

Deoxyiminoalditols from Aldonolactones — V. Preparation of the Four Stereoisomers of 1,5-Dideoxy-1,5-iminopentitols. Evaluation of these Iminopentitols and Three 1,5-Dideoxy-1,5-iminoheptitols as Glycosidase Inhibitors

Michael Godskesen,^a Inge Lundt,^{a,*} Robert Madsen^a and Bryan Winchester^b

^aDepartment of Organic Chemistry, The Technical University of Denmark, Building 201, DK-2800 Lyngby, Denmark ^bDivision of Biochemistry and Genetics, Institute of Child Health, University of London, 30 Guildford Street, London WC1N 1EH, U.K.

Abstract—The four stereoisomeric 1,5-dideoxy-1,5-iminopentitols with D-*arabino* - (D-*lyxo*-) (3), *ribo*- (9), L-*lyxo*- (1-*arabino*-) (13) and *xylo*-(18) configurations were synthesized. The corresponding aldonolactones (1, 7 and 11) or aldonic acid ester (15b) having a leaving group at C-5 gave by reaction with aqueous ammonia, the 5-amino-5-deoxy-1,5-lactams, 2, 8, 12 and 17, respectively. Reduction of the lactam function using sodium borohydride/acetic or trifluoroacetic acid, or borane dimethyl sulfide complex yielded the iminopentitols. The compounds 3, 9, 13 and 18, together with the three 1,5-dideoxy-1,5-iminoheptitols 19, 20 and 21 were tested for inhibition of the glycosidase activities present in an extract from human liver. Compound 18 was a potent and 19 a moderately good inhibitor of β -glucosidase. Compound 3 together with 19, 20 and 21, all having D-*arabino*-configuration at the hydroxy-substituted carbon atoms, were good inhibitors of α -L-fucosidase. Copyright © 1996 Elsevier Science Ltd

Introduction

Both naturally occurring and synthetic polyhydroxylated piperidines and pyrrolidines have been shown to exhibit interesting biological activities as glycosidase inhibitors.¹⁻³ Glycosidases are key enzymes in the biosynthesis and processing of glycoproteins and catabolism of glycoconjugates. These macromolecules are involved in cell-cell recognition and thus in the control of biological mechanisms. Sugar pyranoses or furanoses, in which the ring oxygen has been replaced with nitrogen, are metabolically inert but can still be recognized by glycosidases and other carbohydrate recognizing proteins. They inhibit glycosidases by mimicking the pyranosyl or furanosyl moiety of the corresponding substrate. Thus, substances that are able to inhibit the processing glycosidases of the biosynthetic pathway of glycoproteins have become important as potential antiviral,⁴ and antitumor⁵ agents and those that inhibit intestinal disaccharidases as antidiabetic⁶ agents. An examination of the structural features of hydroxylated piperidines and pyrrolidines that act as inhibitors may give information about the structural requirements necessary for the inhibition. It has been shown that 1,5-dideoxy-1,5-iminohexitols with D-arabino-configuration of the three hydroxy groups in the piperidine ring exihibit strong α -L-fucosidase inhibitor activity.7.8 Recently we have developed procedures for preparation of 1,4-dideoxy-1,4-iminohexitols⁹ and 1,5-dideoxy-1,5-iminoheptitols¹⁰ from dibromohexono- and -heptonolactones, respectively. We envisioned that similar procedures could be

applied to pentonolactones for synthesis of 1,5dideoxy-1,5-iminopentitols.

The strategy involved preparation of the corresponding 5-amino-5-deoxy-pentono-1,5-lactams directly, by treatment of 5-bromo- or 5-mesyl substituted pentono 1,4-lactones with ammonia. From our previous work⁹ we know that 6-bromo-6-deoxyhexono-1,4-lactones when treated with ammonia give the 5,6-epoxide of the hexonic acid amide followed by opening at C-6, to give a 6-amino-6-deoxy-derivative. We have also observed that a cyclic amide is preferred to an acyclic one, even when seven-membered.¹¹ Following our strategy, the pentono-1,5-lactams thus obtained should be reduced to the trihydroxypiperidines.

Aldonolactams having ring size five, six and seven, have previously been prepared by Hanessian¹² by displacement of ω -tosyloxy aldonolactones with sodium azide. Hydrogenation of the ω -azido derivatives thus obtained underwent ring enlargement of the ω -amino derivatives to give the sugar lactams.

5-Amino-5-deoxy-pentono-1,5-lactams can exist in four pairs of enantiomers. Reduction of the lactam function to give the hydroxylated piperidines decreases the number of possible isomers to four, namely with D- and L-arabino- (equal to D- and L-lyxo-)configuration, together with the two mesoforms with *ribo-* and *xylo*-configurations.

In the present paper we describe the synthesis of the four stereoisomeric 1,5-iminopentitols. These com-

pounds and the previously prepared 1,5-iminoheptitols¹⁰ have been tested for potential inhibitor activity towards human liver glycosidases, including α -L-fucosidase, in order to evaluate/confirm the structural basis for the inhibition of human liver α -L-fucosidase.

Results and Discussion

Chemistry

5-Bromo-5-deoxy-D-arabinonolactone (1) was obtained as described previously¹³ by treatment of D-arabinonolactone or potassium D-arabonate with hydrogen bromide in acetic acid. To check our hypothesis discussed above, we followed the reaction of 1 with aq ammonia by running ¹³C NMR spectra at intervals. Rapid changes took place: after 5 min the 5-bromo amide A was seen together with the epoxide B (Scheme 1, and Experimental; ca. 35 and 59%, respectively), while the 5-amino amide C (6%) just could be observed. After 20 min the lactam 2a was observed (18%) together with A (7%), B (47%) and C (28%). After 1 h the relative amounts of **B**, **C** and **2a** were 11, 14, and 75%. After 2 h of reaction the product 2a was the only one present. Thus, after treatment of 1 with aq ammonia for 2 h the lactam was isolated as the crystalline 3,4 -O-isopropylidene derivative 2b. Reduction of the lactam **2b** was performed with $BH_3 \cdot Me_2S$ in dioxane,¹⁴ but besides the iminopentitol, isopropylethers were also observed in the product. These were formed by reduction of the isopropylidene group.¹⁵ Then NaBH₄ in the presence of 1 equiv of trifluoroacetic acid^{16,17} was tried, and the lactam was cleanly reduced to 1,5-dideoxy-1,5-imino-D-arabinitol, which was isolated as the crystalline hydrochloride 3. When acetic acid was used instead of trifluoroacetic acid in the reduction procedure, various amounts of *N*-alkylated products were observed. They may be formed by reduction of the acid to the aldehyde, which subsequently underwent reductive amination.¹⁷ The iminoarabinitol has previously been synthesized from methyl- α -D-mannopyranoside in nine steps.¹⁸ Very recently the synthesis of **3** has been considerably improved using a seven step procedure from D-arabinose with the 5-azido-5-deoxy-D-arabinofuranose as the key intermediate.¹⁹ Our procedure involved three steps from D-arabinonolactone.

