

Available online at www.sciencedirect.com

Phytochemistry 63 (2003) 401-407

PHYTOCHEMISTRY

www.elsevier.com/locate/phytochem

Triterpenoid saponins from Schefflera arboricola

F.R. Melek^{a,*}, Toshio Miyase^b, S.M. Abdel Khalik^c, M.R. El-Gindi^c

^aChemistry of Natural Products Department, National Research Centre, Dokki, Cairo, Egypt ^bSchool of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan ^cPharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt

Received in revised form 10 October 2002

Abstract

Nine triterpenoid saponins were isolated from the leaves and stems of *Schefflera arboricola*. The saponins were characterised, on the basis of chemical and spectral evidence, as 3-O-[α -L-rhamnopyranosyl-(1 \rightarrow 4)- β -D-glucuronopyranosyl] oleanolic acid, 3-O-[α -L-rhamnopyranosyl-(1 \rightarrow 4)- β -D-glucuronopyranosyl] oleanolic acid, 3-O-[α -L-rhamnopyranosyl-(1 \rightarrow 4)- β -D-glucuronopyranosyl] oleanolic acid 28-O- β -D-glucopyranosyl ester, 3-O- α -L-ramnopyranosyl-(1 \rightarrow 4)-[α -L-arabinopyranosyl-(1 \rightarrow 2)-] β -D-glucuronopyranosyl oleanolic acid 28-O- β -D-glucopyranosyl ester, 3-O- α -L-rhamnopyranosyl-(1 \rightarrow 4)-[β -D-glucopyranosyl oleanolic acid 28-O- β -D-glucopyranosyl ester, 3-O- α -L-rhamnopyranosyl-(1 \rightarrow 4)-[β -D-glucopyranosyl oleanolic acid 28-O- β -D-glucopyranosyl ester, 3-O- α -L-rhamnopyranosyl-(1 \rightarrow 4)-[β -D-glucuronopyranosyl oleanolic acid 28-O- β -D-glucopyranosyl-(1 \rightarrow 4)-[β -D-glactopyranosyl-(1 \rightarrow 2)-] β -D-glucuronopyranosyl oleanolic acid 28-O- β -D-glucopyranosyl-(1 \rightarrow 4)-[α -L-arabinopyranosyl-(1 \rightarrow 2)-] β -D-glucuronopyranosyl oleanolic acid 28-O- β -D-glucopyranosyl-(1 \rightarrow 4)-[α -L-arabinopyranosyl-(1 \rightarrow 2)-] β -D-glucuronopyranosyl oleanolic acid 28-O- β -D-glucopyranosyl-(1 \rightarrow 2)-] β -D-glucuronopyranosyl oleanolic acid 28-O- β -D-glucopyranosyl-(1 \rightarrow 4)-[α -L-arabinopyranosyl-(1 \rightarrow 2)-] β -D-glucuronopyranosyl oleanolic acid 28-O- β -D-glucopyranosyl-(1 \rightarrow 4)-[α -L-arabinopyranosyl-(1 \rightarrow 2)-] β -D-glucuronopyranosyl oleanolic acid and 3-O- β -D-glucopyranosyl-(1 \rightarrow 4)-[α -L-arabinopyranosyl-(1 \rightarrow 2)-] β -D-glucuronopyranosyl oleanolic acid and 3-O- β -D-glucopyranosyl oleanolic acid 28-O- β -D-glucopyranosyl oleanolic acid and 3-O- β -D-glucopyranosyl-(1 \rightarrow 4)-[α -L-arabinopyranosyl-(1 \rightarrow 2)-] β -D-glucopyranosyl oleanolic acid 28-O- β -D-glucopyranosyl oleanolic acid 28-O

Keywords: Schefflera arboricola; Araliaceae; Triterpenoid saponin

1. Introduction

Schefflera arboricola (Hayata) Merr. is an ornamental plant which usually grows up to 2-3 m in height. Previous pharmacological studies (Liao, 1986) showed that the ethanolic leaf extract of *S. arboricola* exhibited sedative, hypnotic, analgesic, anticonvulsant and smooth muscle relaxant effects. Previous phytochemical investigation on a mixture of leaves and stems of *S. arboricola* has led to the isolation of the two oleanolic acid glucuronoides cynarasaponin H and olaxoside (Abdel Khalik, 2001).

As a part of our continuing studies on saponins from plant species grown in Egypt (Miyase et al., 1996a; Abdel Khalik et al., 2000, 2001; Melek et al., 2000) we report here the isolation and structure determination of nine new triterpenoidal saponins (1–9) from *S. arboricola*.

* Corresponding author. Fax: +20-2-519-1271.

E-mail address: asecengf@infinity.com.eg (F.R. Melek).

0031-9422/03/\$ - see front matter \odot 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0031-9422(03)00117-1

2. Results and discussion

The concentrated methanolic extract of a mixture of leaves and stems of *S. arboricola* was diluted with acetone to precipitate the crude saponins mixture. Chromatography of the mixture using silica gel, Sephadex LH-20 and the polymer gel Mitsubishi Diaion HP-20 followed by HPLC, afforded nine new saponins. Their structures were established on the basis of chemical hydrolysis and NMR data (Tables 1–3).

