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Abstract
An efficient Pd(ll)-catalyzed oxidative annulation of 2-hydroxynaphthalene-1,4-diones
and internal alkynes has been developed with high step efficiency. A broad range of
functional groups are compatible with this reaction, thus providing a new entry to

diverse naphtho[2,3-b]furan-4,9-dione derivatives in good to high yields.
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¥ Mild reaction condition
¥ Broad substrate scope and good yields: 26 examples, up to 78% yield
s High atom and step economy: one-pot for C-O and C-C bond formation

Naphtho[2,3-b]furan-4,9-dione unit has been widely found in numerous natural
products and synthetic analogues. As an important privileged structural motif, many
of furonaphthoquinones exhibit versatile biological activities such as antitumor,®
trypanocidal,® anti-leukemic activity,® inhibitor of HaCaT cell growth,* cytotoxic
activity toward KB®> and Vero cells,’ and inhibitor of human keratinocyte
hyperproliferation (A-D, Fig. 1).” For instance, Lapacho A has been used as a

longtime folk medicine against inflammatory, infectious, stomach, and skin
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diseases.® Nowadays, Lapacho A has been developed into an anticancer drug in

clinical treatments and also used against psoriasis.8
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Figure 1. Biologically active furonaphthoquinones.

Substituted furonaphthoquinones are of great interest in pharmaceutical
research and drug discovery, therefore, considerable efforts have been focused on
the synthetic methods of naphtho[2,3-b]furan-4,9-diones. Over the past decades,
several different approaches for furonaphthoquinone preparation have been
reported (Scheme 1). Mainly starting from 2-hydroxy-1,4-naphthoquinones,
multi-component reaction (Scheme 1a),° various [3+2] annulation strategies
[thermal cyclization with enamines (Scheme 1b),*® CAN-mediated oxidative
cycloaddition with vinyl sulfide!* and enol ether* (Scheme 1c), photoaddition®
(Scheme 1d)], one-pot  cascade procedure (Scheme 1e),**  and
transition-metal-catalyzed methods (Scheme 1f and 1g)* have been developed. In
addition, other miscellaneous methods such as Diels-Alder
cycloaddition/aromatization,16 oxidative cycIization/isomerization,17 Friedel-Crafts
acylation/oxidation,”® base-promoted oxidative coupling of 2-hydroxy-1,4-

naphthoquinones  with  (Z)-2-ylideneimidazo[1,2-a]pyridin-3(2H)-ones,”®  and
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bromine-mediated intramolecular cycIization20 have also been developed. Despite
the significant progress made in the synthesis of furonaphthoquinones, novel
synthetic approaches with milder reaction conditions and enhanced reaction
efficiency are still desirable. For example, Liu™® recently demonstrated an atom- and
step-efficient approach through Pd-catalyzed reverse hydrogenolysis coupling of
2-hydroxy-1,4-naphthoquinones and olefins (Scheme 1f).

Due to improved atom and step economy, recent years have witnessed an
upsurge in heterocycle synthesis based on metal-catalyzed C-H activation

processes.21 Specifically, oxidative annulation reactions between alkynes and

22a 22b 22d

different partners (such as phenols,”* thiols, anilines,”** and benzoic acids ) set
the stage for the development of practical approaches for the atom-efficient
formation of heterocycles in a limited number of steps.22 For instance, Rh- and
Ru-catalyzed oxidative annulation between a-naphthol and alkynes have been
independently developed for the synthesis of naphthopyrans by Miura® and
Ackermann,®* respectively. Ackermann® also demonstrated an atom- and
step-economical synthesis of isocoumarins through oxidative annulations of alkynes
by carboxylic acids using a ruthenium catalyst. Sahoo group developed a novel
one-step synthesis of 2,3-disubstituted benzofurans through Pd-catalyzed oxidative
annulations of phenols with unactivated internal aIkynes.26 More recently, Gogoi
described a ruthenium(ll)-catalyzed annulation of vinylnaphthols and alkynes to give

spiro-pentacyclic naphthalenones through C-H activation, dearomatization, and

alkyne insertion.”” With our continuous efforts on metal-catalyzed (Cu® and Pd®)
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oxidative C-H functionalization, herein we envisioned that

2-hydroxy-1,4-naphthoquinones and alkynes should be suitable substrates for the

synthesis of furonaphthoquinones through palladium-catalyzed oxidative [3+2]

annulation reaction (Scheme 1h).
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Scheme 1. Synthetic methods stating from 2-hydroxy-1,4-naphthoquinones.

2-Hydroxynaphthalene-1,4-dione (1a) was selected as the substrate to react with
diphenylacetylene (2a) in the presence of different combinations of palladium
catalysts, nitrogen-based ligands, and oxidants (Table 1). The blank experiment
(without the catalyst and ligand) was examined in 1,4-dioxane at 80 ‘C for 24 h using
NaOAc as the base, and no desired product was obtained. We then tested the
reaction conditions previously used for oxidative annulations of phenols with
unactivated internal alkynes.?® However, a combination of Pd,(dba); (2.5 mol%),
1,10-phenanthroline (Phen, L1, 10 mol%), and NaOAc as the base cannot efficiently
promote the reaction in 1,4-dioxane, and 3aa was obtained in a low yield (26%, entry
1). The *H and *C NMR spectroscopy data and melt point of the target 3aa were

12 A survey of palladium catalysts showed

consistent with the reported literature.
that PdCly(PPhs), provided better results (35% vyield) than Pd,(dba)s, Pd(PPhs)s,

Pd(OAc),, PdCl,, and PdCl,(MeCN), (15-32% vyields) with Phen as the ligand and
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Table 1. Condition optimization for the synthesis of 3aa“

0]

OH Ph
O‘ ¥ Ph/

(6]
1a

2a

palladium (5 mol%)
ligand (10 mol%)

base, oxidant

(0]
O,
— > | )—Ph
1,4-dioxane, 24 h, 80 'C 5

3aa

Ph

. b . yield . b . yield
entry catalyst/ligand oxidant/base entry  catalyst/ligand oxidant/base
(%)° (%)°