Preparation of the 1,5-dideoxy-1,5-iminoribitol might be performed similarly, by treatment of 5-bromo-5-deoxy-d-ribono-1,4-lactone $(4)^{20}$ with a ammonia (Scheme 2). When the reaction was performed in an NMR tube and followed by ¹³C NMR the 4,5-epoxy amide E and the 2,5-anhydro carboxamide 6 were observed after 20 min in a ratio of ca. 2:5. Formation of a five-membered ether 6 is very easily recognized by the presence of a low field signal (C-2, δ 82.0). The epoxide E reacted within 4 h with ammonia to give the lactam 5. In this case, the 5-bromoribono amide D did not give the epoxide E exclusively, but the attack from C-2 hydroxy group at the C-5 bromine to give 6 was a competing reaction. We have observed this competition between formation of three- and five-membered ethers earlier.9a Consequently, it was necessary to prepare a C-2 protected ribonolactone.

Previously we have described the synthesis of 2,3-O-isopropylidene-5-O-mesyl-D-ribono-1,4-lactone (7) from D-ribonolactone.²¹ When 7 was treated with aq ammonia and worked up, the 2,3-O-isopropylidene ribonolactam **8** could be isolated crystalline in 84% yield. Reduction of the lactam with NaBH₄ in the presence of acetic acid gave the 1,5-dideoxy-1,5-iminori-

Reagents and conditions: i: HBr-HOAc; ii: 25% aq NH₃, 2 h, rt; iii: dimethoxypropane, TsOH; iv: NaBH₄, CF₃COOH, dioxane 100^oC, 3 h; IR 120 (H⁺); aq HCl

Scheme 1.

Reagents and conditions: i: CBr₄, Ph₃P; ii: aq NH₃; iii: NaBH₄, CH₃COOH, dioxane, 100 °C, 5 h; IR 120 (H⁺); aq HCl. **Scheme 2.**

bitol, isolated as the crystalline hydrochloride **9**. In this case acetic acid was used, since using trifluoroacetic acid in the reduction, gave an isopropylether of the iminoribitol as a side product. Compound **9** is a new compound, while both **8** and the unprotected 5-amino-5-deoxy-D-ribono-1,5-lactam have been described.¹²

As mentioned in the Introduction the 1,5-amino-1,5-dideoxy-L-arabinitol might also be viewed as the corresponding L-lyxitol. Thus, 13 can either be prepared analogously to the *D*-arabinitol 3, from L-arabinonolactone, or from L-lyxonolactone. We chose the latter method, since we have published a convenient method to prepare L-lyxonolactone by isomerization of the mesylated p-ribonolactone 7 selectively at C-4, by treatment with strong aqueous potassium hydroxide, followed by acid work up.²¹ When 7, after treatment with strong base, was worked up keeping the pH above 3 a high yield of crystalline 2,3-*O*-isopropylidene-L-lyxono-1,4-lactone (10) was obtained (Scheme 3). Mesylation gave the crystalline 5-O-mesyl-2,3-O-isopropylidene-L-lyxono-1,4-lactone(11) which by treatment with aq ammonia gave the crystalline 5-amino-5-deoxy-2,3-O-isopropylidene-L-lyxono-1,5lactam (12). Reduction with $NaBH_4$ -CH₃COOH gave the corresponding 1,5-imino-1,5-dideoxy-L-lyxitol (-Larabinitol) as the crystalline hydrochloride 13. This compound has been prepared previously from methyl-D-galactopyranoside in a nine step procedure.¹⁸

Reagents and conditions: i: KOH/H₂O, 3 h; aq HCl to pH 3; ii: MsCl, pyridine, 1 h, 0 °C; iii: 25% aq NH₃, 4 h, rt; iv: NaBH₄, CH₃COOH, dioxane 100 °C, 5 h; IR 120 (H⁺); aq HCl. Scheme 3.

Finally, the iminopentitol with xylo-configuration, 18 (mesoform), was targeted (Scheme 4). Iminoxylitol as the free base has previously been synthesized analogously to 13 from methyl 6-bromo-6-deoxy-a-D-glucopyranoside,¹⁸ while Paulsen had already prepared hydroxylated piperidines with xylo-configuration in 1967.²² In both cases no data were given of the noncrystalline products. For our stategy a 5-O-mesylated-D-xylono-1,4-lactone was needed. D-xylonic acid is normally prepared by oxidation of D-xylose with bromine, but it is not possible to obtain the pure γ -lactone, since a mixture of open form, γ - and δ -lactones exists.²³ Therefore, the D-xylonic acid was converted into the 2,3-4,5-di-O-isopropylidene methyl ester, followed by selective deprotection of the 4,5-acetal group to give, without any purification from D-xylose, crystalline 2,3-O-isopropylidene-D-xylonic acid methyl ester 15a in a 49% overall yield. Mesylation or tosylation gave the 5-sulfonated esterases 15b (38%) or 15c (37%). Treatment of the mesylate 15b with aq ammonia, gave, after methanolysis and lactamization, the 5-amino-5-deoxy-d-xylono-1,5-lactam (17). This hitherto unknown lactam was very recently obtained by an intramolecular Schmidt rearrangement of an aldehydo 5-azido-5-deoxy-D-xylose precursor.24 The melting point reported was, however, ca. 100 °C lower than the one obtained for our compound 17. The lactam was silvlated in situ and reduced using BH_3 ·SMe₂ to give the 1,5-dideoxy-1,5-imino-xylitol, isolated as the hydrochloride 18.

In summary, a simple method for the preparation of the four stereoisomeric 1,5-dideoxy-1,5-iminopentitols

from 5-substituted aldonolactones/aldonic acid derivatives is presented. When the latter compounds were treated with aq ammonia, 5-amino-5-deoxy-1,5-lactams were formed in a single step. The lactams were subsequently reduced to the target molecules. In the synthesis only cheap and readily available reagents have been used, and the compounds have been crystallized directly.