Saponin 1 had a molecular formula $C_{42}H_{66}O_{13}$ as determined from ¹³C NMR data and a quasi-molecular ion peak $[M + Na]^+$ at m/z 801 in the positive-ion FABmass spectrum. The ¹³C NMR spectrum of 1 exhibited signals, due to a triterpene moiety, at δ -values similar to those of oleanolic acid 3-*O*-glycosides. Acid hydrolysis of 1 yielded oleanolic acid and the released monosaccharide units were identified as D-glucuronic acid (GlcA) detected by paper chromatography and L-rhamnose (Rha) identified by GC after being converted to its thiazolidine derivative (Hara et al., 1986). The disaccharide nature of 1 was deduced from the presence of

Table 1 ¹H NMR spectral data of saponins 1–9 in C₅D₅N

two anomeric proton signals at δ 4.97 (d, J=7.6 Hz) and δ 5.86 (brs) in the ¹H NMR spectrum and assigned to β -glucuronic acid and α -rhamnose units, respectively. A ¹H⁻¹H COSY experiment allowed analysis of their spin systems and assignments of their proton resonances. The assignment of their corresponding carbons, made by a HMQC spectrum, indicated that rhamnose was a terminal unit. The Rha- $(1 \rightarrow 4)$ -GlcA structure of the disaccharide moiety at C-3 of the oleanolic acid residue was deduced from the HMBC correlations between C-3 (δ 89.3) and H-1 (δ 4.97) of GlcA unit and between C-4 (δ 80.4) of the GlcA unit and H-1 (δ 5.86) of the Rha unit. The relative stereochemistry of each monosaccharide was determined as β-D-glucuronopyranose and α -L-rhamnopyranose based on the characteristic $J_{\text{H-1,H-2}}$ coupling constants and ¹³C NMR data. Therefore, 1 was assigned the structure of 3-O-[\alpha-L-rhamnopyranosyl- $(1 \rightarrow 4)$ - β -D-glucuronopyranosyl] oleanolic acid. Compound 1 was previously obtained after partial hydrolysis of the saponins olaxoside, previously reported from a number of Olax species (Forgacs and Provost, 1981) and narcissiflorinine, isolated from Anemone

	1	2	3	4	5
Triterpene moiety					
3	3.36 (dd, 11.4, 4.5)	3.39 (dd, 11.4, 4.5)	3.35 (dd, 11.4, 4.5)	3.30 (dd, 11.4, 4.4)	3.29 (dd, 11.4, 4.5)
12	5.45 (t, 3.0)	5.62(t, 3.5)	5.42 (t, 3.5)	5.45(t, 3.0)	5.41 (t, 3.5)
16(eq)		5.24 (brs)			
18	3.28 (dd, 13.9, 3.3)	3.61 (<i>dd</i> , 14.4, 3.4)	3.19 (<i>dd</i> , 14.0, 3.3)	3.27 (<i>dd</i> , 14.0, 3.4)	3.18 (dd, 14.0, 3.5)
3-0-Sugar GlcA					
1	4.97 (d, 7.6)	4.99 (d, 7.8)	4.98 (d, 7.6)	4.98 (d, 7.8)	4.98 (d, 7.4)
2	4.06 (<i>t</i> , 8.2)	4.08 (<i>t</i> , 8.5)	4.08 (<i>t</i> , 8.0)	4.18	4.19 (<i>t</i> , 8.6)
3	4.25 (t, 8.2)	4.26 (<i>t</i> , 8.5)		4.31	4.32
4	4.59	4.61	4.58 (t, 8.7)	4.63 (t, 9.1)	4.63 (t, 9.2)
5	4.60	4.62	4.66 (<i>d</i> , 9.0)	4.54	4.54
At GlcA C-4 Rha					
1	5.86 (brs)	5.88 (brs)		5.85 (brs)	5.86 (brs)
2	4.75 (brs)	4.77 (dd,2.5,1.5)		4.73 (brs)	4.73 (<i>dd</i> , 3.1, 1.5)
3	4.56 (<i>dd</i> , 9.0, 3.2)	4.57 (dd, 9.5, 3.3)		4.52	4.54
4	4.27 (<i>t</i> , 9.0)	4.29 (<i>t</i> , 9.5)		4.26 (t, 9.1)	4.27
5	4.97	4.98		4.94 (dq, 9.1, 6.5)	4.95
6	1.67 (<i>d</i> , 6.3)	1.69 (<i>d</i> , 6.5)		1.65 (<i>d</i> , 6.5)	1.65 (<i>d</i> , 6.1)
Api					
1			6.09 (<i>d</i> , 2.5)		
2			4.77 (<i>d</i> , 2.5)		
3					
4			4.81 (<i>d</i> , 10.0)		
5			4.16 (brs)		
At GlcA C-2 Ara					
1				5.22(d, 6.5)	5.23(d, 6.2)
2				4.55	4.54 (<i>t</i> , 6.8)
3				4.19	4.22
4				4.31	4.32
5				3.78 (<i>d</i> , 11.7)	3.78 (dd, 12.3, 1.8)
5'				4.38 (dd, 11.7, 3.3)	4.38
				(continued on next page)

