

Synthesis of *N*-Boc-Propargylic and Allylic Amines by Reaction of Organomagnesium Reagents with *N*-Boc-Aminals and Their Oxidation to *N*-Boc-Ketimines

Taichi Kano, Ryohei Kobayashi, and Keiji Maruoka*

Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan

Supporting Information

ABSTRACT: Previously inaccessible *N*-Boc-protected propargylic and allylic amines were synthesized by the reaction between *N*-Boc-aminals and organo-magnesium reagents through the in situ generated *N*-Boc-imine intermediates. The obtained *N*-Boc-propargylic amines could be readily converted into unprecedented *N*-Boc-ketimines by oxidation with manganese dioxide.

P ropargylic and allylic amines represent an important class of versatile building blocks for the synthesis of nitrogencontaining organic compounds.¹ Among these, synthetically useful *N*-Boc-protected propargylic and allylic amines **1** are readily prepared from the nucleophilic addition of alkynyl and alkenyl metal reagents to *N*-Boc-imines, which can be generated from their precursors **2** upon treatment with bases including basic nucleophiles (Scheme 1).^{2,3} However, this

Scheme 1. Synthesis of *N*-Boc-Protected Propargylic and Allylic Amines

method is applicable to N-Boc-imines with C-aryl or C-alkyl groups, as most N-Boc-imine precursors **3** with a C-alkynyl or C-alkenyl group still remain unobtainable.⁴ Accordingly, in the synthesis of N-Boc-protected propargylic and allylic amines **1**, alkynyl and alkenyl groups should be introduced as nucleophiles and not as part of electrophiles. Therefore, α -alkynyl and α -alkenyl-substituted N-Boc-propargylic and allylic amines **4** have not been synthesized to date.⁵ Herein, we report the synthesis of previously inaccessible N-Boc-propargylic and allylic amines **4** via the reaction of N-Boc-aminals **5** with organomagnesium reagents and the subsequent oxidation to furnish unprecedented N-Boc-ketimines **6** that can be used for the generation of tetrasubstituted carbon centers.

We have previously reported that the treatment of *N*-Bocprotected aminals with an inorganic base can generate *N*-Bocimines with various substituents on the imine carbon atom.⁶ Based on these results, we initially examined the synthesis of *N*-Boc-propargylic amines via the in situ generated *N*-Boc-imine 7 from the reaction of *N*-Boc-aminal **5a** with organometallic bases and nucleophiles (Scheme 2). When butyllithium was

Scheme 2. Reactions of *N*-Boc-Aminal 5a with Organometallic Reagents

employed at -78 °C, *N*-Boc-aminal **5a** was consumed immediately. However, the desired addition product **8a** (R = Bu) was obtained in low yield, probably due to the presence of multiple reaction sites in **5a** and 7. Indeed, cleavage of the Boc group was observed for **5a**. Conversely, treatment of **5a** with methylmagnesium bromide at -20 °C afforded the desired adduct **8b** (R = Me) cleanly.⁷ Furthermore, diethylzinc could also be used for the synthesis of propargylic amine **8c** (R = Et). Consequently, we chose the readily available organomagnesium reagents as nucleophiles for further investigations into the scope of this reaction.

Initially, *N*-Boc-aminals **5** with *C*-alkynyl and *C*-alkenyl groups were treated with alkynyl and alkenylmagnesium halides in THF at -20 °C (Table 1). The desired 1,2-addition to the resulting *N*-Boc-imines proceeded exclusively and furnished unprecedented *N*-Boc-propargylic and allylic amines **4** in good yields, while possible 1,4-adducts were not observed. The

Received: December 2, 2015

Organic Letters

Table 1. Synthesis of α -Alkynyl and α -Alkenyl-Substituted *N*-Boc-Propargylic and Allylic Amines 4^{*a*}

		R ² -MgX	Н	N ^{∕Boc} ↓	
	R ¹ N Boc 5 Boc	THF, –20 °C, 20 m	in R ¹	R ²	
entry	R ¹	R ² -MgX	(equiv)	yield	$(\%)^{b}$
1°	Ph - }	BuMgCl	3.3	4a	78
2		Cy——MgCl	3.3	4b	64
3		PhMgBr	4.4	4c	82
4		(EtO) ₂ CMgCl	3.3	4d	74
5		TMSMgCl	3.3	4e	81
6 ^{<i>d</i>}		MgBr	2.2	4f	90
7		MgBr	2.2	4g	81
8	Pent─ ── ξ	TMSMgCl	4.4	4h	75
9		MgBr	2.2	4i	99
10 ^e	Ph	Ph MgBr	6.6	4j	84
11 ^f		TMSMgCl	6.6	4k	85
12 ^f		MgBr	2.2	41	82
13 ^g	Ph	Ph MgBr	6.6	4m	84
14 ^g		TMSMgCI	6.6	4n	71
15 ^g		MgBr	2.2	4o	90