19 pdy(dba)s/L1 Cu(OAc),/NaOAc 26 16 PdCL(PPhs)y/L1  K;Cr0,/NaOMe 38
2 Pd(PPhs)s/L1 Cu(OAc),/NaOAc 32 17 PdCl,(PPhs),/L1 K»Cr,0,/NaO'Bu trace
3 Pdclz(PPh3)2/L1 CU(OAC)z/NaOAC 35 18 Pdc|2(PPh3)z/L1 KszzO7/NEt3 N.D.
4 Pd(OAc)y/L1 Cu(OAc),/NaOAc 24 19 PdCL(PPhs)y/L1  KyCr07/Zn(OAc); 78 (73)°
5 Pdclz/Ll CU(OAC)z/NaOAC 18 20 Pdc|2(PPh3)z/7 KZCr207/Zn(OAc)2 N.D.
6 PdCIz(MeCN)z/Ll CU(OAC)z/NaOAC 15 21 Pdc|2(PPh3)z/L2 KZCr207/Zn(OAc)2 18
7 Pdclz(PPh3)2/L1 AgOAc/NaOAc 35 22 Pdc|2(PPh3)z/L3 KZCr207/Zn(OAc)2 35
8 Pdclz(PPh3)2/L1 Ag2C03/NaOAc N.D. 23 Pdclz(PPh3)z/L4 KZCr207/Zn(OAc)2 43
9 Pdclz(PPh3)2/L1 KzSzOg/NaOAC N.D. 24 Pdclz(PPh3)z/L5 KZCr207/Zn(OAc)2 trace
10 Pdclz(PPh3)2/L1 KszzO7/NaOAC 53 25f Pdc|2(PPh3)z/L1 KZCr207/Zn(OAc)2 15
11 Pdclz(PPh3)2/L1 KMnO4/NaOAc 42 26g Pdc|2(PPh3)z/L1 KZCr207/Zn(OAc)2 trace
12 Pdclz(PPh3)2/L1 Oz/NaOAC N.D. 27h Pdc|2(PPh3)z/L1 KZCr207/Zn(OAc)2 26
13 Pdclz(PPh3)2/L1 CU(OTf)z/NaOAC 15 28’ Pdc|2(PPh3)z/L1 KZCr207/Zn(OAc)2 26
14 Pdclz(PPh3)2/L1 CU(OAC)z/HCOONa 43 29’ Pdc|2(PPh3)z/L1 KZCr207/Zn(OAc)2 47
15 PdCly(PPhs)y/L1 Cu(OAc),/NaHCO; 45 30  PdCL(PPhs)»/L1  K»Cr,0,/Zn(OAc), 79%/76'/78™

@ Reaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), catalyst (0.01 mmol), ligand (0.02 mmol), oxidant (2 equiv), and base (2
equiv) in solvent (2 mL) at 80 °C for 24 h. bl1= 1,10-phenanthroline, L2 = 2,2'-bipyridine, L3 = 4,7-diphenyl-1,10-phenanthroline,
L4 = 3,4,7,8-tetramethyl-1,10-phenanthroline L5 = oxalaldehyde dioxime. ¢ Isolated yield after chromatography. 4 2.5 mol%

Pd,(dba); was used. € One millimole scale.” DMF. ¢ DMSO or DCE. " THF. MeCN. / toluene.* 100 °C. '110 °C. ™ 24 h.

Cu(OAc); as the oxidant (entries 1-6). Among the range of oxidants [AgOAc, Ag,COs;,

K,S,0s, K,Cr,07, KMnQ,4, O, and Cu(OTf),, entries 7-13] that were surveyed, K,Cr,0,

appeared to be optimal and gave 3aa with an enhanced yield (53%, entry 10). The

effect of other bases such as HCOONa, NaHCO3;, NaOMe, NaO'Bu, Et3N, and Zn(OAc),

on the reaction was next examined (entries 14-19), Zn(OAc), provided a better result

with 78% isolated yield (entry 19) probably by the chelated 2-hydroxyketone

coordination to increase the rate of deprotonation. Using Zn(OAc), as the base,

examination of nitrogen-containing bidented ligands showed that the Phen (L1) was

most efficient (entry 19), while 2,2’-bipyridyl (L2), ligands with 1,10-phenanthroline

scaffold (L3 and L4), and oxalaldehyde dioxime (L5) produced lower amounts of 3aa

(from trace to 43% yield, entries 21-24). The rigid N,N-pincer phenanthroline-type
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ligands provided better results than the acyclic ligand 2,2’-bipyridyl (78% and 18%, L1
vs L2, entries 19 and 21). A survey of reaction media showed that the use of
1,4-dioxane provided better results than those obtained in DMF, DMSO, DCE, THF,
acetonitrile, and toluene (entries 19 and 25-29). It is worth noting that the N-bearing
bidented ligand is essential to this transformation and 3aa was not produced in the
absence of ligand (entry 20).%° Finally, with increased reaction temperature and time,
yields have not obviously been improved (entry 30). In addition, the reaction can be
carried out on a 1.0 mmol scale without compromising the yield (78% vs 73%).

With the optimized reaction conditions in hand, the scope of this annulation
reaction was then examined. A variety of diversely substituted furonaphthoquinone
3 was obtained in moderate to good vyields (Tables 2 and 3). For symmetrically
substituted alkyne substrates 2, the effect of electron-rich and electron-deficient
aryl-substituted alkynes was first investigated (Table 2, 2b-20, 2r, and 2s). A variety

of substituents (Me, OMe, F, Cl, and Br) on the internal arylalkynes were applicable,

Table 2. Variation of internal aIkynes”’b

o 5 mol% PdCly(PPhs),
O‘l OH __R® 10 mol% Phen, KoCr07, Zn(OAc), ‘ ‘; R2
R 1,4-dioxane, 80 or 100 °C, 24 h {
3

o 0
3aa-3as
o o Me °
% ()= ReH.3aa 78% =\ o m\ R=Me, 3aj, 60% » f& o s
~ 7 ReMe 3ab &3% % \ ! /Hu/ R=OMe, 3ak, 58% ¢ A VaV
o / R=OMe, 3ac, 60% \ R R=C. 3al. 72% Me \
) R=F, 3ad, 73% ) o /7 = sl 72 ° o /s
</ ) R=Me, 3ag, 62% Cve < 5
( R=Cl, 3ae, 70% /=" R=OMe, 3ah, 56% - / W =
5
R R=Br, 3af, 72% R=Cl, 3ai, 72% 3am, 63% 3an, 33%°
7N
P30 o) @i&w ©¢w O ©¢ﬂ e O3
\;— /
B C\
3a0, 68%° 3ap, 35%° 3aq, 67% 3ar/3ar' ' 3as/3as' (1:1),9 72%

