Circular Dichroism Measurements. (-)-3a **·HCl.** The CD measurements were obtained at a concentration of $9.21 \times 10^{-3} M$ at 25° : $[\theta]_{360} \pm 0$, $[\theta]_{349} - 124$, $[\theta]_{332} - 157$, $[\theta]_{318} - 122$, $[\theta]_{316} - 94$.

(+)-3a.HCl. The CD measurements were obtained at a concentration of $9.44 \times 10^{-3} M$ in MeOH at 25°: $[\theta]_{360} \pm 0$, $[\theta]_{349} \pm 132$, $[\theta]_{332} \pm 150$, $[\theta]_{317} \pm 115$, $[\theta]_{314} \pm 104$.

(+)-3b·HCl. The CD measurements were obtained at a concentration of $8.96 \times 10^{-3} M$ in MeOH at 25° : $[\theta]_{360} \pm 0$, $[\theta]_{350} + 39$, $[\theta]_{334} + 41$, $[\theta]_{320} + 26$.

(-)-3b·HCl. The CD measurements were obtained at a concentration of $9.04 \times 10^{-3} M$ in MeOH at 25°: $[\theta]_{360} \pm 0$, $[\theta]_{350} -41$, $[\theta]_{334} -40$, $[\theta]_{320} -19$.

(-)-4a·HCl. The CD measurements were obtained at a concentration of $1.84 \times 10^{-2} M$ in MeOH at 25°: $[\theta]_{360} \pm 0$, $[\theta]_{321} + 293$, $[\theta]_{313} - 1059$, $[\theta]_{299} - 1631$.

(+)-4a.HCl. The CD measurements were obtained at a concentration of $1.80 \times 10^{-2} M$ in MeOH at 25°: $[\theta]_{360} \pm 0$, $[\theta]_{321} - 292$, $[\theta]_{313} + 1152$, $[\theta]_{299} + 1753$.

(+)-4b·HCl. The CD measurements were obtained at a concentration of $1.59 \times 10^{-2} M$ in MeOH at 25°: $[\theta]_{360} \pm 0$, $[\theta]_{319} - 897$, $[\theta]_{308} - 120$, $[\theta]_{297} + 561$.

(-)-4b·HCl. The CD measurements were obtained at a concentration of $1.59 \times 10^{-2} M$ in MeOH at 25°: $[\theta]_{360} \pm 0$, $[\theta]_{319} +929$, $[\theta]_{308} +125$, $[\theta]_{197} -498$.

Acknowledgment. The authors wish to express their gratitude to Drs. Bing T. Poon and Richard E. Strube for many helpful suggestions and discussions during the course of this work. This work was supported by the U. S. Army Medical Research and Development Command under Research Contract DADA-17-71-C-1012. This is Contribution No. 1191 to the Army Research Program on Malaria.

References

(1) G. R. Coatney, W. C. Cooper, N. B. Eddy, and J. Greenberg,

"Survey of Antimalarial Agents," Public Health Monograph No. 9, U. S. Government Printing Office, Washington, D. C., 1953.

