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Abstract  
 
The synthesis of the 6-azabicyclo[3.2.1]octane ring system, via Dieckmann cyclization, is 
described. Ring closure involves reaction of a caprolactam enolate with a C-6 ester, the 
reactive axial conformation of which is promoted by the presence of an N-tert-
butyloxycarbonyl group on the lactam nitrogen. The results will enable the synthesis of new 
bridged caprolactams for testing as antibacterials and nucleophilic enzyme inhibitors.  
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Introduction 

 

The β-lactams remain the most important antibacterials; they work by reaction with a 
nucleophile serine residue in penicillin binding proteins (PBPs), which catalyse essential 
transpeptidase reactions during bacterial cell-wall peptidoglycan biosynthesis. A common 
mechanism of resistance to the β-lactam antibacterials, involves β-lactamases, which catalyse 
β-lactam hydrolysis. All clinically used PBP inhibitors are β-lactams and until recently this 
has been the case for β-lactamase inhibitors.1 Following on from synthetic γ-lactam analogues 
of the β-lactams and the discovery of the natural product lactivicin, the cyclic urea avibactam 
has recently been introduced as a broad spectrum serine β-lactamase inhibitor.2 However, 
while the β-lactam based inhibitors react irreversibly with the nucleophile serine of the PBPs 
and β-lactamases, avibactam reacts reversibly with its target serine β-lactamases.3 The 
discovery of avibactam has stimulated interest in non β-lactam inhibitors of the serine β-
lactamases and PBPs. We have been interested in bridged lactams as inhibitors of 
nucleophilic serine / threonine / cysteine enzymes; however, for ring sizes > 6 there are only 
limited reports on their synthesis. Here we describe the synthesis of the 6-
azabicyclo[3.2.1]octane bridged ring system, starting from a readily available caprolactam 
precursor (Fig. 1).  
 

 
 

Fig. 1     Examples of β-lactam antibacterials, β-lactam 
inhibitors and non-β-lactam analogues: a) penicillins, b) 
carbapenems, c) an inactive γ-lactam analogue, d) an active 
γ-lactam analogue, e) avibactam and f) the target of the 
current work (1) which has a 6-azabicyclo[3.2.1]octane core 
ring system.  

 
The 6-azabicyclo[3.2.1]octane ring system is present in a wide range of biologically active 
compounds and is isomeric with the tropane nucleus present in alkaloids, including cocaine 
and atropine.4 Preparation of respective 6-azabicyclo[3.2.1]octane derivatives and related 
compounds is restricted to the intramolecular ring closure of γ-lactam derivatives,5 amide 
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formation in substituted cyclohexanes6, and Diels-Alder reaction of appropriately unsaturated 
γ-lactams with acrylic acid.7 There is only one reported route to a 7,8-dioxo-6-
azabicyclo[3.2.1]octane derivative of (1), which employs semipinacol rearrangement of a β-
lactam precursor.8 We envisaged bicycle 1 could be succinctly prepared from of a simple 
caprolactam via Dieckmann cyclization. We anticipated that then Dieckmann cyclization may 
only proceed efficiently, when the ester group adopts an axial position (Fig. 2a/b/c). 
 

 
a) 

 

 
b) 

 

 

 
polymorph I 

 
polymorph II 

c) d) 

 

Fig. 2     Proposed Dieckmann cyclisation to give the 6-azabicyclo[3.2.1]octane ring system. a) The two 
energetically favoured ‘pseudo chair’ conformations of an N-substituted caprolactam methylester. b) Synthesis 
of 1 via Dieckmann cyclization. c) Only the axially positioned ester group can react via the desired Dieckmann 
cyclization. d) View from a crystal structure of 3 showing that the –COOMe group adopts an axial conformation, 
as observed for both polymorphs. In solution an equilibrium between the ‘axial’ and ‘equatorial’ conformers (70 
% : 30 %) is observed.12  
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Results and Discussion 