(1:1),9 73%

 Reaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), PdCl,(PPhs), (0.01 mmol), Phen (0.02 mmol), K,Cr,0- (0.4
mmol), and Zn(OAc), (0.4 mmol) in 1,4-dioxane (2 mL) at 80 C for 24 h. b |solated yields. 100 C. ¢ The ratio of
the regioisomers was determined by NMR analysis.
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affording the corresponding products in 56-78% yields. Both electron-donating

(2b-c, 2g-h, 2j-k, and 2m) and electron-withdrawing (2d-f, 2i, 2I) substituents can

oNOYTULT D WN =

9 be incorporated at the para-, meta-, and ortho-position (Table 2, 3ab-3al). The
12 electronic nature of the aromatic motifs affected the outcome to some extent, the
introduction of electron-withdrawing substituents can afford higher yields. In
17 addition, dimethyl-substituted (2m), hetero (2n), and fused aryl (a-naphthyl , 20)
20 alkynes were also transformed into the corresponding products in 63%, 33%, and 68%
22 yield, respectively. Because of the lack of conjugation, the symmetrically substituted
25 alkyl alkyne is less reactive.®® The desired 2,3-dialkyl-substituted
furonaphthoquinone 3ap was obtained from 4-octyne (2p) in only 35% vyield. A
30 similar result was also observed for asymmetrical 1,2-dialkylalkyne, for instance, 31%
33 yield was obtained for non-4-yne. When asymmetrically substituted internal
35 arylalkynes were used, potential regioselectivity issue exists in the oxidative
38 annulation process. For asymmetrical 1,2-diarylalkynes (2r, and 2s), a 1:1 mixture of
two regioisomers was obtained in the two cases (Table 2, 3ar/3ar', and 3as/3as’),
43 indicating that the difference of electric nature between two aryl groups of
46 unsymmetrical 1,2-diarylalkynes seem not to affect the regioselectivity. However,
48 when alkyl, aryl-substituted alkyne, for example, phenyl- and n-butyl-substituted
51 alkyne 2q was used, the 3-butyl-2-phenylnaphtho([2,3-b]furan-4,9-dione 3aq was
exclusively formed in 67% yield, consistent with the observations of the groups of

30b

56 Larock,*! Fagnou, Sahoo,”® and Patel.* Finally, terminal alkynes were incompatible

59 with the protocol due to the formation of alkyne homo-coupling products.30b
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The generality of 2-hydroxynaphthalene-1,4-diones 1 was then examined. As
shown in Table 3, a great variety of 2-hydroxynaphthalene-1,4-diones 1a-1h can be
smoothly converted into the corresponding products 3ba-3ha in good vyields
(68-78%). Several functional groups, such as Me, OMe, Ph, F, Cl, and Br were
tolerated in the aryl fragment of 1. Generally, the electronic nature of the aromatic
motifs does not seem to affect the efficiency of this transformation, and
electron-donating (Me, OMe, and Ph) and electron-withdrawing substituents (F, Cl,

and Br) can be incorporated at different positions of aryl moiety.

Table 3. Variation of 2-hydroxynaphthalene—1,4-diones”’b

5mol% PdC(PPhs), Q
Ph 10 malt Phen. K,Cr,0y. Zn(OAc)y x 0,
/ R | )—Ph
T ladioxane, 100G, 20 h -

o Ph
1a1h 3aa-3ha
o o o o
o MeO o o o,
[ )—h [ )—ph [ )—ph Wil
B MeO N F \
o FPh o Ph o Ph o Ph
3aa, 78% 3ba, 71% 3ca, 73% 3da, 72%
o o o o
o 0, o o
| )—Ph | )—Ph | )—Ph | )—Ph
cl Br Ph
o Ph o Ph o Ph Me O Ph
3ea, 68% 3fa, 70% 3ga, 74% 3ha, 75%

9 Reaction conditions: 1 (0.2 mmol), 2a (0.4 mmol),
PdCl,(PPh3), (0.01 mmol), Phen (0.02 mmol), K,Cr,0, (0.4
mmol), and Zn(OAc), (0.4 mmol) in 1,4-dioxane (2 mL) at
100 °C for 24 h. * Isolated yields.

~= 7t
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\ ‘/ R reductive CN A\ K’yﬂoﬁk
\ o R 3] elmination =/ CMD transition state
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(& Heck pattvay R
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R

Scheme 2. Proposed mechanistic cycle.
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Two competitive catalytic cycles for the synthesis of furonaphthoquinones have
been proposed in Scheme 2. In the presence of Zn(OAc), as the base, the
deprotonation of 2-hydroxynaphthalene-1,4-dione 1 yielded two tautomeric anions
which existed as either carbanion 5 in the keto-form or as oxygen anion 6 in the
enol-form. At this stage, attack of anion onto the electrophilic Pd(ll) species may
occur in two different ways (Scheme 2, path A and B). Path A involved the attack of
carbanion 5 onto catalytic active species 4 to form alkyl-Pd(ll) species 7.
Subsequently, the coordination of the internal alkyne 2 to 7 would induce its
carbopalladation to afford an alkenyl palladium(ll) complex 8. Base-assisted further
deprotonation of the ketone a-carbon of 8 led to O-Pd bond formation, affording
intermediate 9. Palladacycle 9 underwent C-O reductive elimination to afford the
desired product 3 and a Pd(0) species 10, which was oxidized by K,Cr,0; to
regenerate the active Pd(ll) species 4 for the next catalytic cycle. On the other hand,
mechanistic cycle B was initiated by the attack of enol anion 6 onto the electrophilic
Pd(ll) species 4, giving the enol-type palladium(ll) 11. The coordination followed by
syn migratory insertion of internal alkyne 2 into O-Pd bond then afforded
alkenyl-Pd(ll) species 12.%® The final product 3 can be formed possibly through two
distinct pathways (C—H activation or Heck pathway). The C—H activation pathway
involved a concerted metalation deprotonation (CMD) transition state®* of alkene to
form the palladacycle 13, which underwent C-C bond-forming reductive elimination
to afford the desired furonaphthoquinone 3 and regenerate a Pd(0) species 10. The

Heck pathway involved an intramolecular syn migratory insertion into the olefin
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moiety of 12, then was followed by an isomerization process to give the
o-alkyl-palladium(ll) acetate 14 with B-hydrogen in a syn position relative to the
palladium atom. A syn B-hydride elimination afforded 3 and a hydridopalladium(ll)
acetate, which underwent a reversible reductive elimination to regenerate a Pd(0)
complex 10. Finally, Pd(0) resulting from an elimination process was oxidized to Pd(Il)
by K,Cr,04.