Table 1 (continued)

	1	2	3	4	5
28-0-Glc					
1			6.30 (<i>d</i> , 7.8)		6.30 (<i>d</i> , 8.0)
2			4.18(t, 8.0) 4.26(t, 8.0)		4.19 (<i>t</i> , 8.6) 4.26
4			4.20(t, 8.0) 4.33(t, 8.0)		4.34
5			4.01 (<i>m</i>)		4.01 (<i>m</i>)
6			4.38 (dd, 12.4, 3.0)		4.38
6'			4.45 (<i>dd</i> , 12.4, 4.3)		4.45 (<i>dd</i> , 12.0, 2.7)
	6	7	8	9	
Triterpene moiety	2.20				
3	3.28	3.26 (dd, 11.5, 4.5)	3.28	3.28 (dd, 11.5, 4.4)	
12	3.44 (1, 5.0)	3.40(l, 3.0) 3.18(dd, 140, 3.4)	3.4 3 (1, 3.0)	3.41(l, 5.5) 3.18(dd, 140, 3.4)	
2 O Sugar Clad	5120	2110 (44, 1110, 211)	0.27	2110 (uu, 1110, 211)	
3-O-Sugar GICA	4.96(d.7.4)	4.96(d.6.8)	497(d,76)	497(d74)	
2	4.29	4.28	4.18	4.18	
3	4.32 (<i>t</i> , 8.0)	4.32 (<i>t</i> , 8.0)	4.32	4.31	
4	4.61 (<i>t</i> , 8.6)	4.62 (<i>t</i> , 9.1)	4.58	4.58	
5	4.53	4.52	4.58	4.58	
At GlcA-C-4 Rha					
1	5.85 (brs)	5.85 (brs)			
2	4.74 (dd, 2.5, 1.8)	4.72 (d, 2.4)			
3	4.52 (<i>dd</i> , 8.0, 3.5)	4.51			
4	4.27 (<i>t</i> , 9.2)	4.26 (<i>t</i> , 9.0)			
6	4.93 1.64 (<i>d</i> , 6.2)	1.65 (d, 6.0)			
Api					
1			6.05 (<i>d</i> , 1.2)	6.05 (<i>d</i> , 2.2)	
2			4.75 (brs)	4.74 (<i>d</i> , 2.2)	
3 4			4.76(d, 10.0)	4.76(d, 10.0)	
5			4.14 (<i>brs</i>)	4.14 (<i>brs</i>)	
At GlcA-C-2 Ara					
1			5.19	5.19 (d, 6.2)	
2			4.55 (t, 7.0)	4.53 (dd, 8.0, 6.2)	
3			4.19	4.21	
4			4.31	4.31	
5 5'			3.78(d, 12.3) 4.38(dd, 12.3, 2.4)	3.78 (dd, 12.3, 1.2) 4 38	
5 Cal			4.50 (uu, 12.5, 2.4)	1.50	
1	5.24(d, 7.6)	5.24(d,7.8)			
2	4.54	4.54			
3	4.14 (dd, 9.2, 3.1)	4.15			
4	4.66 (<i>d</i> , 3.1)	4.66 (<i>d</i> , 3.1)			
5	4.03 (<i>dd</i> , 6.2, 5.5)	4.03			
6	4.38 (dd, 11.1, 6.2)	4.38			
	4.30	4.37			
28-0-Glc 1		6.30(d.7.8)		6.30(d.8.0)	
2		4.18		4.18	
3		4.26 (t, 9.0)		4.26 (<i>t</i> , 8.0)	
4		4.32 (<i>t</i> , 8.0)		4.34 (<i>t</i> ,8.6)	
5		4.02		4.01 (<i>m</i>)	
6		4.37		4.38	
0		4.44 (<i>aa</i> , 12.4, 2.6)		4.45 (<i>da</i> , 12.3, 2.5)	

Values in parentheses are ${}^{1}H{-}^{1}H$ splittings in cases where these are clearly resolved. GlcA = β -D-glucuronopyranose Gal = β -D-galactopyranose; Ara = α -Larabinopyranose; Api = β -D-apiofuranose; Rha = α -D-rhamnopyranose Glc = β -D-glucopyranose.