- (2) F. Y. Wiselogle, "A Survey of Antimalarial Drugs, 1941– 1945," J. W. Edwards, Ann Arbor, Mich., 1946.
- (3) E. A. Nodiff, K. Tanabe, C. Seyfried, S. Matsurra, Y. Kondo, E. H. Chen, and M. P. Tyagi, J. Med. Chem., 14, 921 (1971).
- (4) R. E. Olsen, J. Med. Chem., 15, 207 (1972).
- (5) C. J. Ohnmacht, A. R. Patel, and R. E. Lutz, J. Med. Chem., 14, 926 (1971).
- (6) F. I. Carroll and J. T. Blackwell, Chem. Ind. (London), 574 (1972).
- (7) C. L. Stevens, A. B. Ash, A. Thuillier, J. H. Amin, A. Balys, W. E. Dennis, J. P. Dickerson, R. P. Glinski, H. T. Hanson, M. D. Pillai, and J. W. Stoddard, J. Org. Chem., 31, 2593 (1966).
- (8) M. Raban and K. Mislow, Top. Stereochem., 2, 216 (1967).
- (9) J. Jacobus, M. Raban, and K. Mislow, J. Org. Chem., 33, 1142 (1968)
- (10) J. K. M. Sanders, S. W. Hanson, and D. H. Williams, J. Amer. Chem. Soc., 94, 5325 (1972), and references cited therein.
- (11) H. L. Goering, J. N. Eikenberry, and G. S. Koermer, J. Amer. Chem. Soc., 93, 5913 (1971).
- (12) R. R. Fraser, M. A. Petit, and J. K. Saunders, Chem. Commun., 1450 (1971).
- (13) G. M. Whitesides and D. W. Lewis, J. Amer. Chem. Soc., 93, 5914 (1971).
- (14) W. H. Pirkle and S. D. Beare, J. Amer. Chem. Soc., 91, 5150 (1969).
- (15) L. H. Welch, J. Amer. Chem. Soc., 71, 3500 (1949).
- (16) L. M. Jackman and S. Sternhell, "Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry," 2nd ed, Pergamon Press, Elmsford, N. Y., 1969, p 281.
- (17) L. A. Mitscher, P. W. Howison, J. B. LaPidus, and T. D. Sokoloski, J. Med. Chem., 16, 93 (1973).
- (18) T. S. Osdene, P. B. Russell, and L. Rane, J. Med. Chem., 10, 431 (1967).
- (19) L. H. Welsh, J. Amer. Chem. Soc., 69, 128 (1947).

Folic Acid Analogs. Modifications in the Benzene-Ring Region. 4. 3'-Ethyl- and 3'-Isopropylfolic Acids[†]

Eugene C. Roberts* and Y. Fulmer Shealy

Kettering-Mever Laboratory, Southern Research Institute, Birmingham, Alabama 35205. Received July 30, 1973

3'-Ethylfolic acid (12a) and 3'-isopropylfolic acid (12b) were synthesized as part of a program to obtain folic acid analogs, the reduced forms of which may have an altered ability to function as one-carbon transfer agents. The condensation of 2-acetamido-6-formylpteridin-4(3H)-one (10) with diethyl N-(4-amino-3-ethylbenzoyl)-L-glutamate (9a) and with diethyl N-(4-amino-3-isopropylbenzoyl)-L-glutamate (9b) afforded anils 11a and 11b which were reduced with sodium borohydride. Anaerobic alkaline hydrolysis of the reduction products gave the desired folic acid analogs 12a and 12b. Analogs 12a and 12b were inactive when tested against leukemia L1210 in mice and were not cytotoxic to KB cells in culture. Although 12a and 12b were noninhibitory toward pigeon liver dihydrofolate reductase, the dihydrofolate reductase enzyme was apparently stimulated by 12b at higher concentrations. When tested vs. Streptococcus faecium, 12a was an effective inhibitor while 12b was growth-supporting. The differences in the behavior of 12a and 12b in the dihydrofolate reductase and S. faecium systems were rationalized as possibly being attributable to a combination of relative steric requirements and hydrophobic bonding.

Some of the folic acid analogs previously synthesized in this laboratory have been designed so that the electron density at N^{10} is decreased^{1,2} or increased³ relative to folic acid, and a mechanistic interpretation of the means by which these changes may potentially affect the participation of the reduced forms of the analogs in folate metabolism has been postulated.¹ We now wish to report the synthesis of N-[4-[](2-amino-3,4-dihydro-4-oxo-6pteridinyl)methyl]amino]-3-ethylbenzoyl]-L-glutamic acid (3'-ethylfolic acid, **12a**) and N-[4-[[(2-amino-3,4-dihydro-4-oxo-6-pteridinyl)methyl]amino]-3-isopropylbenzoyl]-Lglutamic acid (3'-isopropylfolic acid, **12b**) in which additional changes are effected relative to folic acid. Analogs **12a** and **12b** have a slightly increased electron density at N¹⁰ because of the positive R effect⁴ of the ethyl and isopropyl groups attached to the benzene ring. The alkyl groups may provide steric hindrance to reactions at N¹⁰ during the formation of one-carbon transfer agents by the reduced forms of the analogs. Also, the relative bulk of the alkyl groups and the increased lipophilic character

