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Graphical abstract

A novel core—shell structured magnetic silica-sufgab ionic liquid/hexamolybdate complex

(F&sO,@SiO-IL/[Mo ¢019]) has been prepared and characterized, and édytatperformance

in the Biginelli reaction has been investigated.
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Core—shell structured FgO,@SiO,-supported IL/[M0¢O.q: A
novel and magnetically recoverable nanocatalyst forthe

preparation of biologically active dihydropyrimidin ones

Shiva Kargar, Dawood Elhamifar* and Ali Zarnegaryan
Department of Chemistry, Yasouj University, Yasalfj918-74831, Iran

E-mail: d.elhamifar@yu.ac.ir

Abstract: The synthesis and catalytic application of a nawabnetic silica-nanomaterial-
supported ionic liquid/hexamolybdate ¢Ea@SiO-IL/[M0eO1q]) are reported. The
Fe;0,@SiG-IL/[Mo 6019] nanocatalyst was prepared through modificationmafgnetic
Fe;0,@SiO, nanoparticles with alkyl-imidazolium ionic liquid®llowed by treatment
with hexamolybdate anions. ThesBe@SiOs-1L/[Mo 0,¢] was characterized using FTIR,
EDX, TGA, SEM, TEM, PXRD, and VSM techniques. Thisinocatalyst exhibited
excellent activity in the one-pot synthesis of bgtally active dihydropyrimidinones
through the Biginelli reaction. Furthermore, thisgnetically recoverable nanocatalyst

could be reused at least seven times without afisignt loss of efficiency.
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1. Introduction

Magnetic NPs are a very important group of nanonaseincorporating Fe, Ni, and/or
Co in their cores. Among them, applications of meagnNi and Co NPs are limited by
their toxicity and high susceptibility to oxidatioMeanwhile, magnetite nanoparticles
(MNPs) have attracted much attention from reseasctige to their ease of preparation,
nontoxicity, and eco-friendly nature [1-10]. Howevé¢he stability of FgO, NPs has
remained a challenge since they are sensitiveitticaend basic conditions and also tend
to aggregate due to their magnetic nature. Theegggjon and conversion of small MNPs
into larger clusters limits their use in variousogesses [11-15]. To overcome these
problems, many methods have been proposed forrdtegtion of MNPs, which has led
to the creation of core—shell nanostructures. Thasetures are defined as composites of
nanomaterials with an inner core and one or moterdayer(s) as a shell [16-31]. Such
core—shell structured MNPs have found numerousiaipns in diverse areas, such as
biosensors [32-34], bioimaging [32, 35], drug detiv [36-40], optoelectronics [41-43],
environmental extraction [44, 45], and especialiythe field of catalysis [44, 46-49].
Different types of shell materials, such as polyr&0], silica [51, 52], carbon [48], and
noble metals can be used for coating of magnetiE [NB-55]. Among them, silica is often
most attractive due to its facile modification wdffferent organic or inorganic catalytic
functional groups. In core—shell structures of tlyjge, iron oxide nanoparticles form the
cores and the silica layer acts as a protectivdl. shieerefore, silica-coated magnetic
nanoparticles provide a clear perspective on tlegdeand synthesis of recyclable and
efficient magnetic nanocatalysts [56, 57]. Someemndy reported magnetic catalytic

systems with protective silica shells includg®£SiO,-PIL [58], F&O,@SiG@mSIQ-



Fe [59], FeO,@SIO@Ag@COOH [60], F€.@SiG@Zn0 [61], FeO.@SIO:@PPy
[62], Fe&0.@SiG/Bi,WO/Bi,S; [63], F&O.@SIO@C-Ni [64], FgO.@SiO-EDTA
[65], Fe04Si0./ZnO/ZnSe [66], and ionic-liquid-functionalized nmegic silica

composites [67].

