was favourable for 

methane activation.  

Containing trace ethyne (about 0.2%), the main components of the C2 hydrocarbons were 

ethane (about 53.4%) and ethylene (about 45.8%) after reaction (Fig. 8b). Fairly accurately, lead- 

modification could weakly improve the selectivity of ethylene, but the overall selectivity of C2 

hydrocarbons did not decrease, conforming the reaction process did not produce coke. This may be 

ascribed to that the ion-exchange between Pb(Ⅱ) and Na(Ⅰ) in A site of albite enhanced the 

activity of albite for methane conversion, but did not change the albite structure so that it had a little 

effect on the selectivity of C2 hydrocarbons. 
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Fig. 10 TEM (a) (b), XRD (c) and TGA (d) spectra of Pb/Ab catalyst before and after reaction for 25 h. 

The TEM image, XRD and TGA curves of Pb/Ab catalyst before and after reaction for 25 h 

were measured. The TEM image of the Pb/Ab catalyst after the reaction (Fig. 10a,b) shows that the 

morphology of the Pb/Ab catalyst did not change significantly after the reaction and remained a 

layered structure with no other attachments, demonstrating that no coke was produced. As can be 

seen from Fig. 10c, the XRD pattern of the Pb/Ab catalyst before and after reaction did not change 

significantly, indicating that no obvious structural changes occurred in the Pb/Ab catalyst during the 

NOCM reaction, and no carbon deposition occurred. Fig. 10d shows that the weight loss rate of 

Pb/Ab catalyst before reaction was 0.31% at 300 K-1050 K, and the weight loss rate of Pb/Ab was 

0.73% after NOCM reaction for 25 h. It can be seen that there is such little change of the weight 

loss rate of Pb/Ab catalyst before and after 25 h reaction, so that it could be ignored. Meanwhile, 

there is no weight loss peak due to coking at around ~700 K and ~750 K [43,44]. Combined with 

XRD and TEM analysis results, it was indicated that Pb/Ab catalyst did not form coke during the 

reaction. 

3.2.3 Fe/Ab catalyst 

 

Fig. 11 Catalytic activity of Fe/Ab with different Fe contents. Reaction conditions: the reaction temperature of 

1073 K, the methane GHSV of 2 liter·gcat-1·h-1, and the catalyst dosage of 0.25 g (300 mesh). 

The conversion rate of methane increased slightly followed the iron-doping increasing (Fig. 
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surrounded by four oxygen atoms, forming a silicon-oxygen or aluminum-oxygen tetrahedron (Fig. 

13). So does the iron-oxygen tetrahedron[37]. Furthermore, with the smaller ionic radius than that 

of the surrounding oxygen, the intermediate silicon, aluminum and iron are completely coated by 

oxygen. Due to the intermediate metal site is closed by tetrahedral structure and methane molecules 

are unable to contact with the active metal, so that it can not be activated on the catalyst. 

Accordingly, [TO4] is clearly not consistent with such a structure, which could explain why the 

doping of transition metal iron did not significantly improve the activity of albite. 

In this paper, the process of methane conversion occured at the catalytic site of albite is similar 

to catalytic cracking of methane, which can be speculated based on the previous studies [9-11] and 

the experimental study. The possible reaction process is given: 

2CH4
cat⎯⎯→ 2CH3⋅+H2 → C2H6+H2 → C2H4+2H2 → C2H2+3H2 → 2C+4H2 

First of all, alkali-metal sites of albite activates and initiates methane molecules 

dehydrogenation by generating methyl radicals at high temperature, and then ethane is generated by 

the combination of two methyl radicals [28]. Next, the dehydrogenation of ethane and its 

subsequent dehydrogenation at varied reaction temperatures and methane spacevelocites are 

consistent with the thermal decomposition process of alkanes. Ethane is so unstable at high 

temperature that continued to produce ethylene by dehydrogenation [10]. If the temperature 

continues to rise or the residence time of ethylene in high temperature area is lengthening, ethylene 

will continue to be converted into ethyne by dehydrogenation. Then coke is formed by the 

dehydrogenation of ethyne, which is only present in Fe/Ab catalyst due to the poorly dispersed iron 

oxide. 

4. Conclusion 
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Here we show that albite can be employed in methane conversion under non-oxidative 

conditions. The conversion of methane catalyzed by raw albite was 3.32%. After introducing a Pb 

content of 3.4wt% to albite, a conversion as high as 8.19% was obtained at 1073 K and a space 

velocity of 2 liter gcat-1 hour-1, with a selectivity to C2H4 of 47.4%. It is worth mentioning that the 

Pb/Ab catalyst as a single-active-center-like catalyst exhibited a higher performance on NOCM 

than conventional catalysts, due to that total carbon selectivity to the three C2 hydrocarbons 

remained >99%, and no deactivation was observed even after reaction for 25 h in this paper. 

Furthermore, the active site of albite, alkali and alkaline-earth metal site, was determined by the 

comparision of Pb-introduction and Fe-doping, which provides direction for further modification. 

Deficiently, the specific adsorption and decomposition processes of methane on albite surface have 

not been studied owing to the limitations of study conditions. The finding opens up new 

possibilities for fundamental studies of direct, non-oxidative conversion of methane, the main 

component of natural gas. It is anticipated that combining a catalyst such as this one with an 

efficient reactor technology may enable the development of methane-based routes to transform C2 

hydrocarbons into high-value-added chemicals. 
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