⁺ This investigation was supported by Contract NIH-NCI-C-71-2021 from the Division of Cancer Treatment, National Cancer Institute, National Institutes of Health, Department of Health, Education and Welfare; biological tests were carried out under terms of Contract NIH-NCI-C-71-2098.

imparted to the analogs by their presence may serve to alter their enzyme-binding abilities. It was anticipated that any or all of these effects might potentially affect folate metabolism at sites other than, or in addition to, the dihydrofolate reductase stage. This work is part of a program devoted to the synthesis of potential antineoplastic agents.

Chemistry. The synthetic route to intermediates 9a and 9b, required for the reactions with 10, is shown in Scheme I. Commercially available 2-nitroethylbenzene (1a) was converted to 4a via 2a and 3a, according to the

Scheme I

procedures previously described by Altau, et al.⁵ Fractional distillation of the nitration products of cumene afforded 1b, \ddagger which was similarly converted⁵ to 4b via 2b and 3b. Acid hydrolysis of the nitriles, 5a and 5b, obtained from 4a and 4b by the method of Friedman and Schechter,⁷ yielded 4-amino-3-ethylbenzoic acid (6a) and 4-amino-3isopropylbenzoic acid (6b). The reaction of 6a with carbobenzoxy chloride by the general Schotten-Baumann procedure⁸ gave a poor yield (24%) of the protected amino acid, 7a. The reaction of 6b with carbobenzoxy chloride in an aqueous dioxane solution containing Na₂CO₃ afforded 7b in 80% yield. The coupling of 7a and diethyl glutamate with dicyclohexylcarbodiimide and the hydrogenolysis of 8a were accomplished by standard techniques without difficulty. The reaction of 7b, diethyl glutamate, and dicyclohexylcarbodiimide afforded a mixture of 8b and the Nacylurea produced by rearrangement⁹ of the product of

 \ddagger Intermediate 1b was obtained by fractional distillation of the products of nitration of cumene: bp 110.5-112.5° (7.6 mm); lit.⁶ bp 115-117° (12 mm).

the reaction of 7b with dicyclohexylcarbodiimide. Attempted chromatographic isolation of 8b from this mixture was unsuccessful, and the partially purified 8b was subjected to hydrogenolysis. The crude product of hydrogenolysis was subjected to column chromatography, and 9b was obtained as a mixture with N-cyclohexyl-(4amino-3-isopropyl)benzamide. Pmr data indicated that the mixture contained approximately 85 mol % of 9b, and this material was used without further purification.

The desired analogs, 12a and 12b, were obtained from the reactions of 10 with 9a and 9b in yields of 28 and 25%, respectively, according to a previously described³ method of synthesis of folic acid analogs. Purification was accomplished by utilizing DEAE-cellulose ion-exchange chromatography. The anils 11a and 11b were not isolated but were assumed to be intermediates in the reaction.

Biological Evaluation. Analogs 12a and 12b were administered on a single-dose schedule to mice within 24 hr of implantation ip with 10⁵ L1210 cells. Analog 12a, at doses of 200, 100, and 50 mg/kg, produced no significant increases ($T/C \ge 25\%$) in life span over control animals; the degree of weight loss observed in animals treated with 12a in this test indicated that 200 mg/kg approached the maximum tolerated dose. Analog 12b exhibited chronic toxicity at 400 mg/kg; at 200 mg/kg, 12b was nontoxic and produced no significant increase in life span over control animals. Analog 12a was also administered daily (qd 1-9) at a dose of 100 mg/kg to mice implanted ip on day 1 with 10⁵ L1210 cells, and no significant increase in life span over control animals was observed.