 
Caprolactams can adopt (pseudo) chair, boat or transition (twist boat) forms.9 In the ‘chair‘ 
form, two energetically favoured conformations are manifested (1,NC4 and 4C1,N) assuming an 
planar amide.10 Similar to cyclohexane chair conformations, caprolactams feature axial and 
equatorial positions of ring hydrogens and respective substituents. The axial substituents are 
higher in energy than equatorial ones as shown for C-2/C-6 monosubstituted caprolactams.11 
In a previous study,12 we investigated the influence of a second substituent on the 
conformation of the C-6 caprolactam methylester (2) (Fig. 3). Especially promising for our 
purposes proved to be the introduction of a tert-butyloxycarbonyl (Boc) group which delivers 
3. After substitution of the amide proton with the bulky Boc, the -COOMe and 
the -COOC(CH3)3 on the nitrogen atom are in the trans position to each other. This can be 
explained by the steric demand of both groups, with the Boc carbonyl being coplanar to the 
amide segment forcing the former equatorial ester pendant of 2 into the normally energetically 
disfavoured axial position. Note the short distance of 2.53 Å (polymorph I)12 and 2.66 Å 
(polymorph II, Tabs. S1 and S2, Scheme S1, ESI), respectively, between the C-6 ester 
carbonyl and the axial C-2 hydrogen as observed by X-ray crystallography (Fig. 2d), which 
seems to be necessary for a transannular reaction. Indeed, treatment of 3 with LiHDMS 
(lithium bis(trimethylsilyl)amide) produced the desired bicyclic lactam in its protected form 
(1a) in low (8 %) yield (Fig. 3). In order to optimise the reaction, several attempts to improve 
the yield of the cyclization by the use of different solvents (increase to 11 % yield for toluene) 
and the variation of temperature (higher temperatures prevent the cyclization). Furthermore, 
we varied the amount of base (increase to 12 % yield for 2.1 equivalents) (Table 1).  
 

NH

O

O

OMe

N

O

O

OMe

O

O

N

O

O

O

O

2 1a3

Boc2O, DMAP, toluene,

Hunig's base, ,

86 %

LiHDMS,
THF, -78 °C

8 %

 
 

a) 
 

 
 

b) 
 

Fig. 3     a) Synthetic pathway to bicycle 1a. b) Alternative substrates subjected to the here described 
cyclization conditions. 

 
It had been shown that the introduction of a Boc group at the lactam nitrogen activates the C-2 
position for an electrophilic attack.13 However, other studies have proven that the lithium ion 
of LiHDMS can prevent related reactions by forming a complex with the amide carbonyl and 
the Boc group of the substrate.14 To test this theory for our system we used the related bases 
NaHDMS and KHDMS featuring larger cations than LiHDMS. The yield of 1a did only 
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increase slightly when higher amounts of base were used as observed above, ruling out that 
complexformation with the respective alkali ion is the reason for the low yield.  
Furthermore, we suspected, the formation of the smallest possible ketone, i.e. the five 
membered ring could compete with the formation of the dimer, i.e. the 10-membered ring, as 
well as oligomers. Inspired by high dilution conditons know from macroketone syntheses,15 
we varied the concentration of the educt with the outcome being displayed in Tab. S3 (ESI). 
Interestingly, the concentration did not seem to influence the yield significantly. 
 
Table 1     Conditions for the optimization of the here presented Dieckmann cyclization 

 
In order to study the influence of the amide protecting group, the ring size and the flexibility 
of the caprolactam rings on the here described Dieckmann cyclization, we prepared the 
related lactams 7-9 (Fig. 3b). Although, when applying the standard cyclization conditions on 
this substrates, no cyclization was observed. This leads to the interesting observation, that the 
benzyl group on 7 seems to prevent an electrophilic attack in C-2 position as already shown 
for the respective butyrolactam.13 Moreover, smaller rings and less flexible caprolactams do 
not undergo the Dieckmann cyclization when applying above reaction conditons. 
Caprolactam 3 features two C-H acidic position (C-2 and C-6) and a competing deprotonation 
may be another reason for the low yield of the bicyclic lactam 1a in the cyclisation step. To 
investigate the proposal of competing C-6 deprotonation, Boc-protected ethylester 10 (Fig. 3) 
was prepared. Thus, caprolactam methylester 2 was saponified to yield the free acid, which 
was esterified with EtOH and, subsequently, treated with Boc anhydride. When 10 was 

Expt. 
No. 