Biochemistry

5-Amino-5-deoxy-aldono-1,5-lactams have been reported to exhibit glycosidase inhibitor activity as well as the hydroxylated piperidines.² In the present work only the latter compounds have been tested.

The 1,5-dideoxy-1,5-iminopentitols, 3, 9, 13, 18, and the three 1,5-dideoxy-1,5-iminoheptitols, 1,5-dideoxy-1,5imino-L-glycero-D-manno-heptitol (19), 1,5-dideoxy-1,5-imino-D-glycero-L-gulo-heptitol (20) and 1,5-dideoxy-1,5-imino-L-glycero-D-altro-heptitol (21) (Scheme 5) which we have prepared from bromodeoxyheptonolactones or -alditols by reaction with ammonia¹⁰ were tested for inhibition of the glycosidase activities present in an extract of human liver.⁷ A preliminary screen was carried out using a mixture of human liver enzymes and a panel of 4-methylumbelliferyl glycosides under optimal conditions of assay for each substrate.⁷ The concentrations of the test compounds and substrates were 1 and 0.5 mM, respectively, which give a very sensitive assay for inhibition of the enzymes studied. Compound 18, in which the hydroxy groups in the ring have the same configuration as in D-glucose, almost

Reagents and conditions: i: Br₂, NaHCO₃, H₂); acetone, dimethoxypropane, MsOH, 5 h reflux; ii: CH₃OH-H₂O, IR 120 (H⁺); iii: MsCl or TsCl, 1.2 eq., pyridine, 0 °C, 0.5–1.5 h; iv: aq NH₃, rt, 16 h; 1% HCl/MeOH, 60 °C, 4 h IRA 400 (HCO₃⁻); v: HMDS, TMSCl, CH₃CN, 1 h, 82 °C; BH₃·SMe₂, dioxane, 100 °C, 5 h; 1 M HCl, 100 C, 1 h.

Scheme 4.

Scheme 5.

completely inhibited (97%) β -D-glucosidase under these conditions. None of the other glycosidases was inhibited appreciably. Alteration of the configuration at C3 as in compound 9 decreased the inhibition (61%), whereas alteration of the configuration at C4 as in compound 13 abolished inhibition altogether.

The 1,5-dideoxy-1,5-imino-D-arabinitol (3) and the iminoheptitols **19**, **20** and **21** all selectively inhibited α -L-fucosidase by over 85%. This is comparable to other polyhydroxylated piperidines with the same configuration at C2, C3 and C4, which is the minimal structural motif necessary for the inhibition of α -L-fucosidase.⁷ These preliminary inhibition studies show that 1,5-dideoxy-1,5-iminopentitols and iminoheptitols have similar inhibitory properties to the corresponding 1,5-dideoxy-1,5-iminohexitols.¹⁹

Experimental

Melting points are uncorrected. Optical rotations were determined on a Perkin–Elmer 241 polarimeter. NMR spectra were recorded on Bruker AC-250 and AM-500 instruments. Chemical shifts were measured in ppm and coupling constants (*J*) in Hz. For NMR spectra in D₂O dioxane ($\delta = 67.4$) was used as the internal reference for ¹³C NMR spectra and acetone ($\delta = 2.17$) for ¹H NMR spectra. For spectra in CDCl₃ (chloroform-d, $\delta = 76.9$) was used as the internal reference for ¹³C NMR spectra while (CD₃, $\delta = 29.8$) was used for ¹³C spectra and (CD₂H, $\delta = 2.05$) for ¹H spectra in acetone- d_6 . ¹³C NMR signals were assigned through CH-correlated NMR spectra. All evaporations were carried out below 40 °C in vacuo. Microanalyses were performed by Leo Microanalytical Laboratory.

Reaction of the bromodeoxylactones 1 and 4 with aq ammonia followed by ¹³C NMR spectroscopy. The bromolactone (150 mg) was dissolved in 25% aq ammonia (1 mL) and 10 drops of D_2O were added. The ¹³C NMR spectra were recorded on a Brucker AC-250 instrument at intervals, using the external instrument reference in water as a reference. ¹³C chemical shifts for intermediates in these reactions: From 1 (Scheme 1): B: δ 179.0 (C-1), 73.5, 72.6 (C-2, C-3), 53.8 (C-4), 47.8 (C-5); C: 8 180.4 (C-1), 74.5, 72.3, 72.3 (C-2, C-3, C-4), 45.3 (C-5); 2a: δ 175.0 (C-1), 73.3, 70.9, 68.2 (C-2, C-3, C-4), 46.5 (C-5). From 4 (Scheme 2): E: & 74.5, 73.4 (C-2, C-3), 52.6 (C-4), 47.0 (C-5); 6: 8178.1 (C-1), 82.0 (C-2), 76.8, 74.3, 72.4 (C-3, C-4, C-5); 5: δ175.0 (C-1), 72.5, 69.7, 66.2 (C-2, C-3, C-4), 44.2 (C-5).

5-Amino-5-deoxy-3.4-O-isopropylidene-D-arabinono-1.4lactam (2b). 5-Bromo-5-deoxy-D-arabinono-1,4-lactone¹³ 12.0 g, 56.9 mmol) was dissolved in aq NH_3 (25%, 50 mL) and stirred for 2 h. Evaporation of the solvent and co-evaporation with CH₃OH left a syrupy residue which was dissolved in boiling CH₃OH (25 mL). To the warm solution was added p-toluenesulfonic acid monohydrate (1.8 g) and 2,2-dimethoxypropane (125 mL) and the mixture was stirred at room temperature for 24 h. The mixture was then neutralized with K₂CO₃, diluted with CH₃OH (100 mL) and filtered. The filtrate was concentrated to a yellow crystalline residue which was washed with hot acetone (100 mL) and an additional amount of potassium salts (5.7 g) was filtered off. The filtrate was poured onto a column of ion-exchange resin (Amberlite MB-3, H⁺ and OH⁻, 75 mL), which was eluted with CH₃OH. The eluate was concentrated to a crystalline residue which on recrystallization from acetone yielded 2b (5.32 g, 50%), mp 170–172 °C. Additional recrystallizations from the same solvent gave an analytical sample; mp 177–178 °C, $[\alpha]_{D^{20}} - 27^{\circ}$ (c 2, H₂O). Anal.: Found: C, 51.30; H, 7.05; N, 7.45; calcd for C₈H₁₃NO₄: C, 51.33; H, 7.00; N, 7.48%. ¹³C NMR (D₂O): 174.8 (C-1), 112.1 (O-C-O), 78.4 (C-3), 72.1 (C-4), 71.4 (C-2), 42.1 (C-5), 26.3 and 24.3 (2 × CH₃). ¹H NMR (D₂O): δ 4.58 (ddd, H-4, $J_{4,5} = 6.2$ Hz, $J_{4,5'} = 5.0$ Hz, $J_{3,4} = 7.7$ Hz), 4.40 (dd, H-3, J_{23} = 5.9 Hz), 4.23 (d, H-2), 3.53 (dd, H-5', $J_{5.5'} = 13.6$ Hz), 3.22 (dd, H-5), 1.45 and 1.36 (s, CH₃).