When tested at 1, 10, and 100 μ g/ml, compounds 12a and 12b exhibited no cytotoxicity *vs.* KB cells in culture.

When analogs 12a and 12b were tested¹⁰ at pH 7.4 for inhibition of pigeon liver dihydrofolate reductase at a concentration of 1×10^{-5} M, neither analog was inhibitory. At a concentration of $1 \times 10^{-4} M$, 12a was again noninhibitory while 12b caused an apparent doubling in the rate of reduction of dihydrofolic acid. This phenomenon may have been due either to stimulation of the normal enzymatic reaction by 12b or to the substrate activity of 12b, since the standard test method¹⁰ which was used indirectly measures the dihydrofolate reductase-mediated conversion of dihydrofolic acid to tetrahydrofolic acid by directly measuring the disappearance (decreasing optical density at 340 nm) of TPNH as it is oxidized to TPN.¹¹ Since folic acid itself is not a substrate for dihydrofolate reductase at pH 7.4,¹¹ and since 12b did not exhibit substrate activity (at a concentration of $6 \times 10^{-6} M$), stimulation of the normal enzymatic reaction by 12b becomes the more plausible explanation. The differentiation by dihydrofolate reductase between 12a and 12b may be due to a combination of steric requirements and hydrophobic bonding.¹¹ Even though the possibility exists that 12a may be accommodated by the enzyme in such a way that hydrophobic bonding may occur, the absence of enzyme inhibition or other effects indicates that the 3'-ethyl function of 12a is not participating to any detectable extent in such hydrophobic bonding. It is further possible that the enzyme may accommodate 12b at the normal folic acid binding site or within the neighboring hydrophobic site¹¹ in such a way as to allow hydrophobic bonding by the 3'-isopropyl function. Yet increased binding of 12b within this region would presumably lead to enzyme inhibition and not to the stimulation of the enzyme, which was actually observed. It may then be postulated that the 3'-isopropyl function of 12b is not accommodated at or within the normal binding site because of steric requirements, and that 12b may, therefore, be participating in hydrophobic bonding elsewhere on the enzyme in such a way as to induce stimulation of the normal enzymatic reaction.

Analog 12a effected 50% inhibition of Streptococcus faecium ATCC 8043 at a concentration of 2.6 \times 10⁻⁸ M; in a simultaneous test, methotrexate was 37 times more effective $(I_{50} = 7 \times 10^{-10} M)$ than 12a. In a previous test,² methotrexate ($I_{50} = 3.5 \times 10^{-9} M$) had been 43 times more effective vs. S. faecium than tetrahydrohomofolate ($I_{50} = 1.5 \times 10^{-7} M$). Thus, 12a and tetrahydrohomofolate appear to be essentially equivalent as inhibitors of S. faecium. 3'-Methylfolic acid, a compound very similar in structure to 12a, has also been reported¹² previously to be an inhibitor of S. faecium. In contrast to 3'-methylfolic acid and 12a, analog 12b appeared to be growth-supporting at concentrations above $1 \times 10^{-7} M$ when tested vs. S. faecium. The concentration of folic acid present in each of the tests reported herein was $2.5 \times 10^{-10} M$, the concentration required to give one-half maximum growth under standard conditions.¹³ Unlike the dihydrofolate reductase enzyme alone, the S. faecium microorganism has the ability to reduce folic acid to dihydro- and tetrahydrofolic acids and may, therefore, have the potential for converting 3'-methylfolic acid, 12a, and 12b to the corresponding dihydro and tetrahydro forms. Although this reduction is normally essential for growth-supporting activity, such activity for 12b may possibly be attributed to the demonstrated ability of 12b (unreduced form) to stimulate the dihydrofolate reductase enzyme. While it is not possible to state, from the data presently available, in which stage of oxidation (or reduction) 3'-methylfolic acid and 12a are inhibiting S. faecium, it is, however, essential that 3'-methylfolic acid and 12a undergo reduction by S. faecium to their tetrahydro forms if the reason for their inhibition of S. faecium is to be attributed to the increased electron density¹ at N¹⁰. However, other analogs³ of folic acid having increased electron density at N^{10} were not found to be inhibitory toward S. faecium. While this does not eliminate the possibility that increased electron density at N^{10} contributes to the inhibition of S. faecium, it does suggest that the inhibition of S. faecium by 3'methylfolic acid and 12a, perhaps in one of their reduced forms, may be due to hydrophobic bonding by the 3'methyl and 3'-ethyl functions.