On the other hand, polyoxometalates (POMs) aregaroc complexes with significant
physical and chemical properties that are basetlamsition metals (TM=V, W, Nb, Mo,
Ta) in their highest oxidation states and oxygeiddas [68-70]. These are diverse in
shape, size, and composition, varying from smalkecEs such as [M@®g* to
nanoparticles such as Mo36g01032dH20)240(Sy)4g])[M0O3zeg. The properties of
polyoxometalates, such as high thermal stabilijulslity in polar solvents, good
electron capture and electron capability, and rsgbility during oxidation reactions,
endow them with strong potential for applications different areas of chemical
processing [71-75]. Moreover, variation of the stmmes of polyoxometalates has
facilitated their applications in pharmaceutical&][ coatings [77], separation [78],
sensors [79], membranes [80], dyes [81], electnuisiey [82], capacitors [83], and
catalysis [84-90]. However, the high solubility BOMs in polar solvents is a drawback,
hampering separation and recovery of these complef@l]. Therefore, the
immobilization of POMs on solid supports such disasiand MNPs is a way to overcome
this problem. Some recently developed systemsisftyipe include AILs/HPW/UiO-66-
2COO0OH [92], FeO,@SIG@NH-NHPW [93], FgO,@SiO@ADMPT/HsP,W15062

[94], and FeO4@D-NH,-HPA [95].

Meanwhile, multicomponent reactions (MCRs) have pac&l place in organic and

pharmaceutical chemistry, playing a key role inpheduction of different fine chemicals
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and drug intermediates [96]. The Biginelli reacti®7] is a type of MCR used for the
preparation of dihydropyrimidinones with good bigilcal profiles, such as anti-viral [98],
anti-hypertensive [99], and anti-bacterial prop=t[100]. To date, many homogeneous
and heterogeneous catalysts have been used fdBigfireelli reaction. These include
Fe0,@CM [101], FeO,~MWCNT [102], IL-HSQ@MCM-41@Cu [103], ompg-
CsNJ/SOH [104], ZnO/AISBA-15 [105], AgNdSiM4 [106], ZnO@SBA-15 [107],
CaMgsHap [108], BPMO-IL-SGH [109], MNn@PMO-IL [110], Cu@PMO-IL [111],
Cu/SB-Fg0, [112], PEt@Fe/IL [113], and EB,@MCM-41-OB(OH) [114]. However,
some of the reported catalytic systems suffer fpsablems of long reaction times, harsh
conditions, the use of a toxic organic solvent, lefficiency, and safety concerns.
Therefore, the design and preparation of novel rogeneous catalysts with high
efficiency and recoverability to overcome the afeationed restrictions is an important

challenge in this context.

In view of the above, and due to the importancepofyoxometalates in catalytic
processes, we report herein the synthesis andatbharation of a novel magnetite core—
shell silica-supported ionic liquid/polyoxometalatemplex, FgO,@ SiOG-IL/[M0 ¢O1g].
This system has been employed as an effectivelyhsggble, and reusable nanocatalyst in

the Biginelli reaction.

2. Experimental

2.1. Materials



All chemicals and reagents, namely iron(ll) chlertétrahydrate (99%), iron(lll) chloride
hexahydrate (99%), concentrated HCI, tetramethtxysi (TMOS, 99%), ammonia
(28%), 1-methylimidazole (99%), (3-chloropropylethoxysilane (97%), toluene,
dimethyl sulfoxide, and the respective aldehydevdéves, were purchased from Merck,

Fluka, or Sigma-Aldrich.

2.2. Preparation of FgO,@SiO,-IL

Firstly, FgO,@SiO, NPs were synthesized by a chemical co-precipitatiethod [115].
To prepare FO,@SIO-IL, FesO,@SiO, NPs (0.5 g) were completely dispersed in
toluene (15 mL) under ultrasonication. 1-Methyl3&3t{imethoxysilylpropyl)imidazolium
chloride (30 mg) was then added and the resultingune was heated under reflux for
24 h. The precipitate produced was collected withdid of an external magnet, washed

with EtOH, and dried at 70 °C for 5 h. The produes designated as &&@SiO-IL.
2.3. Preparation of FgO4@SiO,-IL/[Mo s014] hanocatalyst

For this, tetrabutylammonium hexamolybdate-B{sN),[MosO1q]) was first prepared
according to a previously reported procedure [1IBprder to immobilize [MgO:¢]* on
the FgO,@SIO-IL nanomaterial, FO,@SIG/IL (0.5 g) was completely dispersed in
dimethyl sulfoxide (15 mL) under ultrasonicatiom-EusN),[M0gO1g] (0.2 g) was then
added and the resulting mixture was stirred at@5%ot 24 h. The obtained product was
separated magnetically, washed with EtOH, and date@0 °C for 5 h. It was designated

as Fg0,@SiO-1L/[Mo ¢01g] Nanocatalyst.