1,5-Dideoxy-1,5-imino-D-arabinitol hydrochloride (3). To a stirred solution of 5-amino-5-deoxy-3,4-*O*-isopropylidene-D-arabinono-1,5-lactam **3** (5.00 g, 26.7 mmol) in dioxane (80 ml) was added sodium borohydride (4.50 g, 119 mmol). Then a solution of trifluoroacetic acid (12.0 g, 105 mmol) in dioxane (10 ml) was added at room temperature during 15 min and the mixture heated at 100 °C for 2 h. After being cooled to room temperature H_2O (40 ml) was added slowly and a crystalline precipitate (5.9 g) was filtered off and discarded. To the filtrate was added ion-exchange resin (Amberlite IR-120, H⁺, 250 mL) and the mixture was stirred slowly for 2 h. The resin was filtered off and poured into ice-cooled water. NH₃ (25%, 180 mL) was added with stirring, which was continued for 1 h at

room temperature. The resin was then filtered off and the filtrate was filtered through activated carbon, concentrated and co-concentrated with H₂O to leave a residue, which was dissolved in 3 M HCl (25 mL). Concentration left a syrup which crystallized from CH₃OH by seeding, to give **3** (2.97 g, 66%), mp 194–195 °C, $[\alpha]_D^{20} - 22^\circ$ (c 0.8, CH₃OH) (lit.:¹⁸ mp 191–192 °C, $[\alpha]_D^{20} - 16^\circ$ (c 0.9, CH₃OH)). ¹³C NMR (D₂O): 71.8 (C-3), 66.0 (C-2), 65.6 (C-4), 47.0 (C-5) and 46.5 (C-1). The ¹H NMR data are in accordance with the published values.¹⁸ ¹H NMR (D₂O): δ 4.19 (H-4, m, $J_{4.5'} = 6.0$ Hz, $J_{4.5} = 2.8$ Hz, $J_{3.4} = 3.0$ Hz), 4.05 (dt, H-2, $J_{2.3} = 8.0$ Hz, $J_{1'.2} = 4.0$ Hz, $J_{1.2} = 8.5$ Hz), 3.73 (dd, H-3), 3.37 (dd, H-1', $J_{1.1'} = 12.8$ Hz), 3.25 (dd, H-5', $J_{5.5'} = 13.0$ Hz), 3.17 (dd, H-5) and 2.91 (dd, H-1).

5-Amino-5-deoxy-2,3-O-isopropylidene-D-ribono-1,4lactam (8). 2,3-O-Isopropylidene-5-O-mesyl-D-ribono-1,4-lactone²¹ (7; 17.0 g, 63.8 mmol) was dissolved in aq NH₃ (65 mL, 25%) and allowed to stand for 18 h at room temperature in a sealed flask. Concentration and co-concentration twice with EtOAc gave a residue which was extracted with boiling EtOAc (2×200 mL). The combined organic phases were treated with activated carbon, dried (Na₂SO₄), filtered and concentrated to give 8 (10.1 g, 84%) as colorless crystals, mp 123-127 °C. Recrystallization from EtOAc/EtOH gave **8**; mp 133–134 °C, $[\alpha]_{D}^{20}$ + 8.3° (c 1.0, CH₃OH). Anal.: found: C, 51.30; H, 7.11; N, 7.42; calcd for C₈H₁₃NO₄: C, 51.33; H, 7.00; N, 7.48% (lit.¹⁵: mp 139–140 °C, $[\alpha]_{D}^{20}$ +26.8° (c 1.02, CHCl₃)]. ¹³C NMR (D₂O): δ 172.3 (C-1), 112.1 (acetal C), 75.9, 73.5 (C-2, C-3), 64.1 (C-4), 42.2 (C-5), 26.3 and 25.0 (2×CH₃). ¹H NMR (D₂O): δ 4.62 (dd, H-3, $J_{2,3} = 6.5$ Hz, $J_{3,4} = 3.0$ Hz), 4.60 (d, H-2), 4.25 (ddd, $J_{4.5} = 8.0$ Hz, $J_{4.5'} = 4.0$ Hz), 3.45 (dd, H-5, $J_{5,5'}$ = 13.0 Hz), 3.33 (dd, H-5'), 1.48 (s, CH₃) and 1.44 (s, CH₃).

1,5-Dideoxy-1,5-imino-ribitol, hydrochloride (9). 5-Amino-5-deoxy-2, 3-O-isopropylidene-D-ribono-1,5-lactam (8; 4.0 g, 21 mmol) was dissolved in dioxane (70 mL). NaBH₄ (8.1 g, 210 mmol, 10 equiv.) was added with stirring, followed by dropwise addition of acetic acid (11.6 ml, 200 mmol, 9.5 equiv.) and the mixture was heated at 100 °C for 5 h. The solution was then cooled to room temperature and H₂O (60 mL) was added slowly. The resulting crystalline precipitate (12.4 g) was filtered off. The filtrate was stirred with ion-exchange resin (Amberlite IR-120, H⁺, 200 mL) for 2 h. The resin was filtered off, washed with H₂O, poured into a beaker and aq NH₃ (150 ml, 25%) was added at 0 °C. After stirring for 1 h the resin was filtered off and the filtrate concentrated and co-concentrated with H_2O . The residue was dissolved in 3 HCl (20 mL), concentrated and co-concentrated with 1% concd HCl in CH₃OH leaving a crystalline residue, which on recrystallization from CH₃OH/H₂O gave 8 (1.8 g, 50%) as colorless crystals; mp 179-181 °C. Further recrystallizations from the same solvent furnished an analytical sample; mp 185–187 °C, $[\alpha]_{D}^{20} \approx 0.0^{\circ}$ (c 1.0, $\dot{H}_{2}O$). Anal.: found: C, 35.39; H, 7.11; N, 8.37; Cl⁻, 20.25; calcd for C₅H₁₂ClNO₃: C, 35.41; H, 7.13; N, 8.26; Cl

20.90%. ¹³C NMR (D₂O): δ 69.1 (C-3), 66.3 (C-1, C-5), 45.0 (C-2, C-4). ¹H NMR (D₂O): δ 4.08 (ddd, H-2, H-4, $J_{1,2}=J_{4,5}=4.5$ Hz, $J_{1',2}=J_{4,5'}=7.2$ Hz, $J_{2,3}=J_{3,4}=2.9$ Hz), 4.04 (t, H-3), 3.26 (dd, H-1, H-5, $J_{1,1'}=J_{5,5'}=13.0$ Hz), 3.22 (dd, H-1', H-5').