substrate 

Cyclization conditions 

Isolated yields of 
bicycle (%) 

base 
protecting 

group 
solvent 

equivalents 
of base (eq) 

temperature 
(°C) 

         
 

    

1 3 LiHDMS Boc THF 1.1 -78 8 

2 3 LiHDMS Boc n-hexane 1.3 -85 8 

3 3 LiHDMS Boc toluene 1.3 -85 11 

4 3 LiHDMS Boc THF 1.1 rt 0 

5 3 LiHDMS Boc THF 1.1 0 0 

6 3 LiHDMS Boc THF 1.3 -85 8 

7 3 LiHDMS Boc THF 1.3 -100 7 

8 3 LiHMDS Boc THF 2.1 -85 12 

9 3 KHMDS Boc THF 1.3 -85 8 

10 3 KHMDS Boc THF 2.1 -85 13 

11 3 NaHDMS Boc THF 1.3 -85 7 

12 3 NaHDMS Boc THF 2.1 -85 11 

13 7 LiHDMS Bn THF 1.3 -85 0 

14 7 KHMDS Bn THF 1.3 -85 0 

15 7 KHMDS Bn THF 2.1 -85 0 

16 8 LiHDMS Boc THF 1.3 -85 0 

17 9 LiHDMS Boc THF 1.1 -85 0 

18 10 LiHDMS Boc THF 1.1 -85 15 
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subjected the Dieckmann cyclization, a higher yield of 1a (15 %) was achieved, likely due to 
reduced C-6 deprotonation relative to 3 due to the higher steric demand of the ethyl ester.  
 
1H and 13C NMR (Fig. S1, ESI) as well as COSY analyses (Fig. S2, ESI) support the assigned 
structure of 1a. Of note, the 1H spectrum exhibits a ‘doublet of doublets of doublets‘ (ddd) 
coupling for H2 and H6. The third coupling likely results from 4

JH,H long-range ‘W’ 
coupling16,17 of H2 with H6 over the keto bridge. For the bicyclic lactam 1a, H2 and H6 
couple with 4

J values of 4.89 and 4
J=4.88 Hz respectively; the analogous value for 

cyclobutanone is 4.8 Hz.18 By contrast the 3
J-couplings are rather low, both for the coupling 

of H2 with H3/H3’ (3
J=2.50/1.95 Hz) and of H2 with H6 (3

J=1.88/1.33 Hz) (Fig. 4; Fig. S3, 
ESI).  
 

 
 

Fig. 4     Close up view from the 1H NMR (125 
MHz) spectrum of 1a; the H2 signal with the 
respective ddd coupling pattern and the 
respective 3JH,H and 4JH,H values is shown. 

 
 
Bicycle 1a crystallized from ethyl acetate and cyclohexane as its corresponding hydrate 1b 
(Fig. 5a), a phenomenon which was already observed with a related compound.4 The plate 
like twinned crystals are in space group P-1 with molecules featuring (R,R) and (S,S) 
stereochemistry. As expected, the five-membered ring of 1b adopts an envelope 
conformation, while the caprolactam adopts the rarer boat conformation (Fig. 5b). A 
comprehensive comparison of bond lengths and angles with related compounds can be found 
in the Supplementary Material (Tab. S4, ESI). The molecules of 1b arrange in hydrogen 
bonded ribbons running in the direction of the crystallographic a axis. In the ribbons two diols 
face each other making an R2

2�8� motif and these dimers then bond into C6 chains via the ring 
carbonyl groups (Fig. 5c; Tab. S5, ESI). The ribbons stack up on each other with only weak 
C-H···O(-H) hydrogen bonds in the direction of the crystallographic b axis. The tert-butyl 
groups point outward from the sheet assembled via these interactions and stacking errors of 
these sheets cause the crystals to be twinned.  
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a) b) 

 

c) 

 
Fig. 5     a) Molecular formula of the hydrate of 1a, i.e. 1b. 
b) Ortep plot at 50 % probability of crystal structure of 1b. 
c) Hydrogen bonded ribbons of 1b running along the 
crystallographic a axis. 