^{*a*}The reaction between **5** (0.05 mmol) and the corresponding organomagnesium reagent (0.11–0.33 mmol) was carried out in THF (0.5 mL) at -20 °C. ^{*b*}Isolated yield. ^{*c*}Performed on a 2.2 mmol scale. ^{*d*}Performed on a 1.0 mmol scale. ^{*e*}Cis/trans = 15/1. ^{*f*}Cis/trans = >20/1. ^{*g*}Cis/trans = 1/>20.

reactions of *N*-Boc-imine intermediates containing a *C*-alkenyl group afforded the corresponding *cis/trans* isomerized product in only trace amounts (entries 10-15).

We then investigated the scope of this method by examining a variety of alkyl and arylmagnesium reagents (Table 2). While the reaction of 5a with linear alkylmagnesium reagents afforded the desired adducts 8a (R = Bu) and 8b (R = Me) in good yields (entries 1 and 2), the use of isopropylmagnesium chloride resulted in the generation of 8d (R = *i*-Pr) in low yield on account of the undesired reduction of the *N*-Boc-imine intermediate (entry 3). Interestingly, the addition of zinc chloride proved to be effective in suppressing this side reaction, leading to a significantly increased yield (entry 4).⁸ Positive effects of zinc chloride were also observed in the reaction of allylmagnesium chloride (entry 6 vs 7). Aromatic and heteroaromatic magnesium reagents also furnished *N*-Bocpropargylic amines 8g (R = Ph) and 8h (R = 2-furyl) in good yields (entries 8 and 9).

Table 2. Synthesis of Various N-Boc-Propargylic Amines 8^a

	HN ^{-Boc} N-Boc Ph 5a Boc	R-Mg	yX, ZnCl₂ 0 °C, 20 min Ph	HN ^{-Boc} R 8	
entry	R-MgX	(equiv)	$ZnCl_2$ (equiv)	yield (%) ^b	
1	Bu-MgCl	2.2	0	8a	70
2	Me-MgBr	2.2	0	8b	93
3	i-Pr-MgCl	3.3	0	8d	19
4	i-Pr-MgCl	3.3	1.1	8d	93
5	t-Bu-MgCl	4.4	1.5	8e	69
6	Allyl-MgCl	3.3	0	8f	19
7^c	Allyl-MgCl	3.3	1.1	8f	78
8	Ph-MgBr	2.2	0	8g	93
9	2-Furyl-MgBr	3.3	0	8h	89

^{*a*}The reaction between **5a** (0.05 mmol) and the corresponding organomagnesium reagent (0.11–0.22 mmol) was carried out in the presence of ZnCl₂ (0–0.08 mmol) in THF (0.5 mL) at –20 °C. ^{*b*}Isolated yield. ^{*c*}t = 40 min.

The present method was found to be applicable to a wide variety of N-Boc-aminals (Table 3). The in situ generated N-

Table 3. Synthesis of N-Boc-Amines 9 Having Various α -Substituents^a

	HN ^{-Boc} R ⁻ N ^{-Boc} 5 Boc	с <u>М</u> Т	1eMgBr HF, –20	⁻ (2.2 eq) °C, 20	iuiv) min	HN ^{-E} R 9	Boc Ne	
entry	R	yield	$(\%)^b$	entry	R		yield	$(\%)^{b}$
1	Pent ─── }	9a	83	4	Ph	<u>~</u> 5	9d	94
2 ^c	Ph	9b	92	5	Ph-ξ		9e	99
3^d	Ph	9c	85					

^aThe reaction between **5** (0.05 mmol) and the corrsponding organomagnesium reagent (0.11 mmol) was carried out in THF (0.5 mL) at -20 °C. ^bIsolated yield. ^cCis/trans = >20/1. ^dCis/trans = 1/>20.

