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Oxazoles are an important class of biologically active metabolites from nature, and exhibit broad biologi-

cal activities as the lead for drug discovery. Hinduchelins are a class of unusual natural products with an

oxazole unit, isolated from Streptoalloteichus hindustanus, and with a potential iron-chelating ability.

These compounds are the first identified naturally occurring unusual oxazole derivatives to possess a

catechol unit. However, some of these compounds are not abundant in nature, and thus, the efficient

syntheses of these compounds are advantageous in exploring their potential applications. This paper

reports the efficient synthesis and bio-evaluation of hinduchelins A–D and their derivatives with con-

venient procedures and high yields.

Introduction

Natural products have been widely used as lead molecules for
the discovery of novel drugs1–3 and agrochemicals4–7 over the
past century, and they possess enormous structural and chemi-
cal diversity that can afford an opportunity to explore novel
candidates with different mechanisms of action and unique
biological properties from the existing agents.

In particular, these small molecules of natural products
containing heterocyclic rings have attracted a great deal of
attention due to their extensive biological properties.8 Among
them, oxazole skeletons with five-membered heterocycles
arouse many researchers’ interest,9,10 and many oxazole-type
natural products11–28 have been elucidated as potential anti-
bacterial, antifungal, anticancer, antiviral, and antioxidation
agents, monoamine oxidase inhibitors etc. Indolyl-oxazole
derivatives11–18 are an important class of oxazole-type natural
products, and these natural compounds and their derivatives
have been demonstrated to exhibit broad biological and
pharmaceutical activities. 2,5-Disubstituted oxazole
alkaloids19–23 are another kind of oxazole natural product with
special structures, and isolated from different plants such as

Amyris texana etc. These diaryloxazole alkaloids show broad
bioactivity such as antimycobacterial activity, anticancer
activity etc. Meanwhile, several of the novel oxazole-amide
derivatives (Fig. 1) have also been isolated and characterized as
potential antitumor, anti-tuberculosis, and anti-proliferative
agents.24–27 Very recently, several unusual aryl-oxazole alka-
loids have also been isolated from Streptoalloteichus hindusta-
nus by Abe et al.,28 and these compounds (hinduchelins A–D
in Fig. 1) have a special structural moiety similar to the unit in
amamistatin. The test of iron-binding properties of these
natural products was performed, and some molecules showed
moderate ability to induce pyoverdine production at 50 μM.

Besides the aforementioned natural oxazole alkaloids,
many synthetic methods for various oxazole derivatives have
been explored,14,18,29,30 and many synthetic derivatives have
also been investigated and developed as potential drugs or
agrochemicals,31–35 and therefore the unique structure and
important bioactivity of oxazole heterocyclic derivatives have
generated significant interest in the total synthesis of such
compounds. Thus, we intend to develop an effective synthetic
strategy for the study of hinduchelins A–D and their deriva-
tives. Afterwards, process development for the novel hinduche-
lin analogues with potential pharmacological or agroactivities
involving structural optimization and bioassay screening helps
us to explore the mechanism of action for the biological
activity of hinduchelin derivatives. Herein, we report the first
total synthesis of hinduchelins A–D and their derivatives,
and the in vitro cytotoxicity, and antibacterial, fungicidal and
insecticidal activities of these compounds have also been
evaluated.
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Results and discussion
Retrosynthetic analysis

The retrosynthetic analysis for hinduchelins A–D is described
in Scheme 1. From Scheme 1, we can find that these hinduche-
lins A–D can be divided into two parts including carboxylic
acid and substituted phenethylamine. This relies on an initial
disconnection of the amide bond to give the corresponding
oxazole-containing carboxylic acid and substituted phenethyl-
amine. The synthesis of the oxazole-containing carboxylic acid
could be processed from aldehydes (o-veratraldehyde and
o-vanillin) and ethyl 2-(hydroxyimino)-3-oxobutanoate via the
heterocyclization reaction.

General synthesis of hinduchelins A–D

According to the retrosynthetic analysis, the following total
synthesis procedures for hinduchelins A–D were provided and
investigated (Scheme 2).

Synthesis of oxazole-containing carboxylic acid fragments

According to the retrosynthetic analysis, the substituted oxazole-
containing carboxylic acids are the key molecular fragments, and
can be prepared from the commonly available reagent ethyl aceto-
acetate. The ethyl acetoacetate 1 was transformed into ethyl
2-(hydroxyimino)-3-oxobutanoate 2 when treated with sodium
nitrite in the presence of acetic acid. Then the obtained inter-

mediate 2 was treated with the corresponding o-veratraldehyde or
o-vanillin via a heterocyclization reaction29 to afford the hetero-
cyclic intermediates 4a–b, which were reduced with zinc powder
in the presence of acetic acid to obtain the key intermediates aryl-
oxazole carboxylates 5a–b. After this, the intermediates aryl-
oxazole carboxylic acids 6a–b were conveniently obtained by the
hydrolysis of the corresponding aryl-oxazole carboxylates 5a–b in
the presence of sodium hydroxide, and the corresponding spectra
for these intermediates 5a–b and 6a–b are described in the ESI.†

Synthesis of hinduchelins A and B

For the synthesis of hinduchelin A, the corresponding (S)-2-
amino-1-phenylethanol (7) and intermediate 5a were first used
to explore the transformation. The corresponding aryl-oxazole
5a was treated with an amine (7) in refluxing ethanol to give
the target hinduchelin A in 18% isolated yield. The direct
coupling reaction between aryl-oxazole 6a and amine 7 was
also investigated using a coupling reagent. Fortunately, hindu-
chelin A was produced in 64% yield (isolated yield). In
addition, further UPLC-MS analyses also confirmed that the
compounds obtained via these two methods are consistent.
With 2-(2-methoxyphenyl)ethanamine 8 being available, the
required 2-(2-aminoethyl)phenol 9 was synthesized by de-
methylation using HBr in the presence of acetic acid
(Scheme 2). Hinduchelin B was prepared using a similar coup-
ling reaction to that of hinduchelin A with a yield of 65%.