2.4. Synthesis of 3,4-dihydropyrimidinones using E®,@ SiO,-IL/[Mo §014]



For this, FeO,@SIiO-IL/[M0sO19 nanocatalyst (0.01 g, 0.25 mol%) was added to a
mixture of urea (1.5 mmol), aldehyde (1 mmol), aiklyl-acetoacetate (1 mmol). This
mixture was sonicated at 65 °C and the progreskeofeaction was monitored by TLC.
After completion of the reaction, warm EtOH (10 mkas added and the mixture was
filtered while hot. The 3,4-dihydropyrimidinone pltects were obtained after adding some

ice followed by recrystallization from EtOH.

2.5. Characterization

Fourier-transform infrared (FTIR) spectra were reed on a Bruker Vector 22

spectrometer. Energy-dispersive X-ray spectra (El&)e obtained on a TESCAN Vega
spectrometer. Scanning electron microscopy (SEMiges were acquired with a Philips
XL30 emission scanning electron microscope. The maag properties of the particles
were studied by vibrating sample magnetometry (V8N an instrument from Meghnatis
Daghigh Kavir Co. Powder X-ray diffraction (PXRDafperns were acquired with a
PANalytical X-Pert diffractometer. TGA was perfordhasing a Netzsch STA 409 PC/PG
apparatus. Transmission electron microscopy (TEEH performed with an FEI TECNAI

12 BioTWIN microscope. Melting points were detersdnusing a Kriss KSB1N

apparatus with samples in open capillary tubes.M\WKL-120WE301 ultrasonicator was

used to disperse the particles and to promotertgjena reactions.

3. Results and discussion

The preparation of E®,@SIO-IL/[Mo 019 Nnanocomposite is illustrated in Scheme 1.

As shown, a silicahell was first coated on the R surface through a sol-gel process to
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give FeO,@SiOG, nanoparticles. The EB,@SiO, NPs were then reacted with an alkyl-
imidazolium IL to give FgO,@SIiO-IL. Finally, F&O,@SiO,-IL/[Mo 0;9] nanocatalyst

was obtained by treatment ofs38a@ SiOx-I1L with (n-BusN);[M0gO1¢] (Scheme 1).
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Scheme 1Preparation of R®,@SiO-IL/[Mo ¢0;9] Nanocatalyst.

Figure 1 shows the FTIR spectra of the preparedmaterials. In the IR spectrum of
Fe;04 the peak at 579 chis due to the vibration mode of Fe—O bonds andbtired at
3478 cnt can be assigned to O-H bonds on the surface ofF&§®, NPs. For the
Fes0,@SiO, and FeO,@SIO-IL/[Mo ¢019] Nanomaterials (Figures 1b, 1c), the peaks at

1091 and 800 cih are related to Si-O-Si bonds [116]. Moreover, feaks at 3200—
7



3500 cm' are assigned to OH bonds on the silica surface.th latter sample, Fe-O
bands were observed at 550-590'crin the spectrum of EE,@SiOx-1L/[Mo 014
(Figure 1c), weak peaks discernible at 2900-300% are related to aliphatic C-H bonds
of methyl and propyl groups, and a peak at 3030 can be attributed to aromatic C-H
bonds of imidazolium rings. Moreover, peaks at 1648 1417 cm can be ascribed to
C=N and C=C bonds of IL rings, respectively. In i&idd, for F&O,@SiG-IL/[M0 O],
the peaks at 958 and 796 tnrorresponding to stretching vibrations of Mo=Ql dvio-
O-Mo bonds, respectively, of the [M0:9] complex anion, are overlapped with the Si-O-
Si bands[117]. These results fully confirm the incorporation/imriidation and high
stability of silica, ionic liquid, and polyoxometdé moieties into/onto the material

framework.
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Figure 1. FTIR spectra of F©, (a), FgO,@SIO, (b), and FgO,@ SiOG-IL/[Mo ¢014] (C).

The EDX analysis of the E@;@SiO-IL/[M0 O] catalyst is shown in Figure 2. The pattern
demonstrated the presence of C, N, O, Si, Mo, &, lée in the sample. This result is in good
agreement with the FTIR data, indicating immobtiza of the ionic liquid and [MgDig]

moieties on FO,@SIO,.
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Figure 2. EDX analysis of the R®,@SiO-IL/[Mo ¢0,¢] nanocatalyst.