While folic acid analogs 12a and 12b possessed no antileukemic activity and were not cytotoxic, the differences in their behavior toward dihydrofolate reductase and toward S. faecium are significant. These differences, as described and rationalized above, are most likely attributable to a combination of relative steric requirements and hydrophobic bonding.

Experimental Section

Where analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4\%$ of theoretical values. Melting points were determined with a Kofler Heizbank (gradiently heated bar) apparatus. Pmr data were determined with a Varian XL-100 spectrometer and are given in parts per million downfield from Me₄Si. Uv spectra were determined with a Cary Model 17 recording spectrometer and wavelengths are given in nanometers. Linde Type 4A molecular sieves were used to dry solvents designated anhydrous. Na₂SO₄ was used to dry solutions in organic solvents, and solvent evaporations were done in vacuo. The DEAE-cellulose used was regular capacity Mannex (Schwarz/Mann Bioresearch, Inc.), and it was prepared for column chromatographic use (phosphate form) as described previously.1 Solutions of NaCl used for elution were maintained at pH 7.0 by the use of 0.005 M potassium phosphate buffer and were 0.2 M in 2-mercaptoethanol (antioxidant). Washing of 12a and 12b by centrifugation was done with dilute HCl (0.004 N HCl). Hydrated analytical samples were handled in a dry bag.

The was run on MN 300 cellulose-coated plates (Cell-A) obtained from Analtech, Inc., Bakerflex DEAE-cellulose sheets (Cell-DEAE), and Brinkmann's silica gel H (SGH); SGH was used for column chromatography unless indicated otherwise. **4-Bromo-2-isopropylacetanilide** (4b). 2-Isopropylacetanilide [3b, 24.0 g, 0.135 mol, mp 73° (lit.⁶ 70°), prepared from 2-nitrocumene[‡] according to the procedures of Altau, *et al.*⁵] was brominated according to Altau, *et al.*,⁵ and the product was recrystallized from C₆H₆: 23.4 g (68% yield); mp 139°. *Anal.* (C₁₁H₁₄NOBr) C, H, N.

4-Acetamido-3-ethylbenzonitrile (5a). 4-Bromo-2-ethylacetanilide⁵ (4a, 24.2 g, 0.1 mol) was heated for 12 hr at reflux in 65 ml of DMF containing 1 ml of H₂O and 10.0 g (0.11 mol) of CuCN.⁷ The reaction solution was poured into 150 ml of a warm aqueous solution of NaCN (50 g), and, after vigorous shaking, the mixture was extracted with EtOAc. The EtOAc-soluble residue was recrystallized from EtOH: 13.8 g (73% yield); mp 181°. Anal. (C₁₁H₁₂N₂O) H, N; C: calcd, 70.18; found, 69.68.

4-Acetamido-3-isopropylbenzonitrile (5b). Compound 4b (23.0 g, 0.09 mol) was allowed to react with CuCN (8.9 g, 0.099 mol) in DMF (50 ml) as described for 5a. The EtOAc-soluble residue was recrystallized from C_6H_6 : 15.5 g (85% yield); mp 141°. Anal. ($C_{12}H_{14}N_2O$) C, H, N.