In conclusion, we have developed a modular approach for rapid syntheses of
diverse naphtho[2,3-b]furan-4,9-dione derivatives through Pd-catalyzed oxidative
annulations of 2-hydroxynaphthalene-1,4-diones with readily accessible unactivated
internal alkynes. The success of the reaction heavily relies on the careful selection of
proper base and oxidant. The combination of Zn(OAc), and K,Cr,0; was found to be
essential for the efficient formation of furonaphthoquinones. This synthetic method
exhibits a broad substrate scope with good yields and excellent regioselectivity for
aryl, alkyl-substituted alkynes. Considering considerable valance of the products for
medicinal science, this reaction could be of synthetic utility for the discovery of
drugs.

EXPERIMENTAL SECTION

General Information. Chemicals were all purchased from commercial supplies and
used without further purification unless otherwise stated. Solvents were dried and
purified according to the standard procedures before use. Reactions were monitored
by analytical thin-layer chromatography (TLC). All reactions were conducted in dried

glassware. Purification of reaction products was done by flash chromatography with
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) and

230-400 mesh silica gel. Internal alkynes (2a-2m* and 2g-2s
2-hydroxynaphthalene-1,4-diones (1a-1f,*" 1h*" and 1g38) were prepared according
to the literature methods. All these substrates are known compounds, and the
spectroscopic and physical data are matched with those from the literature. Melting
points were determined on a melting point apparatus in open capillaries and are
uncorrected. 'H NMR spectra were recorded on a 500 MHz spectrometer, and B¢
NMR spectra were recorded at 125 MHz. Unless otherwise stated,
deuterochloroform (CDCl3) was used as a solvent. Chemical shifts (§) are given in
parts per million downfield relative to tetramethylsilane (TMS). Chemical shifts for
carbon resonances are reported in parts per million and are referenced to the
carbon resonance of the solvent CHCl; (6 = 77.16 ppm). Coupling constants are given
in hertz. High-resolution mass spectra were recorded on a BIO TOF Q mass
spectrometer equipped with an electrospray ion source (ESI), operated in the
positive mode.

General procedures for synthesis of naphtho[2,3-b]furan-4,9-dione derivatives. A
10 mL schlenk tube equipped with a magnetic stirring bar was charged with PdCl,
(PPh3), (7.0 mg, 5 mol%), phenanthroline (3.6 mg, 10 mol%), K,Cr,07 (117.6 mg, 2 eq)
and Zn(OAc), (73.4 mg, 2 eq), and then internal alkynes (0.4 mmol, 2 eq),
a-hydroxynaphthoquinone derivative (0.2 mmol, 1 eq) were added. 1, 4-Dioxane (2.0
mL) was then added to the mixture via syringe at room temperature under air. The
tube was sealed and put into a preheated oil bath at 80 or 100 ‘C for 24 h. The

mixture was cooled to room temperature, quenched with water (5 mL), and diluted
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with CH,Cl, (10 mL). The layers were separated, and the aqueous layer was extracted
with 3 x 5 mL of CH,Cl,. The organic layer is washed with saturated aqueous NaCl (15
mL), dried over MgSQ,, filtered, and concentrated in vacuo. The crude product is
purified by silica gel column chromatography, eluting with 10-20% ethyl

acetate/petroleum ether.

2,3-Diphenylnaphtho[2,3-b]furan-4,9-dione (3aa).*>® The reaction was carried out on
a 1.0 mmol scale. Yellow solid, mp 262-264 °C; yield, 73% (255.5 mg); *H NMR (400
MHz, CDCl;) 6 8.28 — 8.22 (m, 1H), 8.12 — 8.07 (m, 1H), 7.78 = 7.69 (m, 2H), 7.61 —
7.56 (m, 2H), 7.47 (br, 5H), 7.36 — 7.28 (m, 3H). *C{*H} NMR (126 MHz, CDCl;) &
179.8, 172.4, 154.4, 150.1, 132.8, 132.7, 132.5, 131.5, 129.2, 129.0, 128.8, 128.7,
127.7, 127.6, 127.5, 126.2, 125.9, 125.6, 120.7. HRMS-ESI: [M + H]* calcd for
Ca4H1505" m/z 351.1016, found 351.1018.
2,3-Di-p-tolylnaphtho([2,3-b]furan-4,9-dione (3ab). Yellow solid, mp 235-237 C;
yield, 63% (47.6 mg); *H NMR (500 MHz, CDCl5) 6 8.17 (d, J = 7.3 Hz, 1H), 8.02 (d, J =
7.3 Hz, 1H), 7.69 — 7.62 (m, 2H), 7.43 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 7.8 Hz, 2H), 7.22 —
7.19 (m, 2H), 7.05 (d, J = 8.0 Hz, 2H), 2.38 (s, 3H), 2.27 (s, 3H). *C{*H} NMR (126 MHz,
CDCl5) 6 179.9, 172.4, 154.7, 149.9, 139.0, 137.3, 132.7, 132.6, 132.5, 131.5, 128.8,
128.4,128.3,126.2, 126.1, 125.8, 125.6, 124.8, 120.2, 20.5, 20.4. HRMS-ESI: [M + H]"
calcd for CH1503" m/z 379.1329, found 379.1332.
2,3-Bis(4-methoxyphenyl)naphtho[2,3-b]furan-4, 9-dione (3ac). Yellow solid, mp
233-235 °C; yield, 60% (49.2 mg); "H NMR (500 MHz, CDCl5) 6 8.23 (d, J = 7.2 Hz, 1H),