Table 2 ^{13}C NMR data of the triterpene moieties of saponins 1--3 in C_5D_5N

С	1	2	3
1	38.7	38.8	38.7
2	26.6	26.7	26.6
3	89.3	89.2	89.2
4	39.6	39.6	39.5
5	55.9	55.9	55.8
6	18.6	18.6	18.5
7	33.4	33.6	33.2
8	39.8	40.0	40.0
9	48.1	47.2	48.1
10	37.1	37.1	37.0
11	23.8	23.9	23.8
12	122.6	122.5	122.9
13	144.9	145.2	144.2
14	42.3	42.2	42.2
15	28.4	36.3	28.3
16	23.9	74.8	23.5
17	46.8	49.0	47.1
18	42.1	41.6	41.8
19	46.6	47.4	46.3
20	31.0	31.1	30.8
21	34.4	36.2	34.1
22	33.3	32.9	32.6
23	28.3	28.3	28.2
24	17.0	17.0	17.0
25	15.5	15.6	15.5
26	17.5	17.5	17.5
27	26.3	27.3	26.2
28	180.2	180.0	176.4
29	33.3	33.4	33.2
30	23.9	24.8	23.7

narcissiflora (Masood et al., 1981). This is the first reported occurrence of **1** as a natural product.

The molecular formula of saponin 2, $C_{42} H_{66} O_{14}$, was assigned by the presence of a quasi-molecular ion peak at m/z 817 $[M+Na]^+$ in the positive-ion FAB-mass spectrum and ¹³C NMR data. Comparison of the ¹³C NMR spectral data of 2 with those reported for various echinocystic acid glycosides (Nagao et al., 1993), suggested 2 to be an echinocystic acid 3-*O*glycoside. Acid hydrolysis of 2 afforded in addition to echinocystic acid, the sugar components D-glucuronic acid and L-rhamnose. The ¹H and ¹³C NMR signals due to the sugar units of 2 were almost identical to those of 1. Therefore, 2 was concluded to be 3-*O*-[α -L-rhamnopyranosyl-(1 \rightarrow 4)- β -D-glucuronopyranosyl] echinocystic acid.

The molecular formula of **3**, C_{47} H₇₄ O₁₈, was assigned based on the presence of a quasi-molecular ion peak at m/z 949 [M+Na]⁺ in the FAB-mass spectrum. Acid hydrolysis of **3** yielded oleanolic acid and the sugar components D-glucuronic acid, D-glucose (Glc) and D-apiose (Api). The ¹H NMR spectrum of **3** showed the presence of three anomeric proton signals at δ 4.98 (*d*, J=7.4 Hz), 6.09 (*d*, J=2.5 Hz) and 6.30 (*d*, J=7.8 Hz) assignable to D-glucuronic acid, D-apiose and D-glucose units respectively. The bidesmosidic nature of **3** was

Table 3			
¹³ C NMR data of	the sugar moities	of saponins 1-	9 in C ₅ D ₅ N

		e		1 0 0					
	1	2	3	4	5	6	7	8	9
Triterper	ne moie	ty							
3	89.3	89.2	89.2	89.3	89.3	89.4	89.4	89.3	89.3
28	180.2	180.0	176.4	180.2	176.4	180.2	176.5	180.1	176.4
3-O-Sug	ar GlcA								
1	107.0	107.0	107.0	105.2	105.1	105.1	105.1	105.2	105.2
2	75.8	75.8	75.4	83.4	83.4	83.8	83.8	82.8	82.9
3	76.4	76.4	76.2	76.0	76.0	76.1	76.1	75.5	75.5
4	80.4	80.4	80.0	79.3	79.3	79.2	79.2	79.2	79.1
5	76.4	76.4	76.2	76.1	76.1	76.1	76.1	75.7	75.9
6	172.6	172.6	172.1	172.4	172.3	172.4	172.4	n.d.	171.9
At GlcA	C-4 Rh	a							
1	102.8	102.8		102.4	102.4	102.4	102.4		
2	72.6	72.6		72.5	72.5	72.5	72.5		
3	72.8	72.8		72.8	72.7	72.7	72.7		
4	74.0	74.0		74.0	74.0	74.0	74.0		
5	70.4	70.4		70.3	70.3	70.3	70.3		
6	18.6	18.6		18.5	18.5	18.5	18.5		
Api									
			110.8					110.6	110.6
			77.8					77.8	77.8
			80.4					80.4	80.4
			75.4					75.7	75.7
			65.5					65.6	65.6
At GlcA	C-2 Ar	а							
1				106.4	106.4			106.4	106.4
2				73.7	73.6			73.7	73.7
3				74.3	74.2			74.2	74.2
4				69.1	69.1			69.1	69.1
5				67.0	66.9			66.9	66.9
Gal									
1						106.9	106.9		
2						74.6	74.6		
3						75.0	75.0		
4						69.7	69.7		
5						77.0	77.0		
6						61.5	61.5		
28-0-Glc									
1			95.8		95.8		95.8		95.8
2			74.2		74.2		74.2		74.2
3			78.9		79.0		79.0		79.0
4			71.3		71.3		71.3		71.3
5			79.3		79.3		79.3		79.3
6			62.3		62.4		62.4		62.4

n.d. = not detected. GlcA = β -D-glucuronopyranose; Rha = α -L-rhamnopyranose; Api = β D-apiofuranose; Gal = β -D-galactopyranose; Ara = α -L-arabinopyranose; Glc = β -D-glucopyranose.

