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ABSTRACT: Geminal bis(silanes) are versatile synthetic 
building blocks owing to their stability and propensity to 
undergo a variety of transformations. However, the scarcity of 
catalytic methods for their synthesis limits their structural 
diversity and thus their utility for further applications. Herein 
we report a new method for synthesis of geminal bis(silanes) 
by means of iron-catalyzed dihydrosilylation of alkynes. Iron 
catalysts were distinctly superior to the other tested catalysts, 
which clearly demonstrates that novel reactivity can be found 
by using iron catalysts. This method features 100% atom 
economy, regiospecificity, mild reaction conditions, and readily 
available starting materials. Using this method, we prepared a 
new type of geminal bis(silane) with secondary silane moieties, 
the Si–H bonds of which can easily undergo various 
transformations, facilitating the synthetic applications of these 
compounds. Preliminary mechanistic studies demonstrated 
that the reaction proceeds via two iron-catalyzed 
hydrosilylation reactions, the first generating β-(E)-
vinylsilanes and the second producing geminal bis(silanes).

Iron catalysis has attracted considerable attention for two main 
reasons: (1) iron is abundant, inexpensive, and biocompatible, 
and thus iron catalysts meet the requirements for green and 
sustainable chemistry applications, and (2) the unique 
electronic structures of iron give it the potential to mediate 
transformations that cannot be achieved with other catalysts. 
The development of new iron-catalyzed reactions and 
elucidation of the mechanisms of iron catalysis are among the 
most important topics in this field.1

Organosilanes are widely used in organic synthesis and 
materials science.2 In particular, geminal bis(silanes) are 
versatile synthetic building blocks owing to their stability and 
propensity to undergo a variety of transformations.3 However, 
the scarcity of reliable catalytic methods for their preparation 
has limited their structural diversity and thus the development 
of new transformations of these compounds. Syntheses based 
on stoichiometric reactions generally use tBuLi, sBuLi, or other 
bases, which either show poor selectivity or generate large 
quantities of waste.4 Geminal bis(silanes) have also been 
prepared by means of palladium-catalyzed insertion of 
benzylic carbenes into Si–Si bonds (Scheme 1a)5 and by 
copper-catalyzed double C(sp3)–Si coupling of geminal 
dibromides (Scheme 1b),6 but these two methods have poor 

atom economy and produce only geminal bis(silanes) with 
quaternary silyl groups, which are difficult to transform 
further. Hydrosilylation is a promising method for forming C–
Si bonds owing to its high efficiency and 100% atom economy,7 
and in fact hydrosilylation of quaternary vinylsilanes has been 
studied by several research groups; however, the 
regioselectivity of these reactions is generally poor (Scheme 
1c).8 Herein we report a new method of synthesizing geminal 
bis(silanes) by means of iron-catalyzed dihydrosilylation of 
alkynes. Iron catalysts were distinctly superior to the other 
types of catalysts that we tested, a result that clearly 
demonstrates that novel reactivities can be found by using iron 
catalysts. Our method features 100% atom economy, 
regiospecificity, mild reaction conditions, and readily available 
starting materials. More important, this method allows the 
highly efficient synthesis of previously unreported geminal 
bis(silanes) with secondary silyl groups, the Si–H bonds of 
which can undergo various transformations, giving this 
method great potential synthetic utility.
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Scheme1. Catalytic Synthesis of Geminal Bis(silanes).

Page 1 of 6

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 1. Catalysts used in this study.
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Table 1. Iron-Catalyzed Dihydrosilylation of Pent-4-yn-
1-ylbenzene with PhSiH3: Optimization of Reaction 
Conditions.

Ph

catalyst (5 mol %)
reductant (12 mol %)

solvent, 30 oC, 6 h

Ph SiH2Ph

SiH2Ph

Ph

5a3a

SiH2Ph

Ph

6a

SiH2Ph
1a

3

3

3 3

4a
Ph 3

SiH2Ph

+

Ph 3

SiH2Ph

2a
(2.2 equiv)

PhSiH3

7a

entrya catalyst reductant conv. 
(%)b

3a/4a/5a/6a/7ab

1 C1a EtMgBr 100 26/0/0/69/0
2c C1b EtMgBr 100 0/0/0/93/0
3 C1c EtMgBr 100 51/0/0/30/15
4 C2 EtMgBr <5 0/0/0/0/0
5 C3 EtMgBr 100 62/27/0/0/0
6 C4 EtMgBr 30 18/5/0/0/0
7 C5 EtMgBr <5 0/0/0/0/0
8 C6 EtMgBr 100 5/0/43/38/0
9 C7 EtMgBr 100 45/10/39/0/0
10 C8 EtMgBr <5 0/0/0/0/0
11 C9 none 100 22/0/0/0/0
12 C10 none 100 15/0/0/0/0
13 C11 none 100 33/0/0/0/0
14 C12 none 100 27/5/0/0/0
15 C1b MeMgCl 100 35/0/0/58/0
16 C1b NaBHEt3 20 17/0/0/0/0
17 C1b LiAlH4 100 68/0/0/25/0
18 C1b LiCH2TMS 100 69/0/0/24/0
19d C1b EtMgBr 100 0/0/0/93/0
20e C1b EtMgBr 100 0/0/0/88/0