2,3-O-Isopropylidene-L-lyxono-1,4-lactone (10). 2,3-O-Isopropylidene-5-O-methane-sulfonyl-D-ribono-1,4lactone (43.3 g, 163 mmol) was dissolved in H_2O (250 mL) containing KOH (31 g, 470 mmol) and stirred for 3 h at room temperature. The solution was then acidified with 3 M HCl to exactly pH=3.0 and concentrated. The residue was stirred twice with boiling acetone (250 mL) for 30 min. The remaining salts were dissolved in H₂O (250 mL) and pH was adjusted to 3 with 3 M HCl. As above, the solution was then concentrated and the residue extracted with acetone. The procedure was repeated once. The combined organic phases were dried (MgSO₄), filtered and concentrated leaving 10 as a crystalline product (28.3 g). Further purifications were carried out by dissolving in boiling acetone followed by hot filtration through a short column of charcoal. Concentration of the filtrate gave colorless needles of 10 (25.8 g, 84%); mp 92-93 °C, $[\alpha]_{D}^{20}$ -85.6° (c 1.0, acetone). Anal.: found: C, 50.85; H, 6.42; calcd for $C_8H_{12}O_5$: C, 51.06; H, 6.43%. ¹³C NMR (D₂O): δ 177.9 (C-1), 115.5 (acetal C), 81.8 (C-4), 77.2 (C-2), 77.0 (C-3), 60.5 (C-5), 26.6 and 25.6 $(2 \times CH_3)$. ¹H NMR (D₂O): δ 5.10 (d, H-2, $J_{2,3} = 5.6$ Hz), 5.03 (dd, H-3, $J_{3,4}$ =3.7 Hz), 4.76 (ddd, H-4, $J_{4.5} = 4.2$ Hz, $J_{4.5'} = 8.0$ Hz), 3.91 (dd, H-5, $J_{5.5'} = 12.5$ Hz), 3.87 (dd, H-5'), 1.40 (s, CH₃) and 1.36 (s, CH₃).

2,3-O-Isopropylidene-5-O-methanesulfonyl-L-lyxono-1,4lactone (11). Methanesulfonyl chloride (4.55 ml, 58.4 mmol) was added dropwise with stirring to an ice-cooled solution of 2,3-O-isopropylidene-L-lyxono-1,4-lactone (10; 10.0 g, 53.1 mmol) in pyridine (30 mL) and the mixture was kept for 1 h at 0 °C. H₂O (1 mL) was then added slowly followed by CH₂Cl₂ (150 mL). The mixture was washed successively with 10% aq HCl (30 mL) until the extract became acidic and then with an additional portion of 10% aq HCl (30 mL) followed by aq NaHCO₃ (30 mL). The organic phase was dried (MgSO₄), treated with activated carbon, filtered and concentrated to give 11 as colorless crystals (12.8 g, 91%); mp 122-124 °C. According to NMR the product was pure enough for further synthesis. Recrystallization from EtOAc furnished an analytical sample; mp 133–133.5 °C, $[\alpha]_D^{20}$ –75.9° (c 1.0, CH₃OH). Anal.: found: C, 40.71; H, 5.35; S, 11.93; calcd for C₉H₁₄O₇S: C, 40.60; H, 5.30; S, 12.04%. ¹³C NMR (acetone-d₆): δ 173.9 (C-1), 114.6 (acetal C), 77.4 (C-4), 77.0 (C-2), 77.0 (C-3), 68.9 (C-5), 37.4 (Ms), 26.9 and 25.9 $(2 \times CH_3)$. ¹H NMR (acetone- d_6): δ 5.11 (d, H-2, $J_{2,3} = 6.3$ Hz), 5.05 (dd, H-3, $J_{3,4} = 3.8$ Hz), 4.95 (ddd, H-4, $J_{4,5}=3.5$ Hz, $J_{4,5'}=8.2$ Hz), 4.65 (dd, H-5, $J_{5.5'} = 11.5$ Hz), 4.45 (H-5'), 3.19 (Ms), 1.42 (s, CH₃) and 1.36 (s, CH₃).

5-Amino-5-deoxy-2,3-O-isopropylidene-L-lyxono-1,5lactam (12). 2,3-O-Isopropylidene-5-O-mesyl-L-lyxono-

1,4-lactone (11; 12.7 g, 47.7 mmol) was dissolved in aq NH₃ (25%, 50 mL) and left for 4.5 h at room temperature in a sealed flask. Concentration and co-concentration twice with EtOAc gave a residue which was extracted with boiling EtOAc $(2 \times 150 \text{ mL})$. The combined organic phases were treated with activated carbon and dried (Na₂SO₄), filtered and concentrated to give 12 (6.25 g, 70%) as colourless crystals; mp 110-115 °C. Purification by flash chromatography (EtOH:EtOAc 1:4), furnished a product with mp 121-122 °C, $[\alpha]_{D}^{20}$ + 6.2° (*c* 1.0, CH₃OH). Anal.: found: C, 51.52; H, 7.03; N, 7.36; calcd for C₈H₁₃NO₄: C, 51.33; H, 7.00; N, 7.48%. ¹³C NMR (D₂O, acetone $\delta = 29.8$): δ 170.9 (C-1), 110.8 (acetal), 77.3 (C-3), 72.0 (C-2), 65.6 (C-4), 42.0 (C-5), 25.4 and 23.7 (2×CH₃). ¹H NMR (D₂O): δ 4.61 (d, H-2, J₂₃=6.8 Hz), 4.46 (ddd, H-3, $J_{3,4} = 5.3$ Hz, $J_{3,5'} = 0.7$ Hz), 4.02 (ddd, H-4, $J_{45} = 3.2$ Hz, $J_{45'} = 6.0$ Hz), 3.47 (dd, H-5, $J_{55'} = 13.5$ Hz), 3.22 (dd, H-5'), 1.41 (s, CH₃) and 1.38 (s, CH₃).