deduced from the δ -values of signals due to C-3 (89.2 ppm) and C-28 (176.4 ppm) of the oleanolic acid moiety. The signals at δ 95.8, 74.2, 78.9, 71.3, 79.3 and 62.3 in the ¹³C NMR spectrum were typical for a β -D-glucopyranose unit esterifying the oleanolic acid COOH group. The structure of the disaccharide moiety at C-3 position, was established as Api(1 \rightarrow 4)-GlcA from the HMBC correlations between apiose H-1 (δ 6.09) and GlcA C-4 (δ 80.0). The anomeric configuration of glucose was determined to be β from the *J* value of the anomeric proton signal of glucose. The anomeric configuration of apiose was determined to be β by the comparison of the ¹³C NMR data for **2** with those for methyl α - and β -D-apiofuranosides [¹³C NMR data for methyl β -D-apiofuranoside: 111.5 (C-1), 77.7 (C-2), 80.3 (C-3), 74.9 (C-4), 65.5 (C-5), 55.5 (1-OCH₃); Kitagawa et al., 1989]. Therefore, **3** was assigned the structure of 3 -*O*-[β -D-apiofuranosyl-(1 \rightarrow 4)- β -D-glucuronopyranosyl] oleanolic acid 28-*O*- β -D-glucopyranosyl ester.

Saponin 4, C₄₇ H₇₄ O₁₇, exhibited $[M + Na]^+$ at m/z933. It afforded oleanolic acid, D-glucuronic acid, L-arabinose (Ara) and L-rhamnose upon acid hydrolysis. The sugar moieties of 4 were characterised by analysis of the NMR data obtained from the combined use of 2D NMR experiments (¹H–¹H COSY, HMQC and HMBC), as β -D-glucuronopyranose (H-1; δ 4.98), α -L-arabinopyranose (H-1; δ 5.22) and α -L-rhamnopyranose (H-1; δ 5.85). The δ -values of signals due to C-28 (180.2 ppm) and C-3 (89.3 ppm) of the triterpene moiety, indicated that 4 was an oleanolic acid 3-O-glycoside. The branched nature of the trisaccharide moietv at the C-3 position of the oleanolic acid moiety was revealed from the inter-residue NOEs, in a NOE difference spectrum between H-3 of the oleanolic acid residue and GlcA H-1, between GlcA H-2 and Ara H-1 and between GlcA H-4 and Rha H-1. The HMBC correlations verified the sugar linkages. Therefore the structure of 4 was elucidated as 3-O- α -L-rhamnopyranosyl- $(1 \rightarrow 4)$ - $[\alpha$ -L-arabinopyranosyl- $(1\rightarrow 2)$ -] β -D-glucuronopyranosyl oleanolic acid.

Saponin 5, C₅₃ H₈₄ O₂₂, exhibited $[M+Na]^+$ at m/z1095 in its FAB-mass spectrum, 162 mass units more than that of 4, suggesting the presence of one more hexose unit. This unit was identified as D-glucose, after being detected by GC analysis of the acid hydrolysate of 5, together with D-glucuronic acid, L-arabinose and L-rhamnose. The triterpene moiety of 5 was identified as 3, 28-di-O-substituted oleanolic acid from NMR data. The assigned NMR signals due to the sugar units of 5 (HOHAHA, ¹H–¹H COSY, HMQC, HMBC spectra) were almost identical to those of 4 except a set of additional signals in 5 due to 28-O-β-D-glucopyranose unit as described for saponin 3. This observation suggested an identical trisaccharide chain at the C-3 position of the oleanolic acid moiety for 4 and 5. The observed NOEs interaction and the HMBC correlations verified the linkages. Thus the structure of 5 was established as 3-O- α -L-rhamnopyranosyl- $(1 \rightarrow 4)$ - $[\alpha$ -L-arabinopyranosyl- $(1\rightarrow 2)$ -] β -D-glucuronopyranosyl oleanolic acid 28-O- β -D-glucopyranosyl ester.

Saponin **6** (C_{48} H₇₆ O₁₈), on acid hydrolysis, afforded in addition to oleanolic acid, the sugar components D-glucuronic acid, D-galactose (Gal) and L-rhamnose. The sugar moieties of **6** were characterised by analysis of NMR data obtained from the combined use of 2D NMR spectra (HOHAHA, ¹H–¹H COSY, HMQC and HMBC). The data allowed identification of a β -D-glucuronopyranose unit with anomeric proton at δ 4.96 as well as β -D-galactopyranose unit with anomeric proton at δ 5.24 and the H-4 signal was a doublet (J=3.1 Hz), which is characteristic for galactose. The remaining unit with the anomeric proton at δ 5.85 was characterised as α -L-rhamnopyranose unit. A β -configuration of the anomeric centre of the galactose moiety was deduced from the $J_{H-1,H-2}$ coupling constant. The anomeric configurations of the other sugar units were similar to the corresponding ones in saponin 1. The branched nature of the trisaccharide moiety at the C-3 position of the oleanolic acid moiety was established from the HMBC correlations between C-3 (δ 89.4) and H-1 (δ 4.96) of GlcA, between C-2 (δ 83.8) of GlcA and H-1 (δ 5.24) of Gal between C-4 (δ 79.2) of GLcA and H-1 (δ 5.85) of Rha. These linkages were also concluded from the observed inter-residue NOEs. Therefore, the structure of **6** was established as 3-O- α -L-rhamnopyranosyl-(1 \rightarrow 4)- $[\beta$ -D-galactopyranosyl- $(1 \rightarrow 2)$ -] β -D-glucuronopyranosyl oleanolic acid.

