

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 1172-1175

A new visual screening assay for catalytic antibodies with retro-aldol retro-Michael activity

Marina Shamis,^a Carlos F. Barbas, III^b and Doron Shabat^{a,*}

^aDepartment of Organic Chemistry, School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel

^bDepartment of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA

Received 8 November 2006; revised 7 December 2006; accepted 8 December 2006 Available online 22 December 2006

Abstract—Fast and convenient methods are required for the detection of novel catalysts. We have developed a new assay to allow direct visualization of retro-aldol retro-Michael catalytic activity and have demonstrated it with catalytic antibody 38C2. The assay is based on a catalytic cleavage of a physiologically stable substrate to release 3,4-cyclohexeneoesculetin. The latter then reacts with iron(III) to generate a non-soluble complex that precipitates in the form of a black dye. This assay may be used for screening new catalysts for retro-aldol retro-Michael activity with improved efficiency for specific prodrug activation. © 2006 Elsevier Ltd. All rights reserved.

The tandem retro-aldol retro-Michael reaction catalyzed by antibody 38C2 is an efficient cleavage reaction that has potential for prodrug activation.^{1–3} This reaction is not known to be catalyzed by natural enzymes and, therefore, non-specific prodrug activation by endogenous enzymes should not occur. The unique activity of this antibody is derived from an ε -amino-lysine residue with a significantly perturbed pKa (5.8) buried deeply in the antigen binding pocket. This lysine is capable of reacting with a ketone functionality at physiological pH and consequently generates a highly reactive enamine species.⁴ Several variations of fluorogenic assays have been developed to monitor aldolase activity^{5,6}, including a direct visual detection assay⁷ and one amperometric assay.⁸ Here, we report on a new visual detection assay for the screening of retro-aldol retro-Michael catalytic activity.

Simple, sensitive in vitro detection of a catalyst can be achieved if the desired reaction converts a non-visible substrate into a new product that can react with an additional reagent to generate a colorful precipitate. Compound 1, generated from 3,4-cyclohexenoesculetin 2 and a retro-aldol retro-Michael linker, is a promising

example of such a substrate (Fig. 1). Antibody 38C2 catalyzes the retro-aldol retro-Michael cleavage reaction to generate an amine intermediate that is cyclized spontaneously to release 3,4-cyclohexenoesculetin. In the presence of iron(III) ion, 3,4-cyclohexenoesculetin forms complex **3**, a black precipitate that is constructed of three molecules of 3,4-cyclohexenoesculetin per ion of iron III (Fig. 2). This assay has been recently used for staining cells with cloned DNA that contains the sequence for β -galactosidase.⁹ We sought to replace the β -galactosidase substrate with a retro-aldol retro-Michael substrate in order to detect the aldolase activity of catalytic antibody 38C2.

Substrate 1 was synthesized as outlined in Figure 3.¹⁰ 3,4-Cyclohexenoesculetin 2 was selectively protected as methoxymethyl-ether 4 and then reacted with 4-nitrophenyl-chloroformate to give the 4-nitrophenyl-carbonate 5. Reaction of the retro-aldol retro-Michael linker 6a (prepared as previously described¹) with carbonate 5 afforded compound 6, which was deprotected with TFA to give substrate 1.

To determine whether compound **1** is stable under physiological conditions, it was incubated in phosphate-buffered saline, pH 7.4 (PBS) at 37 °C for 72 h. No decomposition was observed. The reaction of substrate **1** upon incubation with catalytic antibody 38C2 was monitored by reverse-phase HPLC. We found that the antibody indeed catalyzed the retro-aldol retro-Michael

Keywords: Catalytic antibodies; Prodrug activation; Aldol reaction; Assay.

^{*} Corresponding author. Tel.: +972 3 640 8340; fax: +972 3 640 9293; e-mail: chdoron@post.tau.ac.il

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2006.12.057

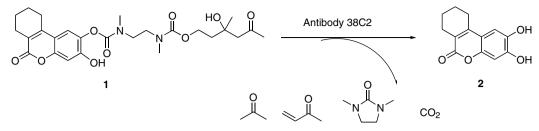


Figure 1. Antibody 38C2 catalyzed retro-aldol retro-Michael cleavage reaction of substrate 1, followed by spontaneous cyclization to release 3,4-cyclohexenoesculetin 2.

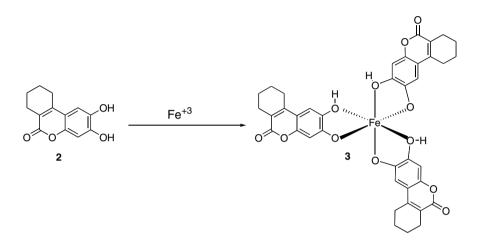


Figure 2. Three molecules of 3,4-cyclohexenoesculetin react with iron(III) ion to generate a complex that forms a black precipitate.