8.09 (d, J = 7.2 Hz, 1H), 7.76 — 7.79 (m, 2H), 7.55 (d, J = 8.9 Hz, 2H), 7.38 (d, J = 8.6 Hz,
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2H), 7.00 (d, J = 8.6 Hz, 2H), 6.84 (d, J = 8.9 Hz, 2H), 3.89 (s, 3H), 3.82 (s, 3H).13C{1H}
NMR (126 MHz, CDCl;) 6 181.1, 173.3, 160.7, 159.7, 155.8, 150.7, 133.7, 133.64,
133.61, 132.6, 131.4, 129.9, 128.9, 126.9, 126.6, 122.4, 121.3, 120.1, 114.2, 114.1,
55.4, 55.3. HRMS-ESI: [M + H]" calcd for Cp¢H1905" m/z 411.1227, found 411.1229.
2,3-Bis(4-fluorophenyl)naphtho[2,3-b]furan-4,9-dione (3ad). Yellow solid, mp
267-269 °C; yield, 73% (56.4 mg); *H NMR (500 MHz, CDCl3) & 8.24 (dd, J = 7.4, 1.4
Hz, 1H), 8.10 (dd, J = 7.4, 1.4 Hz, 1H), 7.79 — 7.71 (m, 2H), 7.58 — 7.54 (m, 2H), 7.46 —
7.41 (m, 2H), 7.20 = 7.16 (m, 2H), 7.05 — 7.01 (m, 2H). *C{*H} NMR (126 MHz, CDCls)
6 179.8, 172.4, 162.4 (163.4, 161.4, d, Yer = 252 Hz), 161.9 (162.9, 160.9, d, Yer =
252 Hz), 153.7, 150.4, 132.9, 132.4, 131.4, 130.9 (130.9, 130.8, d, ZJC_F =9 Hz), 128.5,
128.4 (128.4, 128.3, d, ZJC_F =9 Hz), 125.9, 125.7, 124.9 (124.88, 124.86, d, Yer =25
Hz), 123.6 (123.61, 123.59, d, YJer=25 Hz), 119.4, 115.1 (115.08, 115.05, d, 3JC_F =4
Hz), 114.9 (114.91, 114.88, d, >Jcr = 4 Hz). HRMS-ESI: [M + H]" calcd for CpaH13F,05"
m/z 387.0827, found 387.0825.
2,3-Bis(4-chlorophenyl)naphtho[2,3-b]furan-4,9-dione  (3ae). Yellow solid, mp
261-263 °C; yield, 70% (58.5 mg); *H NMR (500 MHz, CDCl5) 6 8.24 (d, J = 7.0 Hz, 1H),
8.09 (d, J = 7.0 Hz, 1H), 7.80 — 7.70 (m, 2H), 7.61 (d, J = 8.3 Hz, 2H), 7.48 (d, J = 8.6 Hz,
2H), 7.43 (d, J = 8.6 Hz, 2H), 7.33 (d, J = 8.3 Hz, 2H). *C{*H} NMR (126 MHz, CDCl;) &
180.7, 173.4, 154.4, 151.4, 134.0, 133.4, 132.4, 132.12, 132.11, 131.7, 129.3, 128.9,
128.7, 127.1, 127.0, 126.8, 124.6, 123.2, 120.9. HRMS-ESI: [M + H]" calcd for
C24H13Cl,05" m/z 419.0236, found 419.0237.

2,3-Bis(4-bromophenyl)naphtho[2,3-b]furan-4,9-dione (Es’af).9c Yellow solid, mp
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237-238 °C; yield, 66% (66.7 mg); *H NMR (500 MHz, CDCl;) & 8.26 — 8.21 (m, 1H),
8.11 — 8.07 (m, 1H), 7.79 — 7.71 (m, 2H), 7.50 (d, J = 8.6 Hz, 2H), 7.46 (d, J = 8.4 Hz,
2H), 7.39 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.6 Hz, 2H). **C{*H} NMR (126 MHz, CDCl5) &
180.7, 173.4, 154.4, 151.4, 136.2, 135.0, 134.0, 133.4, 132.8, 132.4, 131.4, 129.3,
129.2,129.1, 128.5, 128.4, 127.0, 126.8, 126.7, 120.8.
2,3-Di-m-tolylnaphtho[2,3-b]furan-4,9-dione (3ag). Yellow solid, mp 235-237 ‘C; yield,
62% (46.8 mg); 'H NMR (500 MHz, CDCl5) & 8.24 (d, J = 7.2 Hz, 1H), 8.09 (d, J = 7.0 Hz,
1H), 7.77 = 7.67 (m, 2H), 7.52 (s, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.29 — 7.23 (m, 4H), 7.15
(t, J = 6.3 Hz, 2H), 2.40 (s, 3H), 2.30 (s, 3H).13C{1H} NMR (126 MHz, CDCl;) & 180.8,
173.5, 155.6, 151.0, 138.4, 138.3, 133.7, 133.6, 132.6, 130.6, 130.5, 130.3, 129.8,
129.4, 128.6, 128.5, 128.4, 127.7, 127.0, 126.9, 126.6, 124.4, 121.8, 21.5, 21.4.
HRMS-ESI: [M + H]" caled for Cy6H1903" m/z 379.1329, found 379.1323.
2,3-Bis(3-methoxyphenyl)naphtho[2,3-b]furan-4,9-dione (3ah). Yellow solid, mp
225-227 °C; yield, 56% (45.9 mg); *H NMR (500 MHz, CDCls) & 8.27 — 8.20 (m, 1H),
8.11 (dd, J = 7.3, 1.4 Hz, 1H), 7.74 — 7.68 (m, 2H), 7.52 (dd, J = 7.6, 1.5 Hz, 1H), 7.34
(td, J = 8.3, 1.5 Hz, 2H), 7.09 (dd, J = 7.4, 1.5 Hz, 1H), 7.01 — 6.93 (m, 2H), 6.89 (t, J =
7.4 Hz, 1H), 6.82 (d, J = 8.3 Hz, 1H), 3.69 (s, 3H), 3.41 (s, 3H). *C{*H} NMR (126 MHz,
CDCl;) 6 180.7, 173.4, 159.8, 159.5, 155.3, 151.0, 133.8, 133.5, 132.5, 131.7, 129.8,
129.7,129.6, 126.9, 126.7,122.3,121.7,119.7, 116.5, 115.5, 114.3, 111.6, 55.3, 55.2.
HRMS-ESI: [M + H]" caled for C6H1905" m/z411.1227, found 411.1225.
2,3-Bis(3-chlorophenyl)naphtho[2,3-b]furan-4,9-dione (3ai). Yellow solid, mp

266-268 C; yield, 72% (60.2 mg); "H NMR (500 MHz, CDCl;) § 8.25 (dd, J = 7.4, 1.3 Hz,

ACS Paragon Plus Environment



Page 15 of 30 The Journal of Organic Chemistry

1H), 8.11 (dd, J = 7.4, 1.3 Hz, 1H), 7.80 — 7.73 (m, 2H), 7.65 (t, J = 1.7 Hz, 1H), 7.49 —

7.42 (m, 3H), 7.36 — 7.33 (m, 3H), 7.24 (d, J = 7.9 Hz, 1H). 3C{*H} NMR (126 MHz,

oNOYTULT D WN =

9 CDCl;) 6 180.5, 173.5, 154.0, 151.4, 135.0, 134.7, 134.1, 134.0, 133.4, 132.3, 131.6,
12 130.2, 130.1, 130.0, 129.8, 129.3, 129.1, 128.2, 127.2, 127.0, 126.8, 125.3, 121.1.
HRMS-ESI: [M + H]* calcd for C,4H13C1,05" m/z 419.0236, found 419.0237.

