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Abstract: The synthesis of 5,6-bicyclic thymine:thymine nucleoside containing a conformationally restricted 
dioxane acetal has been achieved from 2'-O-allyl 5-methyl uridine. The two diastereomers were separated and 
incorporated in a single position within an oligonucleotide (ON) sequence. The binding properties of these ONs 
when hybridized to complementary RNA and DNA were evaluated by thermal denaturation (Tm) analysis. 
Lower Tins for both diastereomers were obtained when compared to the corresponding control phosphodiester 
ON. © 1997, Elsevier Science Ltd. All rights reserved. 

The covalent conformational preordering of a ligand to resemble its bound state is a central concept of ligand 

receptor design.l,2 The classic crown ether work has spawned success in many structural recognition areas.l,2 

Attempts to preorder an ON to resemble its bound helical conformation have recently been reported. 3,4 Acetal 

internucleotide connections with ONs offer the opportunity to preorder key torsion angles of the backbone. 
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The formacetal intemucleotide linkage is a simple, neutral analog for phosphate. 5 The 2' oxygen of ribose 

can be linked via a carbon spacer to the acetal carbon creating a connection reminiscent of polysaccharides. This 

dioxane acetal has been examined by modeling studies with the prediction that the R isomer could exist in the 

appropriate preordered conformation for formation of A-type helix with RNA. 6 A key feature of this restriction is 

that it should allow the ribose ring to assume its normal or 2' exo "North" conformation. The synthesis of dimers 

bearing this linkage has been achieved directly from the 2'-O-allyl nucleoside derivatives. The binding postulate 

has been tested by synthesizing a thymine: thymine dimer, separating diastereomers, incorporating each into an 

ON, and measuring the ON's binding properties with complementary DNA and RNA. 
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Scheme 1. Synthesis of Dinucleosides 8 and 9 
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(a) cat. OsO 4, NalO 4, dioxane/H20, rt; (b) 
PacCl, pyridine, CH2C12, rt; (c) 75% 
aqueous HCO2H, 50 °C; (d) Ph2POCI, 
pyridine, DMAP, CH3CN, 0 °C; (e) 5, 
TMSOTf, CH3CN/C1CH2CH2C1,-40 °C, 
(f) NH3/MeOH, 0 °C; (g) DMTC1, 
pyridine, CHzC12, rt; (h) TBAF, THF, rt; (i) 
2-chloro-4H- 1,3,2-benzodioxa-phosphorin- 
4-one, pyridine, CH2C1 z, 0 ° C to rt. 
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2'-O-allyl-5-methyl uridine (1) was derived from thymine and ribose in 6 steps, as described in the 
literature. 7,8 Oxidation of 1 with catalytic OsO4/NaIO4 afforded hemiacetal 2 which was further transformed into 

the 5'-phenoxyacetyl (Pac) derivative 3 in 2 steps. Treatment of 3 with diphenylphosphinic chloride produced 

diphenylphosphinate 4. 9 Coupling of 4 with 3'-O-tert-butyldiphenylsilyl thymidine 5 and selective removal of the 
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5'-O-Pac protecting group gave a 1:5 ratio of dinucleosides 6 and 7, which were separated by flash silica gel 

chromatography.lO,11 Dimethoxytritylation and desilylation followed by phosphitylation 12 of 6 and 7 generated 

the corresponding H-phosphonates 8 and 9, respectively. Compounds 8 and 9 were incorporated into 12mer ONs 

as TR.T and TSoT dimer blocks by standard solid-phase DNA chemistry using a H-phosphonate protocol. 13,14 

The binding properties of ONs with both single stranded RNA and DNA were evaluated by Tm analysis 

(Table 1). When hybridized to an RNA target, the Tm of the ON containing dimer 8 was lower than that of the 

phosphodiester control ON by 8 °C and no binding was observed for the ON containing dimer 9. Similar results 

were also obtained for the corresponding DNA complement. 

Table 1. Tm Analysis of ONs Against RNA and DNA 
5' TCMATTT~I"TTCMTI" 

Tm °C 

T__T_T = RNA DNA 

Phosphodiester control 37.0 39.5 

3', 5' Formacetal 36.0 38.0 

R Dioxane 8 29.0 30.5 

S Dioxane 9 <25 <25 
*C M is 5-methyl-2'-deoxycytidine. Tm values were determined in 
a buffer solution of 140 mM KCI/5mM Na2HPO4/I mM MgC12 at 
pH 7.2 and the concentration of all ONs was about 2 ~tM. Tm 
values are _+0.5 °C. 

The poor binding affinity of the R isomer was not predicted by modeling studies. 6 Such studies did not take 

into account the conformational state of adjacent nucleosides. These 2' deoxyribose nucleosides would be largely 

in the 2' endo or "South" conformation. Consequently, the local conformation of the ribose ring would likely 

alternate between "North" and "South" conformations. Such rapid conformation switching has been shown to 

result in duplex instability relative to continuous "North" or "South" conformation. 15 This instability may be 

amplified in the current case given the rigidity of the analog ribose ring. Such conformationally restricted ONs 

bearing 2'-O-methyl substituents on all non-restricted nucleoside ribose positions could be expected to provide 

enhanced binding. Testing awaits further synthesis. 
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