1,5-Dideoxy-1,5-imino-L-lyxitol, hydrochloride (13). 5-Amino-5-deoxy-2,3-O-isopropylidene-L-lyxono-1,5-lactam (12; 6.2 g, 33 mmol) was dissolved in dioxane (100 mL). NaBH₄ (12.6 g, 333 mmol) was added with stirring followed by dropwise addition of acetic acid (19.0 mL, 316 mmol) and the mixture was heated at 100 °C for 5 h. The solution was cooled to room temperature and H₂O (100 mL) was added slowly and a crystalline precipitate (17.2 g) was filtered off. The filtrate was stirred with ion-exchange resin (Amberlite IR-120, H⁺, 200 mL) for 2 h. The resin was filtered off, washed with water, poured into a beaker and aq NH₃ (200 mL, 25%) was added to the resin at 0 °C. After stirring for 1.5 h the resin was filtered off and the filtrate was concentrated and co-concentrated with H₂O. The residue was dissolved in 3 M HCl (30 ml), concentrated and co-concentrated with 1% concd HCl in methanol leaving a crystalline residue. Addition of $CH_3OH:EtOAc (1:1)$ gave crystalline 12 (3.23 g, 57%); mp 193-194 °C. Recrystallization from 85% aq CH₃OH gave an analytical sample; mp 195.5–196 °C, $[\alpha]_{D}^{20} = +22.7^{\circ}$ (c 0.8, CH₃OH; lit.:¹⁸ mp 191–192 °C, $[\alpha]_{D}^{20}$ + 16° (c 0.5, CH₃OH)]. ¹³C NMR (D₂O, reference acetone $\delta = 29.8$): δ 70.4 (C-3), 64.6 (C-2), 64.3 (C-4), 45.6 (C-5) and 45.1 (C-1). ¹H NMR (D₂O): δ 4.19 (m, H-4, J_{34} = 3.0 Hz, J_{45} = 6.0 Hz, $J_{45'}$ = 2.8 Hz), 4.05 (dt, H-2, $J_{1,2}$ =4.0 Hz, $J_{1',2}$ =8.5 Hz, $J_{2,3}$ =8.0 Hz), 3.73 (dd, H-3), 3.37 (ddd, H-1, $J_{1,1'} = 12.8$ Hz, $J_{1,5} = 1.0$ Hz), 3.25 (ddd, H-5, $J_{5.5'} = 13.0$ Hz), 3.17 (dd, H-5') and 2.92 (dd, H-1).

2,3-O-Isopropylidene-D-xylonic acid methyl ester (15a). D-xylose (25.0 g, 166 mmol) and NaHCO₃ (34.9 g, 415 mmol) were dissolved in H₂O (300 mL), and Br₂ (8.5 mL, 166 mmol) was added slowly. After stirring for 3 h at room temperature the color had disappeared. More Br₂ (1.0 mL, 19 mmol) was added to the solution which was stirred for an additional 1.5 h and then concentrated. The residue was redissolved in water, acidified with concd HCl, concentrated and co-concentrated with methanol. To the residue was added acetone (250 mL), dimethoxypropane (80 mL) and methanesulfonic

acid (1.0 mL). The mixture was refluxed for 5 h and left overnight at room temperature. The suspension was then neutralized with solid NaHCO₃, filtered and concentrated. The residue was dissolved in CH₂Cl₂ (200 mL), washed with H_2O (3 × 100 mL) and dried (MgSO₄). Filtration and concentration gave 14 as a colorless syrup (38.5 g, 89%). The syrup was dissolved in MeOH:H₂O (9:1, 400 mL) and ion exchange resin (Amberlite IR-120, H^+ , 30 g, pre-washed with CH₃OH and dried for 10 min before use) was added. After stirring for 16 h the resin was separated from the solution by filtration through celite. The filtrate was concentrated, redissolved in H₂O (200 mL) and washed with Et_2O (3×100 mL). The ether phases were combined and concentrated to give a residue (5.2 g), which mostly consisted of 2,3-4,5-di-O-isopropylidene-D-xylonic acid methyl ester (14). The water phase was concentrated and co-concentrated with twice MeOH. The residue was dissolved in CH₂Cl₂ (200 mL), and under vigorously stirring hexane (200 mL) was added. The precipitate [consisting of D-xylonic acid methyl ester/2,3-O-isopropylidene-D-xylonic acid methyl ester (15a), 3:2] was removed from the solution by decanting through celite. Concentration of the filtrate gave 15a as colorless crystals (15.3 g, 42%); mp 66-72 °C. The residue from the ether phase above was again hydrolysed by stirring for 16 h in MeOH:H₂O (9:1, 50 mL) with ion-exchange resin (Amberlite IR-120, H^+ , 3 g). The resin was filtered off through celite, and the filtrate was concentrated, redissolved in H_2O (40 mL) and washed with Et₂O (3 × 20 mL) which was discharged. The water phase was mixed with the precipitate from above and extracted with EtOAc $(10 \times 40 \text{ mL})$. The combined organic phases were dried (MgSO₄), and concentrated to give an additional amount of 15a which crystallized on standing, bringing the total yield to 49%. Recrystallization from EtOAc furnished an analytical sample; mp 75-76.5 °C, $[\alpha]_D^{20}$ -39.3° (c 1.0, CH₃OH). Anal.: found: C, 49.22; H, 7.37; calcd for C₉H₁₆O₆: C, 49.09; H, 7.32%. ¹³C NMR (CDCl₃): δ 171.1 (C-1), 111.6 (acetal), 79.7 (C-3), 75.2 (C-2), 70.2 (C-4), 64.4 (C-5), 52.4 (OCH₃), 26.5 and 25.6 (2 × CH₃). C-H corr. ¹H NMR (CDCl₃): δ 4.62 (d, H-2, $J_{2,3} = 7.6$ Hz), 4.23 (dd, H-3, $J_{3,4} = 2.9$ Hz), 3.84 (m, H-4), 3.81 (s, OCH₃), 3.80 (dd, H-5, $J_{4,5} = 4.8$ Hz, $J_{5.5'} = 11.5$ Hz), 3.76 (dd, H-5', $J_{4.5'} = 4.6$ Hz), 1.50 (s, CH_3) and 1.44 (s, CH_3).