17 2,3-Di-o-tolylnaphtho[2,3-b]furan-4,9-dione (3aj). Yellow solid, mp 236-238 °C; yield,
20 60% (45.4 mg); 'H NMR (500 MHz, CDCls) & 8.18 (d, J = 7.5 Hz, 1H), 8.06 — 8.00 (m,
22 1H), 7.73 = 7.62 (m, 2H), 7.23 — 7.14 (m, 4H), 7.13 — 7.04 (m, 3H), 7.00 (t, J = 7.4 Hz,
25 1H), 2.24 (s, 3H), 2.06 (s, 3H). *C{*H} NMR (126 MHz, CDCl;) & 179.8, 172.6, 156.5,
150.8, 136.7, 136.2, 132.8, 132.7, 132.5, 131.5, 129.9, 129.5, 129.4, 129.2, 129.0,
30 128.6, 128.4, 127.5, 127.0, 125.9, 125.6, 124.7, 124.6, 121.3, 19.5, 19.0. HRMS-ESI:
33 [M + H]" calcd for C6H1903" m/z379.1329, found 379.1332.

35 2,3-Bis(2-methoxyphenyl)naphtho[2,3-b]furan-4,9-dione (3ak). Yellow solid, mp
38 227-229 °C; yield, 58% (47.5 mg); *H NMR (500 MHz, CDCl3) & 8.24 (d, J = 7.2 Hz, 1H),
8.09 (d, J = 7.1 Hz, 1H), 7.78 — 7.68 (m, 2H), 7.40 (t, J = 8.2 Hz, 1H), 7.21 (br, 2H), 7.10
43 (br, 1H), 7.07 — 6.97 (m, 3H), 6.87 (d, J = 3.4 Hz, 1H), 3.82 (s, 3H), 3.65 (s, 3H). 13C{lH}
46 NMR (126 MHz, CDCl;) 6 180.5, 173.6, 157.4, 157.0, 155.1, 151.8, 133.8, 133.6, 133.5,
48 132.6, 131.4, 130.9, 130.5, 130.0, 129.6, 126.8, 126.6, 120.6, 120.5, 120.3, 119.8,
51 118.3, 111.2, 110.7, 55.5, 54.9. HRMS-ESI: [M + H]" calcd for CH1905" m/z 411.1227,
found 411.1231.

56 2,3-Bis(2-chlorophenyl)naphtho[2,3-b]furan-4,9-dione (3al). Yellow solid, mp

o 227-229 °C; yield, 72% (60.2 mg); *H NMR (500 MHz, CDCl) 6 8.18 (d, J = 7.1 Hz, 1H),
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8.04 (d, J=6.6 Hz, 1H), 7.73 — 7.65 (m, 2H), 7.58 (br, 1H), 7.43 - 7.34 (m, 3H), 7.29 —
7.27 (m, 2H), 7.21 — 7.14 (m, 2H). **c{*H} NMR (126 MHz, CDCl5) & 179.5, 172.4,
152.9, 150.4, 133.9, 133.6, 133.0, 132.9, 132.4, 131.3, 130.6, 129.1, 129.0, 128.99,
128.97, 128.8, 128.2, 128.1, 127.2,126.1, 126.0, 125.8, 124.2, 120.0. HRMS-ESI: [M +
H]" caled for Cy4H13Cl,05" m/z 419.0236, found 4 19.0239.
2,3-Bis(3,5-dimethoxyphenyl)naphtho([2,3-b]furan-4,9-dione (3am). Yellow solid, mp
265-267 °C; yield, 63% (51.1 mg); *H NMR (500 MHz, CDCl5) 6 8.17 (dd, J = 7.4, 1.2 Hz,
1H), 8.03 (dd, J = 7.4, 1.2 Hz, 1H), 7.70 — 7.61 (m, 2H), 7.19 (s, 1H), 7.15 (s, 2H),
7.02(br, 1H), 6.98 (s, 2H), 6.90 (s, 1H), 2.29 (s, 6H), 2.16 (s, 6H). 13C{lH} NMR (126
MHz, CDCl3) 6 179.8, 172.4, 154.8, 149.8, 137.1, 137.0, 132.6, 131.6, 130.4, 129.2,
129.1, 128.9, 127.5, 126.5, 125.9, 125.6, 123.9, 120.9, 20.3, 20.2. HRMS-ESI: [M + H]"
calcd for C,gH,305" m/z407.1642, found 407.1644.
2,3-Di(thiophen-2-yl)naphtho[2,3-b]furan-4,9-dione  (3an). Yellow solid, mp
183-185 C; yield, 33% (23.8 mg); 'H NMR (500 MHz, CDCl5) 6 8.17 (d, J = 6.8 Hz, 1H),
8.04 (d, J = 6.9 Hz, 1H), 7.74 — 7.63 (m, 2H), 7.52 (d, J = 4.0 Hz, 1H), 7.46 (s, 1H), 7.32
(d, J = 3.8 Hz, 1H), 7.19 — 7.15 (m, 2H), 6.99 (br, 1H). *C{*H} NMR (126 MHz, CDCl;) &
179.4, 172.1, 152.2, 149.5, 132.9, 132.8, 132.3, 131.4, 129.1, 128.7, 128.6, 128.2,
128.1, 127.5, 127.1, 126.7, 126.5, 125.9, 125.7, 112.0. HRMS-ESI: [M + H]" calcd for
C20H1103S," m/z 363.0144, found 363.0146.
2,3-Di(naphthalen-1-yl)naphtho[2,3-b]furan-4,9-dione (3ao). Yellow solid, mp
276-278 °C; yield, 68% (61.2 mg); *H NMR (500 MHz, CDCl;) & 8.31 (d, J = 7.5 Hz,

1H), 8.12 (d, J = 8.2 Hz, 1H), 8.06 (d, J = 7.5 Hz, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.87 -
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7.74 (m, 5H), 7.71 (t, J = 7.4 Hz, 1H), 7.52 — 7.43 (m, 3H), 7.40 (t, J = 7.6 Hz, 1H), 7.37
—7.30 (m, 3H), 7.20 (t, J = 7.7 Hz, 1H). *c{*H} NMR (126 MHz, CDCl;) & 180.4, 173.8,
157.9, 152.2, 133.9, 133.8, 133.6, 133.54, 133.5, 132.6, 132.3, 131.4, 130.8, 130.4,
129.4, 129.1, 128.6, 128.5, 128.3, 127.8, 127.2, 127.1, 126.8, 126.5, 126.4, 126.0,
125.6, 125.4, 125.3, 125.2, 124.8, 122.1. HRMS-ESI: [M + H]" calcd for C3;H1903" m/z
451.1329, found 451.1325.