Saponin 7 (C₅₄ H₈₆ O₂₃), on acid hydrolysis yielded oleanolic acid, D-glucuronic acid, D-galactose, D-glucose and L-rhamnose. The 1D and 2D NMR studies of 7 (as described for the previous saponins) indicated that 7 was the 28-glucosyl derivative of **6** and thus, assigned the structure of 3-O- α -L-rhamnopyranosyl-(1 \rightarrow 4)-[β -D-galactopyranosyl-(1 \rightarrow 2)-] β -D-glucuronopyranosyl oleanolic acid 28-O- β -D-glucopyranosyl ester.

Saponin 8 (C_{46} H₇₂ O₁₇), yielded oleanolic acid and the sugar components D-glucuronic acid, L-arabinose and D-apiose upon acid hydrolysis. The trisaccharide nature of 8 was deduced from the presence of three sugar units characterised as β-D-glucuronopyranose (H-1; δ 4.97), α -L-arabinopyranose (H-1; δ 5.19) and β -D-apiofuranose units (H-1; δ 6.05) by NMR studies as described above. The 28-COOH function of oleanolic acid was not esterified as shown from the δ value of C-28 resonance at 180.1 ppm. The attachment of the terminal units α -L-arabinopyranose and β -D-apiofuranose at C-2 and C-4 positions of the inner β -D-glucuronopyranose unit respectively, was established from the inter-residue NOEs and HMBC cross-peaks arising from the anomeric protons to the signals involved in the glycosidic linkage. Thus, the structure of 8 was deduced to be 3-O- β -D-apiofuranosyl-(1 \rightarrow 4)-[α -L-arabinopyranosyl- $(1 \rightarrow 2)$ -] β -D-glucuronopyranosyl oleanolic acid.

Saponin 9, (C₅₂ H₈₂ O₂₂), on acid hydrolysis afforded oleanolic acid, D-glucuronic acid, D-apiose, L-arabinose and D-glucose. The tetraglycosidic nature of 9 was established from its NMR data. The comparison of ¹H and ¹³C NMR data of 9 (1D and 2D spectra) with those of 8 suggested that 9 possessed the same trisaccharide chain at C-3 position of the oleanolic acid moiety, in addition to a β -D-glucopyranose unit esterifying the oleanolic acid COOH group. Sequencing of sugar units was verified from the observed HMBC correlations and NOEs interactions. Therefore **9** was the 28-glucosyl derivative of **8** and assigned the structure of $3-O-\beta$ -D-apiofuranosyl- $(1\rightarrow 4)-[\alpha-L-arabinopyranosyl-<math>(1\rightarrow 2)-]$ β -D-glucuronopyranosyl oleanolic acid 28- $O-\beta$ -D-gluco-pyranosyl ester.

Phytochemical studies, carried out by other workers, on several species of *Schefflera*, have resulted in the identification of triterpene saponins of various aglycone types (Sung et al., 1991; Maeda et al., 1994; Zhu et al., 1996). Glucuronides of oleanane-type, bearing a linear sugar sequence, occur frequently in *Schefflera* plants. The newly isolated 2,4 disubstituted glucuronides represent their first occurrence in the genus *Schefflera*. Other glucuronides bearing branched structure with variable linkage sites have been reported from *Aralia* members (Satoh et al., 1994; Hu et al., 1995; Miyase et al., 1996b).

3. Experimental

3.1. General

Optical rotations were measured with Jasco DIP 1000 digital polarimeter. MS were measured on Jeol-JMX-SX 102 mass spectrometer. NMR spectra were obtained with a Jeol GSX-500 FT NMR spectrometer and chemical shifts were given in ppm with TMS as internal standard. GC was performed on a Hitachi G-3000 gas chromatography. Preparative and analytical HPLC were performed on a Jasco model 800 instrument.

3.2. Plant material

Leaves and stems of *S. arboricola* (Hayata) Merr. were collected from El-Orman Public Garden in Giza in June 2001 and identified by Mrs. T. Labib, the senior specialist for plant identification at El-Orman Public Garden. A voucher specimen was deposited at Chemistry of Natural Products Department, NRC.