 
 
Conclusions 

 
Overall, we have described the concise synthesis of a bridged caprolactam ring system, via 
Dieckmann cyclization. This route builds upon work that has defined the transformations of 
readily accessible caprolactam derivatives. Closure to give the 6-azabicyclo[3.2.1]octane ring 
system involves the reaction of a caprolactam enolate with an C-6 ester in an axial 
conformation. The presence of the reactive axial conformation is promoted by an N-
butyloxycarbonyl group on the caprolactam nitrogen. The yield is increased slightly by the 
use of non-polar solvents, higher amounts of base and an ethyl, rather than a methyl, ester, 
likely due to diminished C-6 deprotonation with the ethyl ester. Future work will focus on a 
deeper understanding of the mechanism and minimising side reactions. The results will enable 
the synthesis of 6-azabicyclo[3.2.1]octane ring derivatives for testing as antibacterials and 
nucleophilic enzyme inhibitors. 
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Experimental 

 
Here we present the cyclization procedure for the optimization experiment delivering the 
highest yield. 
 
tert-Butyl 7,8-dioxo-6-azabicyclo[3.2.1]octane-6-carboxylate (1a).     To a stirred solution 
of the appropriate Boc-protected lactam ethylester 10 (172 mg, 0.60 mmol) in dry THF (30 
ml) at -78 °C was added a 1M solution of lithium hexamethyldisilazide (LiHDMS) in 
ethylbenzene/THF (660 µl, 0.66 mmol, 1.1 eq.). The reaction mixture was then stirred at -78 
°C for 3 h. Subsequently, the reaction was quenched with sat. aqueous ammonium chloride 
solution (30 ml) at -78 °C and extracted with ethyl acetate (3x30 ml). The combined organic 
phases were dried (Na2SO4), then filtered. Evaporation of the solvent yielded a dark, oily 
residue which was separated by flash column chromatography (SiO2; n-hexane/ethyl acetate = 
1:1 � ethyl acetate) to yield 15 % (22 mg, 0.092 mmol) of a white solid. Mp. 93-94 °C. Rf = 
0.30 (SiO2; n-hexane/ethyl acetate = 1:1). 13C NMR (125 MHz, CDCl3): δ = 207.3 (CO), 
168.9 (CONCOOtBu), 148.4 (NCOOtBu), 84.1 (CH3)3, 64.9 (COCHCO), 55.0 (NCHCO), 
33.2 (CH2), 32.7 (CH2), 28.0 (CH3)3, 17.1 (CH2). 

1H NMR (500 MHz, CDCl3): δ = 4.39 (m, 
1H, NHCH), 2.99 (m, 1H, COCHCO), 2.44-2.31 (m, 2H, CH2), 2.05-1.96 (m, 1H, CH2), 1.95-
1.88 (m, 1H, CH2), 1.84-1.75 (m, 2H, CH2), 1.54 (s, 9H, C(CH3)3). IR: 3391, 2992, 2932, 
2874, 1769, 1752, 1713, 1448, 1393, 1365, 1326, 1305, 1249, 1220, 1154, 1089, 1068, 1052, 
1014, 993, 975, 953, 888, 865, 712. m/z = 238.11 [M-H+], calc. 238.12. 
 
 
X-ray crystallography 

 
Bicycle 1a was crystallized from ethyl acetate and cyclohexane using the vapor diffusion 
approach resulting in hydrate 1b. Crystals suitable for single crystal X-ray diffraction studies 
of polymorph II of compound 3 were obtained by crystallization from ethyl acetate/n-hexane 
(1:2) and have a melting point of 69-71 °C; this is about 20 K higher than observed for 
polymorph I12 (CSD refcode: BOLHOB).  
Single crystal X-ray diffraction was performed at 173K with a Bruker D8 Venture 
diffractometer using a Cu-Kα source. Structure solution was carried out with shelxt19 and 
structure refinement with shelxl20 was finished using ShelXle21 software. The twin matrix for 
1b was acquired from twinrotmat in Platon.22 For crystal data and refinement parameters see 
ESI. CCDC numbers 1528320 (1b) and 1522636 (3).  
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Reaction of caprolactams with an axial ester 

substituent with base gives the 6-azabicyclo-

[3.2.1]octane ring system via Dieckmann cyclization. 
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