Isomerization of *n*-Butane over Bifunctional Platinum-heteropoly Compounds in the Presence of Hydrogen

Kyutae Na, Toshio Okuhara* and Makoto Misono*

Department of Synthetic Chemistry, Faculty of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Bifunctional Pt-Cs_{2.5}H_{0.5}PW₁₂O₄₀ efficiently catalysed *n*-butane isomerization at 300 °C under a low H₂ pressure (0.05 atm); the activity was comparable to or higher than that of Pt-H-ZSM-5 or Pt-SO₄²⁻/ZrO₂, and the selectivity was higher than that of either of the other two catalysts.

Skeletal isomerization of n-butane has attracted much attention, since isobutane is a probable feedstock for synthesis of methyl *tert*-butyl ether, a high-octane vehicle fuel additive.¹ Pt/Cl-Al₂O₃ has been utilized commercially in *n*-butane isomerization in the presence of hydrogen. Owing to its sensitivity to water, addition of a small amount of organic chloride is required in the feed gas.² Pt-SO₄²⁻/ZrO₂ has been reported to be active for the isomerization of pentane or butane in the presence of hydrogen.³⁻⁵ Ono et al. reported that Pd_{x/2}H_{3-x}PW₁₂O₄₀ on silica catalysed the isomerization of hexane.6 Recently, we have found that an acidic Cs salt of $H_3PW_{12}O_{40}$, namely $Cs_{2.5}H_{0.5}PW_{12}O_{40}$, is remarkably active in acid-catalysed reactions.⁷⁻⁹ This high activity is due to its strong acidity and the large quantity of surface protons.9 Here, we report a prominent catalytic performance of the bifunctional Pt-Cs_{2.5}H_{0.5}PW₁₂O₄₀ for the skeletal isomerization of nhutane

The catalysts were prepared as follows. An aqueous solution of $Pt(NH_3)_4Cl_2$ (0.08 mol dm⁻³) was added dropwise to an aqueous solution of $H_3PW_{12}O_{40}$ (0.06 mol dm⁻³), followed by the addition of an aqueous solution of Cs_2CO_3 (0.08 mol dm⁻³) at 50 °C. The resulting suspension was evaporated at 50 °C to solid. The molar ratio of Pt^{2+} : Cs^+ : $PW_{12}O_{40}^{3-}$ is 0.25:2.5:1, where the amount of Pt corresponds to 1.5% m/m. Hereafter this is formally denoted by 1.5% m/m Pt- $Cs_{2.5}H_{0.5}PW_{12}O_{40}$. The surface area was determined by BET method using N_2 to be 112 m² g⁻¹. 1.5% m/m

Pd-Cs_{2.5}H_{0.5}PW₁₂O₄₀ (100 m² g⁻¹) was obtained from Pd(NO₃)₂ in the same way. For reference, 1% m/m Pt-H-ZSM-5, which was prepared from Pt(NH₃)₄Cl₂ and H-ZSM-5 (Na-ZSM-5, Tosoh corporation), and 1% m/m Pt-SO₄^{2-/} ZrO₂ prepared according to the literature⁴ were used.

The reaction was performed in a flow reactor (Pyrex tube, 8 mm internal diameter) at 300 °C under atmospheric pressure. The feed gas consisted of 0.05 atm (5 vol %) of n-butane, 0.05 or 0.5 atm of H_2 , and N_2 balance. Total flow rates were $10-20 \text{ cm}^3 \text{ min}^{-1}$. Prior to the reaction, Pt- or Pd-Cs_{2.5}H_{0.5}PW₁₂O₄₀ (0.5-2 g) was pretreated in a flow of O₂, and then in a flow of N_2 each for 1 h at 300 °C. Pt-SO₄²⁻/ZrO₂ and Pt-H-ZSM-5 were pretreated in the following sequence of gas flows, O₂ (1 h) – H₂ (1 h) – N₂ (1 h) at 370 °C for Pt-SO₄²⁻ and 450 °C for Pt-H-ZSM-5, respectively. These are the pretreatments recommended in the literature 4.5.10.11 The gases at the outlet of the reactor were analysed by gas chromatography (FID) with VZ-10 (for C_1 – C_5) and SE-30 (for C_5 – C_7) columns.

The reaction rate and the selectivity for conversion to isobutane are summarized in Table 1, where the data were collected after *ca.* 5 h of reaction, when nearly stationary rates were obtained for all catalysts. The changes in the conversion with time were small for all catalysts; *e.g.* the conversions over 1.5% m/m Pd-Cs_{2.5}H_{0.5}PW₁₂O₄₀ were 39%, 35% and 34% at 1, 3 and 5 h, respectively, in the presence of 0.5 atm of H₂.