Boc-imine intermediate from an N-Boc-aminal with a 1-heptynyl group contains an acidic proton at the γ -position, and its deprotonation under basic conditions seems to be a possible side reaction. However, even with highly basic methylmagnesium bromide, the desired adduct **9a** (R = 1-heptynyl) was obtained in good yield (entry 1). The addition of methylmagnesium bromide to an N-Boc-aminal carrying a 2-phenylethyl group proceeded in preference to the deprotonation of the α -proton of the in situ generated N-Boc-imine intermediate (entry 4). The use of a phenyl-substituted N-Boc-aminal afforded adduct **9e** (R = Ph) in high yield (entry 5), and the reaction of Cbz-protected aminal **10** with methylmagnesium bromide furnished Cbz-protected propargylic amine **11** in good yield (Scheme 3).

The obtained α -vinyl-substituted N-Boc-propargylic amine 4f could be converted into N-Boc-protected 1,2-aminoalcohol 12 in good yield by an ozonolysis and a subsequent reduction with NaBH₄ (Scheme 4). In this transformation, the vinyl group reacted with ozone selectively, despite the presence of the phenylethynyl group.⁹

Scheme 3. Reaction of N-Cbz-Aminal 10 with Methylmagnesium Bromide

N-Boc-protected ketimines are valuable prochiral electrophiles to produce *N*-Boc-protected chiral α -tertiary amines.¹⁰ To the best of our knowledge, however, available *N*-Boc-ketimines have been limited to those substituted with aryl or electron-withdrawing groups.¹¹ In the course of the present study on *N*-Boc-protected imines, we became interested in developing an efficient method for the synthesis of novel *N*-Boc-ketimines. We found that the oxidation of α -alkynyl and alkenyl-substituted *N*-Boc-propargylic amines **4** with manganese dioxide afforded unprecedented *N*-Boc-protected dialkynyl ketimines and alkenyl alkynyl ketimines **6** in good yields (Table 4).^{12,13} While *N*-Boc-dialkynyl ketimines were obtained

Table 4. Oxidation of N-Boc-Propargylic Amines 4 To Furnish N-Boc-ketimines 6^a

	HN ^{×Bo} R ¹ R ² 4	$ \xrightarrow{MnO_2} \\ CH_2Cl_2, rt $	R ¹ R ² 6	
entry	\mathbb{R}^1	R ²	time (h)	yield (%) ^b
$1^{c,d}$	Ph────}	Bu— <u></u> ξ	11 6 a	93
2		Ph	23 6b	99
3		TMS— — ξ	14 6c	75
4 ^{c,e,f}		Ph <u>s</u>	3 6d	81
5 ^g	Pent— — ξ	TMS─ ─── ξ	14 6e	85

^{*a*}The reaction between 4 (0.05 mmol) and manganese dioxide (1.0 mmol) was carried out in dichloromethane (0.5 mL) at room temperature. ^{*b*}Isolated yield. ^{*c*}Performed in 1,2-dichloroethane at 50 °C. ^{*d*}Performed on a 1.0 mmol scale. ^{*c*}E/Z = 1/>20. ^{*f*}*Cis/trans* = 1/>20. ^{*g*}Performed in 1,2-dichloroethane at 80 °C.

as a 1:1 mixture of *E*- and *Z*-isomers (entries 1-3 and 5), *Z*-ketimine **6d** was formed exclusively in the case of an *N*-Bocalkenyl alkynyl ketimine (entry 4), and a *cis/trans* isomerization of the styryl group was not observed (entry 4).¹⁴

While oxidation of *N*-Boc-protected α -phenylpropargylic amine **8g** with manganese dioxide afforded the corresponding *N*-Boc-ketimine **13** exclusively as the *Z*-isomer in good yield,^{11q} the reaction of the non- α -substituted *N*-Boc-propargylic amine **14** did not yield the desired *N*-Boc-aldimine **15**, even at higher temperature (Scheme 5). These results suggested that the presence of an alkynyl, alkenyl, or aryl substituent is necessary at the α -position for the oxidation to proceed.

Scheme 5. Effects of the α -Substituent in N-Boc-Propargylic Amines on the Oxidation To Give N-Boc-Imines

Treatment of the obtained dialkynyl imine **6a** with lithium trimethylsilylacetylide resulted in the formation of the *N*-Boc-protected tris(alkynyl)methylamine **16** with three different terminal substituents (Scheme 6).¹⁵ The Boc group was cleanly deprotected by treatment with trimethylsilyl iodide in acetonitrile (see Supporting Information).