2,3-*O*-**Isopropylidene-5-***O*-**methanesulfonyl**-**D**-**xylonic acid methyl ester** (**15b**). 2,3-*O*-**Isopropylidene**-D-xylonic acid methyl ester (**15a**; 10 g, 45.4 mmol) was dissolved in pyridine (50 ml) and cooled to 0 °C. Methanesulfonyl chloride (3.88 mL, 50.0 mmol) in pyridine (25 mL) was added slowly during 1.5 h at 0 °C. After stirring for 2 h at room temperature CH_2Cl_2 (150 mL) and ice were added and the mixture was acidified with concd HCl. The organic layer was washed with aq satd NaHCO₃, treated with activated carbon and dried (MgSO₄). Filtration and concentration left a slightly colored syrup (11.7 g), which crystallized on prolonged standing. The semi-crystalline residue was stirred with EtOH and crystals were filtered off (5.21 g, 38%) to

give 15b; mp 91-97 °C. Recrystallization from EtOH furnished an analytical sample; mp 97–98 °C. $[\alpha]_{D^2}$ -27.3° (c 1.0, CH₃OH). Anal.: found: C, 40.32; H, 6.18; calcd for $C_{10}H_{18}O_8S$: C, 40.26; H, 6.08%. ¹³C-NMR (CDCl₃): δ 170.8 C-1), 112.0 (acetal), 77.4 (C-3), 74.9 (C-2), 70.3 (C-5), 68.2 (C-4), 52.5 (OCH₃), 37.6 (Ms), 26.5 and 25.6 $(2 \times CH_3)$. ¹H NMR (CDCl₃): δ 4.59 (d, H-2, $J_{2,3} = 7.5$ Hz), 4.36 (dd, H-5, $J_{4,5} = 7.1$ Hz, $J_{5,5'} = 11.0$ Hz), 4.29 (dd, H-5', $J_{4,5'} = 4.8$ Hz), 4.23 (dd, H-3, $J_{3,4} = 2.4$ Hz), 4.08 (ddd, H-4), 3.81 (s, OCH₃), 3.08 (s, Ms), 2.28 (s, OH-4), 1.50 (s, CH₃) and 1.43 (s, CH₃). Chromatography of the mother liquour with a gradient (EtOAc:Hexane $1:3 \rightarrow EtOAc)$ 2,3-O-isogave propylidene-4,5-di-O-methanesulfonyl-D-xylonic acid methyl ester (ca 1 g) and a mixture of 2,3-O-isopropylidene-4-O-methanesulfonyl-D-xylonic acid methyl ester and 2,3-O-isopropylidene-5-O-methanesulfonyl-D-xylonic acid methyl ester 1:2 (160 mg).

2,3-O-Isopropylidene-5-O-p-toluenesulfonyl-p-xylonic acid methyl ester (15c). 2,3-O-Isopropylidene-Dxylonic acid methyl ester 15a (2.00 g, 9.1 mmol) was dissolved in pyridine (10 mL) and cooled to 0 °C. During 1 h a solution of *p*-toluenesulfonyl chloride (2.08 g, 10.9 mmol) and pyridine (5 mL) was added dropwise. After stirring for 30 min at 0 °C and 30 min at room temperature, CH2Cl2 (20 mL) and ice were added. The mixture was acidified with concd HCl. The organic layer was collected, washed with aq NaHCO₃, treated with activated carbon and dried $(MgSO_4)$. Filtration and concentration left a slightly colored syrup (2.68 g). The syrup was dissolved in EtOH (3 mL), cooled to -70 °C followed by slowly warming to room temperature, whereby crystalline 15c (1.24 g, 37%) was obtained; mp 84-89 °C. Recrystallization from EtOH furnished an analytical sample; mp 90–91.5 °C, $[\alpha]_D^{20}$ –13.5 ° (*c* 1.0, CHCl₃). Anal: found: C, 51.43; H, 5.97, S, 8.62; calcd for C₁₆H₂₂O₈S: C, 51.33; H, 5.92; S. 8.56%. ¹³C NMR (CDCl₃): δ 170.6 (C-1), 145.0, 132.5, 129.8, 127.9 (aromatic carbon), 111.8 (acetal), 77.6 (C-3), 74.8 (C-2), 70.4 (C-5), 67.7 (C-4), 52.4 (OCH₃), 26.4 (CH₃), 25.5 (CH₃) and 21.5 (CH₃-Ph). ¹H NMR (CDCl₃): δ 7.81 (d, H'-3, H'-5, $J_{2,3}=J_{5,6}=8.1$ Hz), 7.36 (d, H'2, H'-6), 4.56 (d, H-2, $J_{2,3} = 7.6$ Hz), 4.17 (dd, H-3, $J_{3,4} = 2.1$ Hz), 4.14 (dd, H-5, $J_{4,5} = 6.9$ Hz, $J_{5,5'} = 10.3$ Hz), 4.01 (ddd, H-4), 3.80 (s, OCH₃), 2.46 (s, CH₃-Ph), 1.45 (s, CH₃) and 1.39 (s, CH₃).

5-Amino-5-deoxy-p-xylono-1,5-lactam (17). 2,3-*O*-Isopropylidene-5-*O*-methanesulfonyl-p-xylonic acid methyl ester (**15b**; 6.24 g, 20.9 mmol) was dissolved in aq NH₃ (25%, 60 mL). After standing for 16 h at room temperature in a sealed flask, the mixture was concentrated and co-concentrated with CH₃OH (2×50 mL) followed by stirring at 60 °C with 1% HCl in methanol (100 mL) for 4 h. The solution was cooled and diluted with CH₃OH (100 mL) and was slowly run through a column of ion-exchange resin (Amberlite IR-400, HCO₃⁻, 100 ml). The eluate was concentrated to give a semi-crystalline residue (2.06 g, 66%). Crystallization from EtOH/H₂O gave **17** (0.56 g, 18%); mp 169–171 °C. Unlactamized impurities (16) were removed by running the filtrate through a column of ion exchange resin (Amberlite IR-120, H⁺, 15 mL) followed by washing with H₂O (100 mL). The eluate was concentrated to give 17 as a colorless syrup (0.62, 20%) which crystallized on standing. According to NMR it was pure enough for further synthesis. Recrystallization from H₂O/EtOH/acetone furnished an analytical sample; mp 172–173 °C, $[\alpha]_D^{20}$ +7.4° (*c* 1.0, H₂O). Anal.: found: C, 40.59; H, 6.16; N, 9.53; calcd for C₅H₉NO₄: C, 40.82; H, 6.17; N, 9.52% (lit.:²⁴ mp 68–71 °C). ¹³C NMR (D₂O, reference AcOH δ = 20.0): δ 173.0 (C-1), 74.3 (C-3), 70.8 (C-2), 67.1 (C-4), 43.5 (C-5). C-H corr. ¹H NMR (D₂O, reference AcOH δ 2.03): δ 3.95 (d, H-2, J_{2,3}=9.2 Hz), 3.89 (dt, H-4, J_{3,4}=9.0 Hz, J_{4,5}=5.7 Hz, J_{4,5'}=8.9 Hz), 3.64 (t, H-3), 3.44 (dd, H-5, J_{5,5'}=12.4 Hz), 3.07 (dd, H-5').