4-Amino-3-ethylbenzoic Acid (6a). The benzonitrile 5a (13.0 g, 0.069 mol) was heated at reflux for 6 hr in 100 ml of concentrated HCl. After cooling, the reaction was made alkaline with 50% NaOH and filtered. Acidification (HCl) of the filtrate to pH 4.5 afforded a crystalline solid which was recrystallized from H₂O (charcoal): off-white crystals; 7.2 g (63% yield); mp 140°. Anal. (C₉H₁)NO₂) C, H, N.

4-Amino-3-isopropylbenzoic Acid (6b). The benzonitrile 5b (14.8 g, 0.073 mol) was hydrolyzed and recrystallized as described for 6a: 10.08 g (77% yield); mp 152°; pmr (CF₃CO₂D) δ 8.39 (d, 1 H, C₂-H), 8.17 (doublet of doublets, 1 H, C₆-H), 7.62 (d, 1 H, C₅-H), 3.24 (septuplet, 1 H, isopropyl CH), 1.44 (d, 6 H, isopropyl CH₃'s). Anal. (C₁₀H₁₃NO₂) C, H, N.

4-Benzyloxycarbonylamino-3-ethylbenzoic Acid (7a). Carbobenzoxy chloride (8.0 g, 0.045 mol) and 3 N NaOH (45 ml) were added alternately and in portions⁸ to a solution of 6a (7.0 g, 0.041 mol) in 15 ml of 3 N NaOH maintained at 0-5°. The solid that separated during the 6-hr reaction period was isolated by filtration and washed with 2 N HCl and with H₂O. The combined filtrates were acidified to pH 4.5, and a second solid was isolated and washed with H₂O. The combined solids were recrystallized from HOAc: white needles; 3.03 g (24% yield); mp 229°. Anal. (C₁₇H₁₇NO₄) C, H, N.

4-Benzyloxycarbonylamino-3-isopropylbenzoic Acid (7b). Carbobenzoxy chloride (9.75 g, 0.057 mol) was added to a solution of 6b (10.3 g, 0.057 mol) in 820 ml of dioxane and 570 ml of H₂O containing 6.1 g (0.057 mol) of Na₂CO₃. The reaction mixture was stirred and maintained at 5-10° for 7 hr during which time additional carbobenzoxy chloride was added (9.75 g after 1 hr and 9.75 g more after 3.5 hr). The reaction mixture was acidified to pH 4.5 and, after standing overnight, afforded a red oil (7.6 g) and a clear supernatant solution. Removal of the dioxane by partial evaporation of the decanted supernatant afforded a pink solid (10.4 g, mp 178-180°).

A CHCl₃ solution of the red oil was washed with aqueous Na₂CO₃, and acidification of the Na₂CO₃ washings afforded a solid (1.8 g, mp 184°). Evaporation of the CHCl₃ layer yielded a liquid which was found to contain the benzyl alcohol ester (m/e 403, M⁺) of 7b and carbobenzoxy chloride (m/e 170, M⁺). The carbobenzoxy chloride was esterified by allowing the liquid to stand in EtOH, and the product of this treatment was hydrolyzed in 760 ml of dioxane-0.2 N NaOH (1:1) for 24 hr. Acidification of the hydrolysate and evaporation of the dioxane yielded a solid (3.9 g, mp 184°).

The combined solids (16.1 g) were recrystallized from C₆H₆: 14.4 g (80% yield); mp 185°. Anal. (C₁₈H₁₉NO₄) C, H, N.

Diethyl N-(4-Benzyloxycarbonylamino-3-ethylbenzoyl)-Lglutamate (8a). A solution of 7a (2.86 g, 9.6 mmol), DCI (1.98 g, 9.6 mmol), and diethyl L-glutamate hydrochloride (2.30 g, 9.6 mmol) in 100 ml of anhydrous pyridine was allowed to react for 3 days. The solid formed was isolated by filtration and washed with CHCl₃; more solid was isolated by CHCl₃ trituration of the total filtrate residue. The CHCl₃ filtrate was washed with 1 N HCl, aqueous NaHCO₃, and H₂O and dried before evaporation, and the residue was purified by column chromatography [SGH, 100 g; CHCl₃-MeOH (97:3)]: 2.30 g (50% yield); mp 122-123°. Anal. (C₂₆H₃₂N₂O₇) C, H, N.