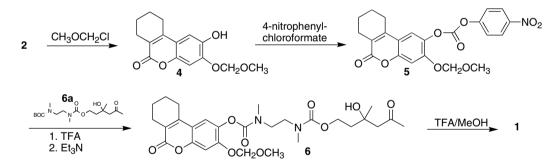
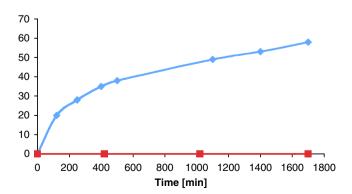



Figure 3. Chemical synthesis of substrate 1.

cleavage reactions to generate 3,4-cyclohexenoesculetin. As shown in Figure 4, compound 1 was gradually converted to the product 3,4-cyclohexenoesculetin; no amine intermediate was observed. Lack of detection of the intermediate can be explained by the fast cyclization step that occurs spontaneously after the retro-aldol retro-Michael cleavage. Since substrate 1 was synthesized in its racemic form, one enantiomer was cleaved much faster by the catalytic antibody than the other. This results in a slower reaction rate after 50% conversion of the substrate to product.

To evaluate the utility of the substrate in a visual assay, we incubated substrate 1 and iron(III) chloride with a catalytic amount of antibody 38C2 in PBS (pH 7.4). A control reaction included substrate 1 and iron(III) chloride in PBS (pH 7.4). A generation of a black precipitate was clearly observed in the tube with catalytic antibody

Figure 4. Conversion of substrate **1** to 3,4-cyclohexenoesculetin versus time. Substrate **1** [500 μ M] in PBS (pH 7.4) with catalytic antibody 38C2 (50 μ M) at 37 °C (blue). Substrate **1** in the absence of the antibody (red).

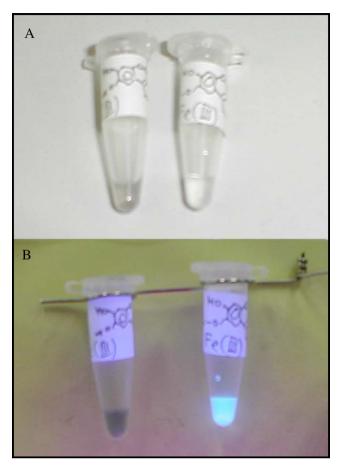


Figure 5. (A) Photograph of a tube containing substrate 1 (500 μ M), iron(III) chloride (200 μ M), and catalytic antibody 38C2 (50 μ M) (on the left), and a tube with substrate 1 and iron(III) chloride (on the right). (B) Photograph of the tubes described in (A) under 340 nm UV light.

38C2, while the control reaction remained completely clear (Fig. 5A). 3,4-Cyclohexenoesculetin and derivative 1 are both fluorescent. When the control reaction was exposed to 340 nm UV light, fluorescence was clearly observed; no fluorescence was observed in the tube containing antibody (Fig. 5B). This phenomenon is explained by the reaction of the 3,4-cyclohexenoesculetin with iron(III) ion, resulting in metal complex 3 that quenches the fluorescence generated by the free 3,4-cyclohexenoesculetin. We evaluated the sensitivity of the assay by analyzing a series of reactions prepared with a range of antibody concentrations. The black precipitate and quenched UV signal could be detected down to 1 μ M of catalytic antibody 38C2.

One important advantage of this assay is that it may be applied for selection of proteins expressed from cloned DNA in *Escherichia coli* colonies. If the expressed protein has a retro-aldol retro-Michael catalytic activity, it will form the black dye/iron complex that will precipitate. Since the black dye is not water-soluble, it will gradually accumulate in the cell and form a visual stain that will indicate the colony that expresses a protein with the desired catalytic activity. In summary, we have developed a new screening assay for retro-aldol retro-Michael catalytic activity that can be clearly visualized. The assay is based on a catalytic cleavage of a physiologically stable substrate to release 3,4-cyclohexenoesculetin. The substrate is cleaved by catalytic antibody 38C2. 3,4-Cyclohexenoesculetin reacts with iron(III) ion to generate a non-soluble complex that precipitates as a black dye. The black dye was clearly observed in the solution in the presence of the antibody, whereas the control solution remained clear. This assay may be used in a search for new catalysts with retro-aldol retro-Michael activity that can have improved efficiency for specific prodrug activation.

Acknowledgment

D.S. thanks the Israel Science Foundation, the Israel Ministry of Science 'Tashtiot' program, and the Israel Cancer Association for financial support.