2,3-Dipropylnaphtho([2,3-b]furan-4,9-dione (3ap). Yellow solid, mp 133-135 C; yield,
35% (19.7 mg); *H NMR (500 MHz, CDCls) & 8.02 (d, J = 7.7 Hz, 1H), 7.68 — 7.57 (m,
2H), 7.38 (t, J = 7.5 Hz, 1H), 2.62 (t, J = 7.4 Hz, 2H), 2.56 (t, J = 7.4 Hz, 2H), 1.77 - 1.68
(m, 2H), 1.64 — 1.56 (m, 3H), 1.00 (t, J = 7.4 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H). C{‘H}
NMR (126 MHz, CDCl;) 6 181.1, 175.2, 159.0, 155.2, 135.2, 130.3, 129.4, 129.1, 128.6,
121.9, 121.7, 120.4, 27.7, 25.5, 23.0, 21.7, 13.8, 13.7. HRMS-ESI: [M + H]" calcd for
C18H1903" m/z 283.1329, found 283.1330.
2-Butyl-3-phenylnaphtho[2,3-b]furan-4,9-dione (3aq). Yellow solid, mp 165-167 C;
yield, 67% (44.2 mg); 'H NMR (500 MHz, CDCl;) & 8.23 (dd, J = 5.8, 3.1 Hz, 1H), 8.18
(dd, J=5.8,3.1Hz, 1H), 7.80 (d, /= 7.3 Hz, 2H), 7.78 = 7.71 (m, 2H), 7.51 (t, /= 7.4 Hz,
2H), 7.45 (t, J = 7.3 Hz, 1H), 3.10 — 2.97 (m, 2H), 1.76 — 1.70 (m, 2H), 1.55 — 1.47 (m,
2H), 0.99 (t, J = 7.4 Hz, 3H). *c{*H} NMR (126 MHz, CDCl5) 6 182.0, 173.3, 155.7,
151.2, 133.7, 133.6, 133.5, 132.7, 130.3, 129.6, 129.3, 128.9, 127.1, 126.8, 126.7,
122.8, 32.0, 23.9, 22.9, 13.9. HRMS-ESI: [M + H]" calcd for CpH1905" m/z 331.1329,
found 331.1324.

Mixture of 2-(4-bromophenyl)-3-phenylnaphtho [2,3-b]furan-4,9-dione (3ar) and
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3-(4-bromophenyl) -2-phenylnaphtho([2,3-b]furan-4,9-dione (3a/). Yield, 73% (61.6
mg); the ratio (3ar:3ar' =1:1) is determined by ‘*H NMR; *H NMR (500 MHz, CDCl5) &
8.23 (d, J = 7.3 Hz, 2H), 8.09 (d, J = 7.3 Hz, 2H), 7.79 — 7.68 (m, 4H), 7.60 (d, J = 8.2 Hz,
2H), 7.57 (d, J = 7.0 Hz, 2H), 7.51 — 7.40 (m, 10H), 7.37 — 7.32 (m, 4H). **c{*H} NMR
(126 MHz, CDCl3) 6 179.8, 179.6, 172.4, 172.3, 154.5, 153.3, 150.26, 150.21, 132.9,
132.84, 132.8, 132.5, 132.4, 131.39, 131.38, 131.0, 130.9, 130.8, 129.0, 128.9, 128.8,
128.6, 128.3, 128.2, 127.8, 127.7, 127.6, 127.2, 126.4, 126.3, 125.9, 125.8, 125.7,
125.6, 123.2, 121.9, 121.2, 119.4. HRMS-ESI: [M + H]" calcd for Cy4H14BrOs" m/z
429.0121, found 429.0121, 431.0101.

Mixture of 2-(4-chlorophenyl)-3-phenylnaphtho [2,3-b]furan-4,9-dione (3as) and
3-(4-chlorophenyl)- 2-phenylnaphtho[2,3-b]furan-4,9-dione (3as). Yield, 72% (55.3
mg); the ratio (3as:3as' =1:1) is determined by *H NMR; *H NMR (500 MHz, CDCl3) &
8.17 (d, J = 7.0 Hz, 2H), 8.05 — 7.98 (m, 2H), 7.74 — 7.64 (m, 8H), 7.61 (d, J = 8.4 Hz,
2H), 7.52 (t, J = 8.3 Hz, 4H), 7.47 — 7.42 (m, 5H), 7.40 — 7.24 (m, 6H). °C{*H} NMR
(126 MHz, CDCl3) 6 179.7, 179.3, 172.6, 172.3, 154.9, 151.7, 150.8, 150.5, 134.4,
133.1, 133.05, 133.0, 132.9, 132.5, 132.3, 131.6, 131.4, 131.3, 130.1, 129.4, 128.7,
128.5, 128.4, 128.2, 128.0, 127.9, 126.8, 126.4, 126.3, 126.0, 125.9, 125.8, 125.7,
123.2, 118.7, 117.6, 117.2, 111.9, 111.4. HRMS-ESI: [M + H]" calcd for Cy4H14ClO3"
m/z 385.0626, found 385.0628, 387.1230.
7-Methoxy-2,3-diphenylnaphtho([2,3-b]furan-4,9-dione (3ba). Yellow solid, mp
274-276 °C; yield, 71% (53.9 mg); *H NMR (500 MHz, CDCl;) 6 8.03 (d, J = 8.6 Hz, 1H),