1,5-Dideoxy-1,5-imino-xylitol, hydrochloride (18). Dxylono-1,5-lactam (17; 0.53 g, 3.6 mmol) was suspended in acetonitrile (5 ml) and a mixture of hexamethyldisilizane (2.5 mL, 11.4 mmol) and trimethylsilylchloride (0.1 mL, 0.6 mmol) was added. After stirring for 1 h at 82 °C a precipitate had formed and was filtered off, and washed with CHCl₃. The filtrate was concentrated. The residue was dissolved in dioxane (20 mL) and under a N₂ atmosphere, BH₃·Me₂S (10 M, 1.8 mL, mmol) was added. The mixture was then stirred for 5 h at 100 °C and allowed to stand for 16 h at rt. 1M HCl (15 mL) was added and the mixture was heated to 100 °C for 1 h, then concentrated and co-concentrated with 1% concd HCl in methanol $(3 \times 30 \text{ ml})$. The residue was kept in vacuo over KOH whereby it crystallized. The product was washed on a filter with MeOH and EtOH giving 18 (0.26 g, 43%) as colorless crystals; mp 135–140 °C. Concentration of the filtrate gave 0.32 g (52%) of slightly colored crystals, raising the total yield to 95%. Recrystallization from H₂O/MeOH/EtOAc furnished an analytical sample; mp 126.5–127.5 °C, $[\alpha]_D^{20}$ 0.0° (c 0.5, H₂O). Anal.: found: C, 35.30; H, 7.09; N, 8.31; Cl⁻, 20.40; calcd for C₅H₁₂ClNO₃: C, 35.41; H, 7.13; N, 8.26, Cl⁻, 20.90%. ¹³C NMR (D₂O, reference AcOH $\delta = 20.0$): δ 74.2 (C-3), 66.4 (C-2, C-4), 45.8 (C-1, C-5). ¹H NMR (D₂O, reference AcOH $\delta = 2.03$): δ 3.76 (ddd, H-2, H-4, $J_{2,3} = J_{3,4} = 8.4$ Hz, $J_{1,2} = J_{4,5} = 4.5$ Hz, $J_{1',2} = J_{4,5'} = 10.2$ Hz), 3.50 (t, H-3), 3.44 (dd, H-1, H-5, $J_{1,1'} = J_{5,5'} = 12.7$ Hz), 2.93 (ddd, H-1', H-5').

Acknowledgements

Financial support to this project by the Danish Technical Research Council is gratefully acknowledged.

References

- 1. Elbein, A. D. Annu. Rev. Biochem. 1987, 56, 497.
- 2. Winchester, B.; Fleet, G. W. J. Glycobiology 1992, 2, 199.
- 3. Legler, G. Adv. Carbohydr. Chem. Biochem. 1990, 48, 319.

4. Stephens, E. B.; Monck, E.; Reppas, K.; Butfiloski, E. J. J. Virol. 1991, 65, 1114.

5. Olden, K.; Breton, P.; Grzegorzewski, K.; Yasuda, Y.; Gause, B. L.; Oredipe, O. A.; Newton, S. A.; White, S. L. *Pharmacol. Ther.* **1991**, *50*, 285.

6. Robinson, K. M.; Begovic, M. E.; Reinhart, B. L.; Heineke, E. W.; Ducep, J.-B.; Kastner, P. R.; Marshall, F. N.; Danzin, C. *Diabetes* **1991**, *40*, 825.

7. Winchester, B.; Barker, C.; Baines, S.; Jacob, G. S.; Namgoong, S. K.; Fleet, G. *Biochem. J.* 1990, 265, 277.

8. Paulsen, H.; Matzke, M. Liebigs Ann. Chem. 1988, 1121.

9. (a) Lundt, I.; Madsen, R.; Synthesis 1993, 714; (b) 720; (c) Lundt, I.; Madsen, R.; Al Daher, S.; Winchester, B. *Tetrahedron* **1994**, *50*, 7513.

10. Lundt, I.; Madsen, R. Synthesis 1995, 787.

11. Bock, K.; Lundt, I.; Pedersen, C. Acta Chem. Scand. 1987, B41, 435.

12. Hanessian, S. J. Org. Chem. 1969, 34, 675.

13. Bock, K.; Lundt, I.; Pedersen, C. Carbohydr. Res. 1982, 104, 79.

(Received in U.S.A. 24 January 1996; accepted 16 May 1996)

14. Brown, H. C. Choi, Y. M.; Narasimhan, S. J. Org. Chem. 1982, 47, 3153.

15. Hunter, R.; Bartels, B.; Michael, J. P. Tetrahedron Lett. 1991, 32, 1095.

16. Umino, N.; Iwakuma, T.; Itoh, N. Tetrahedron Lett. 1976, 763.

17. Gribble, G. W.; Nutaitis, C. F. Org. Prep. Proc. Int. 1985, 17, 317.

18. Bernotas, R. C.; Papandreou, G.; Urbach, J.; Ganem, B. Tetrahedron Lett. 1990, 31, 3393.

19. Legler, G.; Stütz, A. E.; Immich, H. Carbohydr. Res. 1995, 272, 17.

20. Chen, S.-Y.; Joullié, M. M. J. Org. Chem. 1984, 49, 2168.

21. Kold, H.; Lundt, I.; Pedersen, C. Acta Chem. Scand. 1994, 48, 675.

22. Paulsen, H.; Steinert, G. Chem. Ber. 1967, 100, 2467.

23. Horton, D.; Walaszek, Z. Carbohydr. Res. 1982, 105, 111.

24. Norris, P.; Horton, D.; Levine, B. R. Tetrahedron Lett. **1995**, *36*, 7811.