References and notes

- Shabat, D.; Lode, H. N.; Pertl, U.; Reisfeld, R. A.; Rader, C.; Lerner, R. A.; Barbas, C. F., 3rd. *Proc. Natl. Acad. Sci. U.S.A.* 2001, *98*, 7528.
- Shabat, D.; Rader, C.; List, B.; Lerner, R. A.; Barbas, C. F., III Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 6925.
- Satchi-Fainaro, R.; Wrasidlo, W.; Lode, H. N.; Shabat, D. *Bioorg. Med. Chem.* 2002, 10, 3023.
- Wagner, J.; Lerner, R. A.; Barbas, C. F., III Science 1995, 270, 1797.
- List, B.; Barbas, C. F., 3rd; Lerner, R. A. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 15351.
- (a) Carlon, R. P.; Jourdain, N.; Reymond, J.-L. Chem. Eur. J. 2000, 6, 4154; (b) Jourdain, N.; Perez Carlon, R.; Reymond, J.-L. Tet. Lett. 1998, 39, 9415.
- Tanaka, F.; Kerwin, L.; Kubitz, D.; Lerner, R. A.; Barbas, C. F., 3rd. *Bioorg. Med. Chem. Lett.* 2001, 11, 2983.
- 8. Sagi, A.; Rishpon, J.; Shabat, D. Anal. Chem. 2006, 78, 1459.
- 9. Heuermann, K.; Cosgrove, J. BioTechniques 2001, 30, 1142, 1146.
- 10. Compound 4. The commercially available 3,4-cyclohexenoesculetin 2 (100 mg, 0.431 mmol) and *tert*-butyl potassium hydroxide (48.36 mg, 0.431 mmol) were dissolved in 2 mL DMF and cooled to 0 °C. Chloromethyl-methylether (33 µL, 0.431 mmol) was added dropwise to the stirred solution. The reaction mixture was stirred for 2 h at room temperature and monitored by TLC (EtOAc/He, 3:1). After completion, the mixture was diluted with EtOAc, washed with satd solution of NH₄Cl, dried over sodium sulfate, and the solvent was removed under reduced pressure. The product was purified by column chromatography on silica gel (EtOAc/Hex, 2:3) to give compound 4 (67 mg, 56%). ¹H NMR (200 MHz, CDCl₃): δ = 7.09 ppm (2H, s); 3.53 (2H, s); 2.72 (2H, m); 1.86–1.81 (4H, m); 1.58 (3H, s).

Compound 5. Compound 4 (67 mg, 0.24 mmol) was dissolved in dried 2 mL THF. Triethylamine (30μ L) was added. The reaction mixture was cooled to 0 °C and 4-nitrophenylchloroformate (48.7 mg, 0.24 mmol) dissolved in 2 mL THF was added dropwise. The reaction mixture was stirred at room temperature for 1 h and monitored by

TLC (EtOAc/He, 3:1). After completion of reaction, the precipitate was recovered by filtration and the remaining solvent was removed under reduced pressure. The product was purified by column chromatography on silica gel (EtOAc/Hex, 2:3) to give compound **5** in the form of white powder (69.5 mg, 65%). ¹H NMR (200 MHz, CDCl₃): $\delta = 8.3$ ppm (2H, d, *J*=7); 7.5 (2H, d, *J*=7); 7.4 (1H, s); 7.23 (1H, s); 3.5 (2H, s); 2.72 (2H, m); 2.58 (2H, m); 1.84 (4H, m) 1.56 (3H, s).

Compound 6. Retro-aldol-retro-Michael linker 6a (57.1 mg, 0.156 mmol) was deprotected from the Boc with 1 mL TFA for 2 min at 0 °C. The excess of the acid was removed under reduced pressure and the amine salt was dissolved in 2 mL DMF. Compound 5 (69.5 mg, 0.156 mmol) was added in with 0.5 mL of triethylamine and the solution was stirred for 10 min. The reaction was monitored by TLC (EtOAc/MeOH, 9:1). After comple-

tion, the DMF was removed under reduced pressure and the crude product was purified by flash chromatography (MeOH/EtOAc, 2:98) to give pure compound **6** in the form of white powder (47 mg, 54%). ¹H NMR (200 MHz, CDCl₃): δ = 7.14 (2H, s); 4.24(2H, m); 3.51–3.48 (4H, m); 3.13 (2H, s); 3.04 (2H, s); 2.99–2.98 (3H, m); 2.72 (2H, m); 2.65 (2H, d, *J*=4); 2.58 (2H, m); 2.17 (3H, s); 1.88 (2H, m); 1.84 (4H, m); 1.23 (3H, s). MS(FAB): C₂₈H₃₈N₂ O₁₀ [M+Na]⁺ 585.1

Compound 1. Compound 6 (47 mg, 0.08 mmol) was dissolved in 1 mL DCM and 1 mL TFA at 0 °C. The solution was stirred for10 min and reaction was monitored by TLC (EtOAc/MeOH, 9:1). After completion, the solvent was removed under reduced pressure and purified by column chromatography on silica gel (EtOAc, 100%) to give desired compound 6 (30 mg, 75%). MS(FAB): $C_{26}H_{34}N_2 O_9 [M+H]^+$ 519.1.