Scheme 6. Synthesis of N-Boc-Tris(alkynyl)methylamine 16

In summary, we have synthesized N-Boc-protected propargylic and allylic amines via the reaction between N-Bocaminals and organomagnesium reagents, in which N-Bocimines are generated as reactive intermediates under basic conditions and are subsequently subjected to an addition reaction. This process allows direct synthetic access to unprecedented α -alkynyl and α -alkenyl-substituted N-Bocpropargylic and allylic amines in an operationally simple process. The obtained N-Boc-propargylic and allylic amines are readily oxidized by manganese dioxide to afford previously unobtainable ketimines. Accordingly, this method represents a rare example for the oxidation of N-Boc-amines to N-Bocketimines. We are currently exploring applications of the newly obtained N-Boc-ketimines in other transformations including catalytic asymmetric reactions.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.5b03446.

Experimental procedures and spectral data for all new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: maruoka@kuchem.kyoto-u.ac.jp.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by a grant-in-aid for Scientific Research from MEXT, Japan. R.K. thanks the Japan Society for the Promotion of Science for a Young Scientists for Research fellowship.

REFERENCES

 For representative reviews on the synthesis of propargylic and allylic amines, see: (a) Zani, L.; Bolm, C. Chem. Commun. 2006, 4263.
 (b) Trost, B. M.; Weiss, A. H. Adv. Synth. Catal. 2009, 351, 963.
 (c) Tejedor, D.; López-Tosco, S.; Cruz-Acosta, F.; Méndez-Abt, G.; García-Tellado, F. Angew. Chem., Int. Ed. 2009, 48, 2090. (d) Skucas, E.; Ngai, M.-Y.; Komanduri, V.; Krische, M. J. Acc. Chem. Res. 2007, 40, 1394. (e) Skoda, E. M.; Davis, G. C.; Wipf, P. Org. Process Res. Dev. 2012, 16, 26.

(2) Mecozzi, T.; Petrini, M. J. Org. Chem. 1999, 64, 8970.

(3) (a) Zhang, J.; Wei, C.; Li, C.-J. Tetrahedron Lett. 2002, 43, 5731.
(b) Lee, E.-S.; Yeom, H.-S.; Hwang, J.-H.; Shin, S. Eur. J. Org. Chem. 2007, 2007, 3503. (c) Blay, G.; Brines, A.; Monleón, A.; Pedro, J. R. Chem. - Eur. J. 2012, 18, 2440. (d) Trost, B. M.; Hung, C.-I; Koester, D. C.; Miller, Y. Org. Lett. 2015, 17, 3778.

(4) An N-Boc-imine with an E-styryl group has previously been reported:
(a) Okada, A.; Shibuguchi, T.; Ohshima, T.; Masu, H.; Yamaguchi, K.; Shibasaki, M. Angew. Chem., Int. Ed. 2005, 44, 4564.
(b) Kano, T.; Sakamoto, R.; Akakura, M.; Maruoka, K. J. Am. Chem. Soc. 2012, 134, 7516.

(5) For selected reviews on related syntheses of propargylic and allylic amines, see: (a) Gommermann, N.; Koradin, C.; Knochel, P. *Synthesis* **2002**, 2002, 2143. (b) Korbad, B. L.; Lee, S.-H. *Eur. J. Org. Chem.* **2014**, 2014, 5089.

(6) Kano, T.; Kobayashi, R.; Maruoka, K. Angew. Chem., Int. Ed. 2015, 54, 8471.

(7) No reaction, even at room temperature, was observed when an N,N'-bis(Boc)-protected aminal was used instead of N,N,N'-tris(Boc)-protected aminal **5a**.

(8) (a) Hatano, M.; Yamashita, K.; Mizuno, M.; Ito, O.; Ishihara, K. *Angew. Chem., Int. Ed.* **2015**, 54, 2707. (b) Hatano, M.; Yamashita, K.; Ishihara, K. *Org. Lett.* **2015**, *17*, 2412.