3.3. Extraction and isolation

Dried powdered mixture of leaves and stems of *S. arboricola* (500 g) was extracted with methanol (2×2 l) at room temperature. The concentrated combined extract was diluted by adding of large excess Me₂CO to precipitate the crude saponins. The crude saponin mixture (4.5 g) was first chromatographed on a silica gel column eluting with CHCl₃ containing increasing proportions of MeOH. Four fractions (1–4) were obtained. In order to remove the non-terpenoidal constituents, fr. 1 (CHCl₃–MeOH; 85:15; 2.1 g) and fr. 2 (CHCl₃–MeOH; 83:17; 1.1 g) were chromatographed separately on Sephadex LH-20 column eluted with a gradient H₂O–MeOH followed by prep. TLC on silica gel developed

with CHCl₃–MeOH–H₂O–EtOAc (28:35:5:32). The sugars and the rest of phenolic constituents from fr. 3 (CHCl₃–MeOH; 80:20; 0.9 g) and fr. 4 (CHCl₃–MeOH; 70:30; 0.3 g) were removed by passing through a polymer gel Diaion HP-20 column. Elution was carried out using H₂O then MeOH–H₂O (1:1) and finally MeOH to obtain only saponins. The saponin mixtures obtained from the above processing were repeatedly subjected to HPLC {ODS column 20 mm×25 cm, [CH₃CN–H₂O (30:70) for fr 4; (35:65) for fr 3; (40:60) for fr 2; (45:55) for fr 1]+0.05% TFA, flow rate; 6.5 ml/min, UV; 205 nm} to give in addition to olaxoside and cynarasaponin H, 1 (40 mg), 2 (22mg), 3 (10 mg), 4 (20 mg), 5 (30 mg), 6 (56 mg), 7 (30 mg), 8 (22 mg) and 9 (25 mg).

3.4. Saponin (1)

Amorphous powder $[\alpha]_{D}^{23}$ -8.4° (*c* = 2.34, MeOH) FABMS (*m/z*): 801 $[C_{42}H_{66}O_{13} + Na]^+$, ¹H and ¹³C NMR: Tables 1–3.

3.5. Saponin (2)

Amorphous powder $[\alpha]_{D}^{23} - 27.8^{\circ}$ (*c* = 1.10, MeOH) FABMS (*m*/*z*): 817 $[C_{42}H_{66}O_{14} + Na]^+$, ¹H and ¹³C NMR: Tables 1–3.

3.6. Saponin (3)

Amorphous powder $[\alpha]_D^{23} - 13.1^\circ$ (*c* = 1.38, MeOH) FABMS (*m*/*z*): 949 $[C_{47}H_{74}O_{18} + Na]^+$, ¹H and ¹³C NMR: Tables 1–3.

3.7. Saponin (4)

Amorphous powder $[\alpha]_D^{23} - 4.2^\circ$ (*c* = 0.91, MeOH) FABMS (*m*/*z*): 933 $[C_{47}H_{74}O_{17} + Na]^+$, ¹H and ¹³C NMR: Tables 1 and 3.

3.8. Saponin (5)

Amorphous powder $[\alpha]_{D}^{23} -10.2^{\circ}$ (*c*=2.06, MeOH) FABMS (*m*/*z*): 1095 $[C_{53}H_{84}O_{22} + Na]^+$, ¹H and ¹³C NMR: Tables 1 and 3.

3.9. Saponin (6)

Amorphous powder $[\alpha]_{D}^{23}$ -10.4° (*c*=1.95, MeOH) FABMS (*m*/*z*) 963 $[C_{48}H_{76}O_{18} + Na]^+$, ¹H and ¹³C NMR: Tables 1 and 3.

3.10. Saponin (7)

Amorphous powder $[\alpha]_D^{23} - 12.1^\circ$ (*c* = 1.28, MeOH) FABMS (*m*/*z*) 1125 $[C_{54}H_{86}O_{23} + Na]^+$, ¹H and ¹³C NMR: Tables 1 and 3. 3.11. Saponin (8)

Amorphous powder $[\alpha]_D^{23} - 3.7^\circ$ (*c* = 1.06, MeOH) FABMS (*m*/*z*) 919 $[C_{46}H_{72}O_{17} + Na]^+$, ¹H and ¹³C NMR: Tables 1 and 3.

3.12. Saponin (9)

Amorphous powder $[\alpha]_{D}^{23}$ -13.1° (*c*=1.38, MeOH) FABMS (*m*/*z*) 1081 [C₅₂H₈₂O₂₂+Na]⁺, ¹H and ¹³C NMR: Tables 1 and 3.