The thermal stability of the E®,@ SiO,-1L/[Mo ¢0,¢] hanocatalyst was studied from 25 to
900 °C by means of thermal gravimetric analysigufé 3). The first weight loss observed
below 130 °C (about 2%) is related to the remoyaHgO and residual EtOH/MeOH
solvents from the extraction process. The seconighvdoss between 220 and 310 °C
(about 2%) corresponds to the removal of organieti®s located on the catalyst surface.
The main weight loss at 350-650 °C (about 8%) camtlributed to the decomposition
and removal of ionic liquid groups that make up thaterial network. The final weight
loss above 650 °C (about 2%) corresponds to thewainof residual organic groups

appended to the material framework.
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Figure 3. TG analysis of the E©,@SiO,-IL/[Mo ¢O1¢] nanocatalyst.

The surface morphology of the Fa@SiO-IL/[Mo 019 Nanocatalyst was investigated
by SEM (Figure 4). This analysis showed the catatgsbe composed of spherical
particles. Particles of this type have potentiapleations in catalytic and adsorption

processes.
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Figure 4. SEM image of F£,@SiQ-IL/[M0 ¢O1g).

A TEM image (Figure 5) of the EB,@SiO,-IL/[Mo ¢0,1¢] Nnanocatalyst clearly showed a

core—shell structure, with black cores (magnettgigles) and gray shells (silica layers).
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Figure 5. TEM image of Fg0,@SiO-1L/[Mo ¢0;¢] nanocatalyst.

Figure 6 shows the PXRD pattern of the nanocatallyftatures seven reflection peaks at
206=30.29°, 35.61°, 43.26°, 53.65°, 57.22° 62.868, #48°, corresponding to Miller

indices pkl) of 220, 311, 400, 422, 511, 440, and 533, regpdygt These are related to

the crystalline structure of B®, confirming high stability of magnetite NPs after
modification with different functional groups. A waie reflection peak at 6218.14°

corresponds to the amorphous silica shell.

13



2600 — G311)
2400 -
2200 - H

2000

Si02 (220) (511)(440)

1800 -

Intensity (a.u.)

1600

1400 —

1200 -

0 10 20 30 40 50 60 70 80

Position [°2 Theta] (copper (cu))

Figure 6. PXRD pattern of F©,@SiOx-1L/[Mo ¢0;9] Nanocatalyst.

VSM was carried out to verify the magnetic propestof the designed catalyst (Figure 7).
The magnetic saturation value of the catalyst weaduated as 40 emu/g, confirming its
high degree of paramagnetism. This is a very gdwtacteristic, especially in the fields

of catalysis and adsorption.
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Figure 7. VSM analysis of Fg0,@SiO-1L/[Mo ¢01g] Nanocatalyst.

After characterization of the F@.@SiO-IL/[M0¢O19] Nanocatalyst, its performance in
the Biginelli reaction was studied (Table 1). Tlmmadensation of benzaldehyde with ethyl
acetoacetate and urea was chosen as a test reaatiodn was conducted under

ultrasonication.
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Table 1. Screening different parameters in a Biginellicten catalyzed by R®.@SiO-

IL/[Mo ¢O1g.
0 ) U j\ Fe;0,@ SiO,/IL-MogO1q i
H o HC OEt = HaN" “NH, BlG° M
HaC” N7 0
Entry Solvent Catalyst (mol % of Mo) T(C)| Time (min) Yield (%
1 ethanol 0.25 65 40 84
2 toluene 0.25 65 40 21
3 H.O 0.25 65 40 73
4 - 0.25 65 40 92
5 - 0.2 65 40 81
6 - 0.2 65 40 93
7 - 0.2t 75 40 93
8 - 0.2t 45 40 54
9 - 0.2t 25 40 <7
10° H,0 Fe;0,@Si0” 65 40 5
11°¢ H.O Fe0,@SiOy/IL® 65 40 10
12 - (N-BusN)2[MogO14]° 65 40 67

? |solated yield.” 0.01g of Fe;0.@SiC, was used® 0.01g of Fe;0,@SiC,/IL was used?® (n-