(9) McCurry, P. M., Jr.; Abe, K. Tetrahedron Lett. 1974, 15, 1387.
(10) For recent reviews, see: (a) Riant, O.; Hannedouche, J. Org. Biomol. Chem. 2007, 5, 873. (b) Cozzi, P. G.; Hilgraf, R.; Zimmermann, N. Eur. J. Org. Chem. 2007, 2007, 5969. (c) Connon, S. J. Angew. Chem., Int. Ed. 2008, 47, 1176. (d) Shibasaki, M.; Kanai, M. Chem. Rev. 2008, 108, 2853. (e) Kumagai, N.; Shibasaki, M. Bull. Chem. Soc. Jpn. 2015, 88, 503.

(11) (a) Boyer, J. H.; Fu, P. P. J. Org. Chem. 1972, 37, 3556. (b) Jung, M. E.; Shishido, K.; Light, L.; Davis, L. Tetrahedron Lett. 1981, 22, 4607. (c) Kupfer, R.; Meier, S.; Würthwein, E.-U. Synthesis 1984, 1984, 688. (d) Trione, C.; Toledo, L. M.; Kuduk, S. D.; Fowler, F. W.; Grierson, D. S. J. Org. Chem. 1993, 58, 2075. (e) Dessipri, E.; Tirrell, D. A. Macromolecules 1994, 27, 5463. (f) Moldenhauer, J.-P.; Möller, M. H.; Rodewald, U.; Würthwein, E.-U. Liebigs Ann. 1995, 1995, 1015. (g) Osipov, N. S.; Golubev, A. S.; Sewald, N.; Michel, T.; Kolomiets, A. F.; Fokin, A. V.; Burger, K. J. Org. Chem. 1996, 61, 7521. (h) Calí, P.; Begtrup, M. Synthesis 2002, 2002, 63. (i) Armstrong, A.; Edmonds, I. D.; Swarbrick, M. E.; Treweeke, N. R. Tetrahedron 2005, 61, 8423. (j) Jorgensen, C. G.; Clausen, R. P.; Hansen, K. B.; Brauner-Osborne, H.; Nielsen, B.; Metzler, B. B.; Kehler, J.; Krogsgaard-Larsen, P.; Madsen, U. Org. Biomol. Chem. 2007, 5, 848. (k) Mikami, K.; Murase, T.; Zhai, L.; Kawauchi, S.; Itoh, Y.; Ito, S. Tetrahedron Lett. 2010, 51, 1371. (1) Hashimoto, T.; Yamamoto, K.; Maruoka, K. Chem. Lett. 2011, 40, 326. (m) Qian, Y.; Jing, C.; Zhai, C.; Hu, W.-h. Adv. Synth. Catal. 2012, 354, 301. (n) Yan, W. J.; Wang, D.; Feng, J. C.; Li, P.; Zhao, D. P.; Wang, R. Org. Lett. 2012, 14, 2512. (o) Sankar, M. G.; Garcia-Castro, M.; Wang, Y.; Kumar, K. Asian J. Org. Chem. 2013, 2, 646. (p) Han, J.; Jeon, M.; Pak, H. K.; Rhee, Y. H.; Park, J. Adv. Synth. Catal. 2014, 356, 2769. (q) Trost, B. M.; Biannic, B. Org. Lett. 2015,

17, 1433. (r) Wang, D.-L.; Liang, Z.-Q.; Chen, K.-Q.; Sun, D.-Q.; Ye, S. J. Org. Chem. 2015, 80, 5900.

(12) For reviews on the oxidation of N-carbamate-protected amines to ketimines, see: (a) Buchi, G.; Botkin, J. H.; Lee, G. C. M.; Yakushijin, K. J. Am. Chem. Soc. **1985**, 107, 5555. (b) Matsuo, J.; Tanaki, Y.; Kido, A.; Ishibashi, H. Chem. Commun. **2006**, 2896 and references cited therein.10.1039/b605882e

(13) For reviews on the synthesis of dialkynyl ketimines, see: (a) Ito,
Y.; Inouye, M.; Murakami, M. *Tetrahedron Lett.* 1988, 29, 5379.
(b) Ito, Y.; Inouye, M.; Murakami, M. *Chem. Lett.* 1989, 1261.

(14) The oxidation of *N*-Boc-propargylic amine **4j** with manganese dioxide afforded the *N*-Boc-protected phenylethynyl *cis*-styryl imine, which readily underwent *cis/trans* isomerization of the styryl group to give *trans*-isomer **6d** as a major stereoisomer at room temperature.

(15) Convertino, V.; Manini, P.; Schweizer, W. B.; Diederich, F. Org. Biomol. Chem. 2006, 4, 1206.