3.13. General method for acid hydrolysis (Hara et al., 1986)

Each saponin (3 mg) dissolved in dioxane (150 μ l) and 2 N HCl (150 µl) was heated at 100 °C for 1 h. The reaction mixture was diluted with H₂O and extracted twice with EtOAc. From the EtOAc layer, the aglycone was detected by HPLC [column YMC R & D ODS; 4.6 mm \times 25 cm, solvent MeOH–H₂O (9:1)+0.05% TFA; flow rate; 1 ml/min; detection; UV 205 nm; oleanolic acid (t_R 11.0 min), echinocystic acid (t_R , 7.1 min]. The water layer was passed through an Amberlite IRA-60E column (6×60 mm) and the eluate was concentrated. The residue was examined for sugars by paper chromatography [n-BuOH-HOAc-H2O (4:1:5)] against standard samples as well as by GC after being converted to their thiazolidine derivatives as described by Hara et al., 1986; conditions: [column Supelco SPB-TM1 (0.25 mm×27 m, column temperature; 215 °C., carrier gas; N₂, retention time D-Glc (22.5 min), L-Glc (21.5 min), D-Api (11.9 min) L-Api (10.9 min), D-Gal(24.7 min), L-Gal (23.1 min), D-Ara (11.0 min), L-Ara (11.9 min), D-Rha (12.7 min), L-Rha (12.9 min). From the new saponins, rhamnose and arabinose were in the L-form, while glucuronic acid, glucose, galactose and apiose were in the p-form.

References

Abdel-Khalik, S.M., Miyase, T., El-Ashaal, H.A., Melek, F.R., 2000. Triterpenoid saponins from *Fagonia cretica*. Phytochemistry 54, 853–859.

- Abdel-Khalik, S.M., Miyase, T., Melek, F.R., El-Ashaal, H.A., 2001. Further saponins from *Fagonia cretica*. Pharmazie 65, 247– 250.
- Abdel Khalik, S.M., 2001. Two triterpenoid saponins from *Schefflera* arboricola family Araliaceae. Al-Azhar Journal of Pharmaceutical Sciences 28, 39–47.
- Forgacs, P., Provost, J., 1981. Olaxoside, a saponin from *Olax andronensis*, *O. glabriflora* and *O. psittacorum*. Phytochemistry 20, 1689–1691.
- Hara, S., Okabe, H., Mihashi, K., 1986. Separation of aldose enantiomers by gas-liquid chromatography. Chemical and Pharmaceutical Bulletin 34, 1843–1845.
- Hu, M., Ogawa, K., Sashida, Y., Xiao, P.G., 1995. Triterpenoid glucuronide saponins from root bark of *Aralia armata*. Phytochemistry 39, 179–184.
- Kitagawa, I., Sakagami, M., Hashiuchi, F., Zhou, J.L., Yoshikawa, M., Ren, J., 1989. Apioglycyrrhizin and araboglycyrrhizin, two new sweet oleanene—type triterpene oligosaccharides from the root of *Glycyrrhiza inflata*. Chemical and Pharmaceutical Bulletin 37, 551– 553.
- Liao, N.. In: Chang, H.M., But, P.P.H. (Eds.), Pharmacology and Applications of *Chinese Materia Medica*, Vol. I. World Scientific Press, Singapore, p. 6.
- Maeda, C., Ohtani, K., Kasai, R., Yamaski, K., Duc, N.M., Nham, N.T., Quynth Cu, N.K., 1994. Oleanane and ursane glycosides from Schefflera octophylla. Phytochemistry 37, 1131–1137.
- Masood, M., Minocha, P.K., Tiwari, K.P., Srivastava, K.C., 1981. Narcissiflorine, narcissiflorinine and narcissifloridine, three triterpene saponins from *Anemone narcissiflora*. Phytochemistry 20, 1675–1679.
- Melek, F.R., Miyase, T., El-Gindi, M.R., Abdel-Khalik, S.M., Ghaly, N.S., El-Kady, M., 2000. Saponins from *Fagonia glutinosa*. Pharmazie 55, 772–776.
- Miyase, T., Melek, F.R., El-Gindi, O.M., Abdel-Khalik, S.M., El-Gindi, M.R., Haggag, M.Y., Hilal, S.H., 1996a. Saponins from *Fagonia arabica*. Phytochemistry 41, 1175–1179.
- Miyase, T., Sutoh, N., Zhang, D.M., Ueno, A., 1996b. Araliasaponins XII–XVIII. Triterpene saponins from the roots of *Aralia chinensis*. Phytochemistry 42, 1123–1130.
- Nagao, T., Tanaka, R., Iwase, Y., Okabe, H., 1993. Studies on constituents of *Aster scaber* thumb. IV. Structures of four new echinocystic acid glycosides isolated from the herb. Chemical and Pharmaceutical Bulletin 41, 659–665.
- Satoh, Y., Sakai, S., Katsumata, M., Nagasao, M., Miyakoshi, M., Ida, Y., Shoji, J., 1994. Oleanolic acid saponins from root-bark of *Aralia elata*. Phytochemistry 36, 147–152.
- Sung, T.V., Steglich, W., Adam, G., 1991. Triterpene glycosides from Schefflera octophylla. Phytochemistry 30, 2349–2356.
- Zhu, M., Yang, S., Philipson, J.D., Greengrass, P.M., Bowery, N.G., 1996. Triterpene glycosides from *Schefflera bodinieri* roots. Phytochemistry 43, 1313–1318.