BusN);[M0ogO,q Was used as catalyst.
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Performing the reaction in different solvents, gglof 73% and 84% were obtained in
H,O and ethanol, respectively. In toluene, howeves, ield was only 21%. Pleasingly,
under solvent-free conditions, the best conversiod yield were obtained (Table 1,
entries 1-4). Therefore, in subsequent experimémsteactions were performed without
a solvent. Next, the effect of catalyst amount waslied (Table 1, entries 4-6). The
results showed that the reaction gave satisfactonyersions using 0.2 to 0.25 mol% of
catalyst. Increasing the catalyst loading to 0.3mdid not result in a significant change
in the reaction yield. The study also showed tleetien to be affected by temperature,
and the best result was observed at 65 °C. Acogiidir0.25 mol% of Fe€O,@SiO-
IL/[MogO1¢] under solvent-free conditions, 65 °C, and ultrasoirradiation were
identified as the optimal conditions. In order tentbnstrate the effect of the
hexamolybdate centers on the catalytic process;dtatytic activities of F,@SiO, and
Fe;0,@SIG/IL were also investigated, and the results wermpared with those for
Fe;0,@SiO/IL-M0gO19. These experiments showed that both hexamolyldede-
nanomaterials gave only low yields of the desireatpct, verifying that the reaction is
actually catalyzed by the supported hexamolybdag¢eiss (Table 1, entryv entries 10,
11). Interestingly, the unsupported hexamolybda® showed significantly lower
catalytic activity compared with E@,@ SiOy/IL-M0¢O19, Which may be attributed to the
tendency of POMs to form agglomerates or inactiireeds in homogeneous solution.
Importantly, ionic liquids as stabilizing agentsnceeduce these drawbacks through
electrostatic interaction between the imidazolivatian and the hexamolybdate anions

(Scheme 1) [118].
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We then proceeded to apply various aldehyde derestas substrates to deliver the

corresponding dihydropyrimidinones under the opticoaditions (Table 2).

Table 2. Synthesis of 3,4-dihydropyrimidone derivativestle presence of E@s@SiO-

IL/[Mo 6019] Nnanocatalyst.

o 0 j\ Fe30,@Si0,/IL-MogO1q i
ArCHO + +
oA N NH RN

3 2 Solvent free, 65 °C,)))

H,c” N7 0
Time | Yield® m. p. m. p
Entry Aldehyde R TON® | TOF
(min) (%) (found) | (reported)
2 201-203
1 H OEt 40 92 368 557.5| 201-203
[119]
2 208-211
2 H OMe | 40 90 360 545.4 | 210-212
[120]
Cl O 213—
3 H OEt 50 88 352 424.0| 213-215
215120]
¢hoQ 251-253
4 H OMe | 50 87 348 419.2 | 250-252
[121]
0
o 199-201
5 OEt 50 86 344 414.4 | 198-200
MeO [119]

18



0
H 191-193
6 OMe 50 85 340 409.6 | 193-195
MeO [119]
O
n 210-211
7 OEt 30 94 376 752 209-211
O,N [120]
O
H 193-195
8 OEt 55 87 348 382.4 | 194-196
[110]
Br
0)
231-233
9 H | OEt 60 83 332 332 233-235
[120]
HO
? Isolated yield? Turnover number [defined #ield (%)/ ca. (mol%)]. € Turnover frequenc
[defined as TON/reaction time (h)].

As can be seen, aldehydes bearing both electroatidgn and electron-accepting
substituents were employed as substrates, all athwibelivered the corresponding
Biginelli products in high to excellent yields. Was also found that E®,@SiO;-
IL/[Mo ¢O1g] offers high turnover number (TON) and turnovezguency (TOF) for all
products, indicating high performance of the desibrcatalyst in the preparation of

different dihydropyrimidinone derivatives.

The recoverability and reusability of the catalysere also investigated. These

experiments showed that the;Bg@ SiO-IL/[M0 ¢O19] Nanocatalyst could be reused at
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least seven times in the Biginelli process with significant reduction in efficiency
(Figure 8), indicating high stability and durabhjliof this nanocatalyst under the applied

conditions.

100 ~

80

60

Yield (%)

40

20 -

0 —t . .
1 2 3 4 5 5 7 8
Cycle

Figure 8. Reusability of the RO©,@ SiG-IL/[Mo 01g] nanocatalyst.

In the next experiment, a leaching test was peréaoknfror this, after the condensation was about
45% complete, the catalyst was separated magrigtiaall the reaction of the residue was
allowed to continue under the optimum conditionstedestingly, after 60 min, no further
progress of the reaction was observed, confirmivegheterogeneous nature of the catalyst as
well as the high efficiency of the ¥&,@SiOx-IL support in the immobilization of active

polyoxometalate species.