a Reaction conditions: 2a (0.35 mmol), PhSiH3 (0.8 mmol), 
catalyst (5 mol %), reductant (12 mol %) in THF (1 mL) at 30 
oC. b Determined by 1H NMR using 1,3,5-trimethoxybenzene as 

internal standard. c Isolated yield of 6a is 90%. d Benzene as 
solvent. e Toluene as solvent.

We started by carrying out hydrosilylation reactions between 
pent-4-yn-1-ylbenzene (1a) and PhSiH3 in THF (Table 1). First, 
we evaluated iron catalysts with various ligands (Figure 1, C1–
C8). EtMgBr was used to reduce the Fe(II) complexes to the 
active low-valent iron species.9 These reactions can generate 
many possible products: monohydrosilylated products 3a, 4a, 
and 5a (depending on the regioselectivity and 
stereoselectivity), desired dihydrodsilylation product 6a, and 
hydrogenation product 7a. Controlling the selectivity is the key 
to making this reaction useful. Although most of the tested iron 
catalysts showed poor activity or selectivity, catalyst C1b, 
which has a 2,9-diaryl-1,10-phenanthroline ligand,10 gave 
desired geminal bis(silane) 6a in 93% yield by NMR and 90% 
isolated yield (Table 1, entries 1–10). It is worth mentioning 
that catalysts based on other metals, which have been widely 
used in hydrosilylation,7 gave only complex mixtures 
containing none of the desired product (entries 11–14). 
Replacing the iron in C1b with other metals afforded 
complexes that were inactive for the hydrosilylation reaction 
(see Table SI for details). In addition to EtMgBr, reductants 
such as MeMgCl, NaBHEt3, LiAlH4, and LiCH2TMS also 
promoted the hydrosilylation but gave only moderate to poor 
selectivity for geminal bis(silanes) (Table 1, entries 15–18). 
Hydrosilylation promoted by C1b in the presence of EtMgBr 
could also be performed in benzene or toluene with 
satisfactory yields (entries 19 and 20).

Scheme 2. Iron-Catalyzed Dihydrosilylation of Terminal 
Alkynes: Substrate Scopea
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a Reaction conditions: 1 (0.35 mmol), R2SiH3 (0.8 mmol), C1b 
(0.0175 mmol, 5 mol %), EtMgBr (0.042 mmol, 12 mmol %) in 
THF (1 mL) at 30 oC. b Used 10 mol % C1b and 24 mol % 
EtMgBr. c Game-scale experiment: 1j (10 mmol), PhSiH3 (22 
mmol), C1b (0.5 mmol, 5 mol %), EtMgBr (1.2 mmol, 12 mmol 
%) in THF (25 mL) at 30 oC.