As shown in Table 1 at 0.5 atm of H_2 , the rates for the

Catalyst ^a	_		Selectivity (mol%) ^c					
	Conv.	Rate ^b	i-C4	C1	C2	C3	C4=	C5
In the presence o	f 0.5 a	tm of	H_2					
Pt-Cs 2.5	25^d	7.9	93.9	1.4	2.4	1.8	0	0.5
Pd-Cs 2.5	34d	10.9	95.6	0.5	0.5	2.0	0	1.4
Pt-SO ₄ ²⁻ /ZrO ₂	65d	10.4	47.3	6.0	11.6	30.3	0	4.8
Pt-H-ZSM-5	51e	12.0	34.0	18.8	24.9	21.4	0	0.9
In the presence o	f 0.05	atm of	\mathbf{H}_2					
Pt-Cs 2.5	20.5^{d}	6.2	88.3	0.3	0.5	5.8	0.7	4.4
Pd-Cs 2.5	12.9^{d}	3.4	78.4	0.3	0.4	11.3	1.8	7.8
Pt-SO ₄ ²⁻ /ZrO ₂	4.8^{d}	1.2	72.6	1.0	2.3	16.6	0	7.5
Pt-H-ZSM-5	70.4^{e}	8.8	16.4	3.9	6.5	66.8	0	6.4

^a Cs 2.5 indicates $Cs_{2.5}H_{0.5}PW_{12}O_{40}$. ^b The rate for isobutane formation: 10^{-8} mol g⁻¹ s⁻¹. ^ci-C4, C1, C2, C3, C4=, and C5 indicate isobutane, methane, ethane, propane, butenes, and pentanes. ^d M/F = 41 g h mol⁻¹. ^e M/F = 18 g h mol⁻¹, where M is the catalyst mass and F is the total flow rate.

formation of isobutane over Pt- and Pd-Cs_{2.5}H_{0.5}PW₁₂O₄₀ were comparable to those of Pt-H-ZSM-5 and Pt-SO₄²⁻/ZrO₂. The activity of Pt-SO₄²⁻/ZrO₂ was 10×10^{-8} mol g⁻¹ s⁻¹, which is consistent with the result of Sommer *et al.*⁵ It is remarkable that Pt- and Pd-Cs_{2.5}H_{0.5}PW₁₂O₄₀ showed very high selectivities (94–96%) to isobutane as compared with Pt-SO₄²⁻/ZrO₂ (47%) and Pt-H-ZSM-5 (34%). The selectivities at similar conversion levels (about 30%) were about 70 and 54% for Pt-SO₄²⁻/ZrO₂ and Pt-H-ZSM-5, respectively.

The activity and selectivity under 0.05 atm of H_2 are also shown in Table 1. It was found that Pt-Cs_{2.5}H_{0.5}PW₁₂O₄₀ also gave high activity $(6.2 \times 10^{-8} \text{ mol g}^{-1} \text{ s}^{-1})$, which is comparable to that under 0.5 atm of H_2 , and high selectivity (88%). On the other hand, the activity of Pt-SO₄²⁻/ZrO₂ was very low $(1.2 \times 10^{-8} \text{ mol g}^{-1} \text{ s}^{-1})$, which is about 1/10 that under 0.5 atm of H_2 . A similar large effect of hydrogen

pressure for Pt-SO₄²⁻/ZrO₂ has been reported.^{4,5} Pt-H-ZSM-5 was still highly active at the low H₂ pressure, but the selectivity was low. Therefore, it is demonstrated that Pt-Cs_{2.5}H_{0.5}PW₁₂O₄₀ is a prominent catalyst for the skeletal isomerization of n-butane, especially under low pressure of H₂.

In order to confirm the Keggin structure of the heteropoly compound, IR spectra were recorded before and after the reaction. Pt-Cs_{2.5}H_{0.5}PW₁₂O₄₀ gave four characteristic peaks at 1080 v(P-O), 985 v(W=O), 983 and 812 cm⁻¹ v(W-O-W)¹² and no change in the IR spectra was observed after the reaction. This shows that the structure of heteropoly compound Pt-Cs_{2.5}H_{0.5}PW₁₂O₄₀ was retained during the reaction. Thus, the strong acidity of the heteropoly compound is probably responsible for the high catalytic performance, together with the effect of hydrogen spillover from Pt to suppress the coke formation⁵ or to form protons as catalytic sites.^{4,6}

Received, 5th May 1993; Com. 3/02579I

References

- 1 R. J. Schmidt, J. A. Weiszmann and J. A. Johnson, Oil Gas J., 1985, May 27, 80.
- 2 G. L. Frischkorn, P. J. Kuchar and R. K. Olson, Energy Progr., 1988, 8, 154.
- 3 JP Patent (Jpn Kokai Tokkyo Koho); 61/68137, 61/263932.
- 4 K. Ebitani, J. Konishi and H. Hattori, J. Catal., 1991, 130, 257.
- F. Garin, D. Andriamasinoro, A. Abdulsamad and J. Sommer, J. Catal., 1991, 131, 199.
- 6 S. Suzuki, K. Kogai and Y. Ono, Chem. Lett., 1984, 699.
- 7 T. Okuhara, T. Nishimura, K. Ohashi and M. Misono, Chem. Lett., 1990, 1201.
- 8 T. Nishimura, T. Okuhara and M. Misono, Appl. Catal., 1991, 73, 1.7
- 9 T. Okuhara, T. Nishimura, H. Watanabe and M. Misono, J. Mol. Catal., 1992, 74, 247.
- 10 M. Hino and K. Arata, React. Kinet. Catal. Lett., 1982, 19, 101.
- 11 T. Inui, Y. Makino, F. Okazumi, S. Nagano and A. Miyamoto, Ind. Eng. Chem. Res., 1987, 26, 647.
- 12 C. Rocchiccioli-Deltcheff, R. Thouvenot and R. Frank, Spectrochim. Acta, 1976, 32A, 587.