Fig. 1 Biologically active naturally occurring oxazole-amide alkaloids.

Scheme 1 Retrosynthetic analysis for hinduchelins A–D.
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Synthesis of hinduchelins C and D

Based on the aforementioned investigation of the synthesis of
hinduchelins A and B, and with the intermediate 6b in hand,
the different substituted 2-phenylethanamines 9 or 10 can be
efficiently transformed into the corresponding target hindu-
chelins C and D with the yields of 74% and 82%, respectively.

Synthesis of hinduchelin A–D derivatives

In order to investigate the possible structure–activity relation-
ships, some derivatives of natural hinduchelins A–D have been
prepared according to the aforementioned method, and the
general synthetic route is described in Scheme 3.

Spectroscopy studies

All the structures of target compounds were demonstrated by
their 1H NMR, 13C NMR and mass spectroscopy, and all these
spectral data were in good agreement with the proposed struc-

tures. For 1H NMR studies of hinduchelin A, the typical signal
for the proton of CH attached OH was resonated as a triplet at
4.89 ppm, and the two sets of signals that emerged in their 1H
NMR spectrum in the ranges 3.76–3.72 and 3.50–3.46 ppm
were assigned to the protons of the methylene group linked to
the amino group. In addition, the signal peaks for three
methyl groups are very obvious, and the signals at lower fields
in the corresponding 1H NMR spectrum were attributed to the
NH and aromatic protons. In the original spectra, hinduche-
lins B–D has similar spectral characteristics to those of hindu-
chelin A. The 13C NMR spectra of compounds hinduchelins A–
D display obvious peaks in the alkyl region indicating the pres-
ence of the methyl, methylene and methine groups, and other
peaks appearing at lower fields were assigned to the hetero-
cyclic and aromatic moiety. The electrospray ionization mass
spectra (ESI-MS) for hinduchelins A–D were measured on a
WATERS ACQUITY UPLC® H-CLASS PDA (Waters®) instrument
(Xevo TQD), and the ion peak or adduct ions of the synthesized

Scheme 2 Synthesis of hinduchelins A–D. Reagents and conditions: (a) NaNO2, AcOH, H2O, 0–5 °C, 1.5 h, 95%; (b) HCl(g), AcOH, 5–10 °C, 2–3 h;
(c) Zn, AcOH, 45–50 °C, 3–4 h, 88% for 5a, and 82% for 5b; (d) NaOH, MeOH, H2O, rt, overnight, 83% for 6a, and 76% for 6b; (e) HOBt, EDCI, Et3N,
DMF, rt, 20–45 h, 64–82%; (f ) HBr, AcOH, reflux, 4 h; and (g) EtOH, reflux, 42 h, 18%.

Scheme 3 Synthesis of hinduchelin A–D derivatives.
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compounds were investigated. Experimentally, in the positive
ion mode, the ESI-MS of these compounds exhibit the obvious
molecular peaks of [M + H]+ and [M + Na]+ with relative abun-
dance. All the characteristic peaks observed in the 1H NMR
and 13C NMR spectra for hinduchelins A–D and their deriva-
tives are described in the ESI,† and they are almost consistent
with the reported data from ref. 28. In particular, the optical
rotation for hinduchelin A was also determined on an Autopol
IV (Serial #83376, Rudolph Research Analytical, USA), and the
value is [α]25D = −11.0 (c 0.1, MeOH), which demonstrated that
the configuration of synthesized hinduchelin A is consistent
with the reported structure.

Biological assays

With these compounds in hand, in order to explore their
potential applications, all the in vitro cytotoxicity, and antibac-
terial, fungicidal and insecticidal activities have been evalu-
ated. However, none of the compounds were cytotoxic toward
the SGC-7901, A875, HepG2, and MARC cell lines at 40 μg
mL−1, and the antibacterial activities of these compounds were
also very poor on the Gram-positive and negative organisms
such as Staphylococcus aureus subsp. aureus Rosenbach
ATCC25923, Erysipelothrix rhusiopathiae ATCC 19414,
Escherichia coli ATCC25922, and Pasteurella multocida subsp.
multocida ATCC 43137. In addition, their potential antifungal
activities against seven kinds of plant pathogenic fungi com-
monly found in agricultural systems, including Ralstonia
solanacearum, Botrytis cinerea, Septoria nodorum, Alternaria
solani, Fusarium culmorum, Rhizoctonia solani, and Uromyces
fabae, have also been evaluated, but all these compounds
exhibited a low antifungal activity at 50 μg mL−1. The insectici-
dal activity screening against Helicoverpa armigera and Aphis
craccivora Koch indicated that these compounds did not show
potential insecticidal activity at 100 μg mL−1.

Conclusions

In summary, the first total syntheses of the natural products
hinduchelins A–D and their derivatives were investigated, and
an efficient approach involving five or six steps to access these
molecules has been developed. The attempted synthetic route
was achieved using commercially available materials, and the
application of this synthetic methodology for the construction
of new structural analogues is well under way.
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