Under the optimal reaction conditions (Table 1, entry 2), 
reactions of PhSiH3 with various terminal alkyne substrates 
were then evaluated (Scheme 2). All the tested substrates with 
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linear alkyl substituents (1a–1o) underwent dihydrosilylation 
to generate the corresponding geminal bis(silanes) (6a–6o) as 
the sole hydrosilylation products in good to high yields. Various 
functional groups, including amino (6d), fluoro (6e), chloro 
(6f), siloxy (6k), alkoxy (6l and 6m), alkenyl (6m), acetal (6n), 
and thioether (6o), were tolerated. Reactions of terminal 
alkynes having bulkier, branched alkyl substituents also ran 
smoothly under the standard conditions and gave satisfactory 
yields of the desired products (6p and 6q). In addition to 
phenylsilane, an alkylsilane (n-C12H25SiH3) could also be used 
as a silylation reagent to afford 6r. The reaction of PhSiH3 and 
substrate 1j was carried out on a gram scale with no loss in 
yield, and the ligand of C1b could be recovered in 87% yield 
after work-up (see SI for details). The catalyst was sensitive to 
the steric hindrance of the substrates: the reactions of PhSiH3 
with tert-butylacetylene (1s), 1-arylacetylenes (1t), and 
internal alkynes (1u) only afforded mono-hydrosilylation 
products 3s, 3t/4t, and 3u, respectively; the reaction of 1-
octyne (1i) with secondary silane (e.g. Ph2SiH2) afforded the 
monohydrosilylation product 3v, while the reactions with 
tertiary silanes, including (EtO)3SiH and Et3SiH were totally 
inactive. The catalyst was sensitive toward functional groups 
that can generate free protons or with strong coordinating 
ability (e.g. hydroxy, carbonyl, nitro, nitrile, and amide).
To elucidate the mechanism, we monitored the reaction by 1H 
NMR (Scheme 3a). Kinetic plots revealed the hydrosilylation of 
1a initially gave vinylsilane E-3a (within 10 min),11 which was 
then transformed to geminal bis(silane) 6a via a second 
hydrosilylation in a regiospecific manner. Interestingly, the 
mono-hydrosilylation of 1a with PhSiH3 promoted by the iron 
catalyst modified with a tridentate pyridine diamine ligand 
(C9) conducted by Tomas and coworkers resulted in Z-3a 
instead.9 These results indicate that different ligands might 
lead to different mechanisms in iron-catalyzed alkyne 
hydrosilylation. Reaction of E-3a with n-dodecylsilane under 
standard conditions afforded the geminal bis(silane) 6s in 73% 
yield (Scheme 3b). When deuterated silane (PhSiD3) was used 
instead of PhSiH3, the corresponding geminal bis(silane) (6g-
d) was obtained without obvious redistribution of the 
deuterium between the products (Scheme 3c). These results 
clearly indicate that the reaction proceeded via two highly 
regioselective iron-catalyzed hydrosilylation reactions to 
produce the geminal bis(silane).

Scheme 3. Control Experiments
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Based on the control experiments and by analogue with the 
hydrosilylation of unfunctionalized internal alkenes catalyzed 
by similar iron catalysts,10 we proposed a catalytic cycle for the 
second hydrosilylation (Scheme 4). The process of hydrogen 
migration (from Int-1 to Int-2 via TS-1) is the regioselectivity-
determining step. We attribute this selectivity mainly to the α-
silicon effect of vinyl silane intermediate. Because the 
electronegativity of Si atom is smaller than that of C atom, the 
charge density of β-position of the vinyl silane is significantly 
lower than its α-position. Thus, the hydride of iron catalyst 
prefers to attacked β-position of the vinyl silane to give geminal 
bis(silane) accordingly. The density functional calculation also 
suggests that the energy barrier of α-selectivity is 6.9 kcal/mol 
lower than that of β-selectivity (see Figure SX for details). 

Scheme 4. Proposed Mechanism of Second Hydrosilylation
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Unlike the known geminal bis(silanes) with quaternary silyl 
groups,3–6 the geminal bis(silanes) produced in this study have 
secondary silyl groups. The four Si–H bonds of 6 can undergo 
various transformations, which makes them synthetically 
useful. For instance, the Si–H bonds of 6j could be transformed 
to Si–O bonds (7a–7e) or Si–F (7f) bonds with good yields 
(Scheme 5a). After the modification of the silyl groups of the 
geminal bis(silanes), their C–Si bonds became easy to 
functionalize. For instance, pinacol-hmodified compound 7b 
could easily be converted to alkene 8 with excellent E-
selectivity in the presence of CsF (Scheme 5b).12 More 
interestingly, methoxy-modified compound 7a underwent a 
tandem Hayama coupling/oxidation reaction to give 9. In 
addition, the two C–Si bonds of 7a could be transformed into a 
C–C bond and a C–O bond, respectively (Scheme 5c). Finally, 
geminal bis(silane) 6j could be used to synthesize new 
polydentate hybrid organic–inorganic xerogels (10 and 11) 13 
or spherosilicone 1214 through simple condensation with 
water or 2,2-bis(hydroxymethyl)propane-1,3-diol in the 
presence of a [RuCl2(p-cymene)]2, Pd(dba)2 or NaOH as a 
catalyst, respectively (Scheme 5d). The diamantane-like 12 
represent a new type spherosilicone. Again, these results 
demonstrate that this iron-catalyzed dihydrosilylation of 
alkynes affords a new type of geminal bis(silane) and 
accordingly opens up the possibilities for other uses of geminal 
bis(silanes).
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In summary, we have described a protocol for iron-catalyzed 
dihydrosilylation reactions between aliphatic terminal alkynes 
and primary silanes, which produces geminal bis(silanes) with 
secondary silyl groups. Because the products contain Si–H 
bonds, which permit various previously unreported 
transformations, this protocol not only provides a 
straightforward route to geminal bis(silanes) but also 
enhances the utility of these silane reagents. Work on 
extending the substrate scope of the reaction and transforming 
the geminal bis(silane) products obtained by means of this 
protocol is underway in our laboratory and will be reported in 
due course.

Scheme 5. Transformations of the Products.
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