7.69 (d, J = 2.6 Hz, 1H), 7.58 (d, J = 7.0 Hz, 2H), 7.46 (br, 5H), 7.34 - 7.29 (m, 3H), 7.15
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(dd, J = 8.6, 2.6 Hz, 1H), 3.97 (s, 3H). *C{*H} NMR (126 MHz, CDCl;) & 180.1, 173.4,
164.1, 155.5, 151.1, 134.7, 130.4, 130.0, 129.9, 129.8, 129.3, 128.8, 128.7, 128.62,
128.59, 127.3, 126.9, 122.0, 119.6, 110.6, 56.0. HRMS-ESI: [M + H]" calcd for
CysH1704" m/z 381.1121, found 381.1128.
6-Methoxy-2,3-diphenylnaphtho[2,3-b]furan-4,9-dione (3ca). Yellow solid, mp
275-277 °C; vyield, 73% (55.5 mg); *H NMR (500 MHz, CDCl5) 6 8.17 (d, J = 8.5 Hz, 1H),
7.60 — 7.52 (m, 3H), 7.47 (br, 5H), 7.34 — 7.30 (m, 3H), 7.18 (dd, J = 8.4, 1.8 Hz, 1H),
3.91 (s, 3H). *C{*H} NMR (126 MHz, CDCl5) & 180.8, 173.0, 164.2, 154.9, 151.6, 135.9,
130.4, 130.0, 129.7, 129.4, 129.1, 128.68, 128.65, 128.61, 128.58, 127.2, 125.8,
121.6, 119.5, 111.2, 55.9. HRMS-ESI: [M + H]" calcd for CysHi;04" m/z 381.1121,
found 381.1127.

6-Fluoro-2,3-diphenylnaphtho[2,3-b]furan-4,9-dione  (3da). Yellow solid, mp
282-284 C; yield, 72% (53 mg); 'H NMR (500 MHz, CDCl5) 6 8.13 (dd, J = 8.5, 5.3 Hz,
1H), 7.90 (dd, J = 8.6, 2.5 Hz, 1H), 7.58 (d, J = 7.2 Hz, 2H), 7.48 — 7.45 (m, 5H), 7.40 —
7.29 (m, 4H).3c{*H} NMR (126 MHz, CDCl;) & 179.5, 172.1, 166.2 (167.2, 165.2, d,
Yer = 257 Hz), 156.0, 151.0, 135.4 (135.38, 135.32, d, S-IC—F = 7.6 Hz), 130.1, 130.04,
130.0, 129.96, 129.9, 128.8, 128.7, 128.6, 128.4, 127.3, 122.0, 120.5 (120.6, 120.4, d,
2Jer = 23 Hz), 113.7 (113.8, 113.6, d, ZJcr = 24 Hz). HRMS-ESI: [M + H]" calcd for
Ca4H14FO3" m/z 369.0922, found 369.0921.
6-Chloro-2,3-diphenylnaphtho[2,3-b]furan-4,9-dione  (3ea). Yellow solid, mp
282-284 °C; yield, 68% (52.2 mg); *H NMR (500 MHz, CDCl5) 6 8.20 (d, J = 1.9 Hz, 1H),

8.03 (d, J = 8.3 Hz, 1H), 7.66 (dd, J = 8.3, 2.0 Hz, 1H), 7.58 (d, J = 7.2 Hz, 2H), 7.50 —
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7.44 (m, 5H), 7.36 — 7.29 (m, 3H). *c{*H} NMR (126 MHz, CDCl;) & 178.7, 171.1,
155.0, 149.8, 139.8, 132.8, 132.6, 130.8, 129.0, 128.9, 128.8, 127.7, 127.6, 127.5,
127.4, 126.3, 125.7, 120.9. HRMS-ESI: [M + H]" calcd for CpH14ClOs" m/z 385.0626,
found 385.0628, 387.1230.

6-Bromo-2,3-diphenylnaphtho[2,3-b]furan-4,9-dione  (3fa). Yellow solid, mp
287-289 C; yield, 70% (59.9 mg); 'H NMR (500 MHz, CDCl3) 6 8.36 (s, 1H), 7.95 (d, J =
8.2 Hz, 1H), 7.84 (dd, J = 8.1, 1.3 Hz, 1H), 7.58 (d, J = 7.3 Hz, 2H), 7.49 — 7.42 (m, 5H),
7.36 — 7.29 (m, 3H). *c{"H} NMR (126 MHz, CDCl3) 6 179.9, 172.1, 156.0, 150.7,
136.7, 133.7, 132.2, 130.0, 129.99, 129.9, 129.7, 129.3, 128.8, 128.7, 128.6, 128.4,
127.3, 121.9. HRMS-ESI: [M + H]" caled for Cy4H14BrOs" m/z 429.0121, found
429.0121, 431.0101.

2,3,6-Triphenylnaphtho[2,3-b]furan-4,9-dione (3ga). Yellow solid, mp 293-295 C;
yield, 74% (63.1 mg); 'H NMR (500 MHz, CDCls) & 8.48 (s, 1H), 8.15 (d, J = 7.9 Hz, 1H),
7.93 (d, J= 7.7 Hz, 1H), 7.72 (d, J = 7.2 Hz, 2H), 7.60 (d, J = 7.0 Hz, 2H), 7.54 — 7.43 (m,
8H), 7.35 —=7.32 (m, 3H). *c{*H} NMR (126 MHz, CDCl5) & 180.6, 173.5, 155.6, 151.3,
146.6, 138.8, 133.0, 132.2, 131.8, 130.3, 130.1, 129.9, 129.8, 129.1, 128.9, 128.7,
128.7, 128.6, 127.7, 127.30, 127.29, 125.1, 121.9. HRMS-ESI: [M + H]" calcd for
C3oH1903" m/z 427.1329, found 427.1328.
5-Methyl-2,3-diphenylnaphtho[2,3-b]furan-4,9-dione (3ha). Yellow solid, mp
274-276 °C; yield, 75% (54.6 mg); *H NMR (500 MHz, CDCl5) 6 8.04 (s, 1H), 7.98 (d, J =
7.8 Hz, 1H), 7.59 = 7.56 (m, 2H), 7.51 - 7.46 (m, 6H), 7.34 — 7.29 (m, 3H), 2.51 (s, 3H).

BC{*H} NMR (126 MHz, CDCl;) & 180.7, 173.8, 155.4, 151.2, 144.9, 134.4, 132.5,
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131.4, 130.4, 130.1, 129.7, 128.8, 128.7, 128.61, 128.59, 127.3, 127.2, 127.1, 121.8,
21.8. HRMS-ESI: [M + H]" calcd for CysH17,05" m/z2365.1172, found 365.1176.
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