A mechanism for the Biginelli reaction usingsBe@SiG:-IL/[Mo ¢014] catalyst is proposed in

Scheme 2. As shown, the aldehydg {s first activated by Lewis acidic Mo sites ofeth

20



hexamolybdate species. In the next step, nucleopitick of ureal) on the activated carbonyl
group followed by elimination of water produces ldracyliminium cation 8). Subsequently,
nucleophilic attack of the enolate form piketoester4 followed by deprotonation by Lewis
basic oxygen groups of the catalyst produces irddrate 5. Finally, the desired Biginelli

product is obtained by ring-closure and the elimoraof water.

0
.. o
o) HzN/U\Nﬂz N H
1 §

9_: 4 HJ\pn s HN Ny

2-0 , -H
Q ‘;‘—‘.29 (1) 3)
% §* ' ‘ Ph
L S Et0,C 0

= Mo
® = >O
T AN
AMAAAs = Me’N /g Si
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Scheme 2 Proposed mechanism for Biginelli reaction usings(z@SiOy-IL/[Mo O]

nanocatalyst.

Finally, the performances of #@SiO:-IL/[Mo 6019 and previously reported catalysts in the
Biginelli reaction were compared (Table 3). Theutss showed that although the previous
catalytic systems have advantages of good recoligraind separation, the present catalyst is
better, especially in terms of the mild conditicaysplied, reaction rate, and recovery times.
Moreover, the TON and TOF of the present catalgyistem exceed those quoted in previous
reports. These findings may be attributed to thgmatic nature of this catalyst, the chemically
immobilized ionic liquid moieties, as well as thiéubctional properties (both Lewis acidic and

Lewis basic sites) of the supported polyoxometalate

Table 2. Comparative study of the efficiency of the;Gg@SiOx-1L/[Mo s01g] Nanocatalyst

with previously reported catalytic systems in thagiielli reaction.

Entry Catalyst Conditions Time| TON TOF | Recovery Ref.
(min) times
1 PEt@Fe/IL Cat. 90 126.7 84.4 7 [113]

(0.75 mol%),
solvent-free,

80 °C

2 | GO-ZrPPh Cat. 50 121.83  146.1 4 [122]
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(0.28 mol%),
solvent-free,

70 °C

3 n-ZrSA Cat. (10 mol%), 30 9.8 19.6 5 [123]
solvent-free,

90 °C

4 | SnC/nano SiQ | Cat. 40 208.8| 316.3 4 [124]

(0.45 mol%),

EtOH, reflux
5 | Fg0,@SiO- Cat. 40 367 557.5 7 This
IL/[M0 O] (0.25 mol%), work

solvent-free,

65 °C

Abbreviations: PEt@Fe/IL: polyethylene-supported/idrec liquid complex; GO-ZrPPh:
zirconium(1V) porphyrin graphene oxide; n-ZrSA: wadrO, sulfuric acid; SnGInano SiQ:

nanosilica-supported tin(Il) chloride.

4. Conclusion

A novel core-shell magnetite silica-supported ionluid/hexamolybdate complex
(F&sO,@SiO-IL/[Mo 6019]) has been prepared for the first time, and ispprties have been

investigated. FTIR, EDX, TGA, SEM, TEM, PXRD, andSM analyses of the E@,@SiO-
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IL/[Mo¢Oa1g] proved successful coating and immobilization bica, ILs, and hexamolybdate
ions on the surface of the 88 NPs. The FO,@SiO-IL/[M0O1g catalyst has been
heterogeneously and powerfully employed in therBalii reaction to give dihydropyrimidinones

in high yields. Other advantages of this catalgiistem are easy separation of the products and
catalyst, short reaction times, solvent-free coodg, low catalyst loading, and high efficiency of

the catalyst. Further application of:Ba@SiO-IL/[Mo ¢0,¢] is underway in our laboratory.
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Highlights

A novel magnetic silica-supported IL/hexamolybdate (FesO,@SiO,-IL/[M0gO19]) has
been prepared.

The Fe;0,@SIO,-IL/[M0sO19] has been characterized by means of FTIR, PXRD, TGA,
SEM, VSM, and EDX.

The FesO,@SO,-IL/[M0sO19] has been effectively applied as a nanocatalyst in the
Biginelli reaction.

The nanocatalyst could be recovered and reused at least seven times without incurring a

significant loss of efficiency.
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