Diethyl N-(4-Amino-3-ethylbenzoyl)-L-glutamate (9a). H₂ was bubbled continuously for 6 hr into a suspension of Pd (from 806 mg of PdCl₂) in EtOH containing 2.2 g (4.5 mmol) of 8a. The catalyst was removed by filtration, the filtrate was evaporated, and the residue was suspended in aqueous NaHCO₃ and extracted with CHCl₃. The CHCl₃ extract was washed with H₂O, dried, and evaporated: crystals; 1.45 g (91% yield); mp 109°; pmr (CF₃CO₂D) δ 8.02 (d, 1 H, C₂-H), 7.96 (doublet of doublets, 1 H, C₆-H), 7.64 (d, 1 H, C₅-H); the remainder of the pmr spectrum was as expected. Anal. (C₁₈H₂₆N₂O₅) C, H, N.

Diethyl N-(4-Amino-3-isopropylbenzoyl)-L-glutamate (9b). A solution of 7b (14.4 g, 46 mmol), DCI (9.47 g, 46 mmol), and diethyl L-glutamate hydrochloride (11.05 g, 46 mmol) in 600 ml of anhydrous pyridine was allowed to stir for 6 days, at which time tlc [SGH, CHCl₃-MeOH (97:3)] indicated that only a trace of 7b remained unreacted. The reaction mixture was treated as described for 8a, and mass spectral analysis of the residue obtained by evaporation of the CHCl₃ filtrate indicated the presence of the desired 8b (m/e 364, M⁺) and 1-(4-benzyloxycarbonylamino-3isopropylbenzoyl)-1,3-dicyclohexylurea (m/e 519, M⁺). Attempted purification of 8b by column chromatography was unsuccessful [900 g of Davison silica gel from Applied Science Laboratories, 140-200 mesh, CHCl₃-C₆H₆ (85:15)].

The best column fractions (16.45 g) in 300 ml of EtOH were added to prereduced (H₂) PdCl₂ (7.1 g, 40 mmol) in 300 ml of EtOH; H_2 was bubbled continuously for 5 hr into this suspension. Removal of the catalyst by filtration and evaporation of the filtrate afforded a residue which was dissolved in CHCl3 and washed with aqueous NaHCO3 and H2O. The CHCl3 residue was subjected to column chromatography [SGH, 600 g, CHCl3-MeOH (99:1)], and the best fractions were combined (4.3 g, 26% yield from 7b). Mass spectral data indicated the presence of 9b (m/e)364, M⁺) and N-cyclohexyl-(4-amino-3-isopropyl)benzamide $(m/e\ 260,\ M^+)$: pmr (CF₃CO₂D) δ 8.08 (d, C₂-H), 7.88 (doublet of doublets, C₆-H), 7.62 (d, C₅-H), 5.01 (m, NCH of glutamate), 4.38 (six lines, CH₂O of esters), 3.61 (m, NCH of cyclohexyl), 3.24 (septuplet, CH of isopropyl), 2.58 (m, CH₂CH₂ of glutamate), 1.90 [m, (CH₂)₅ of cyclohexyl], 1.28-1.50 (six lines, CH₃ of esters, isopropyl); relative integral areas correspond to a mixture of 9bcyclohexylamide of approximately 85:15. This material was used without further purification for the preparation of 12b.

N-[4-[[(2-Amino-3,4-dihydro-4-oxo-6-pteridinyl)methyl]amino]-3-ethylbenzoyl]-L-glutamic Acid (3'-Ethylfolic Acid, 12a). A solution of 9a (1.005 g, 2.87 mmol) and 10 (670 mg, 2.87 mmol) in 14 ml of anhydrous DMSO was stirred at room temperature for 4 days; the reaction mixture was added to anhydrous DMF (130 ml) containing 137 mg (3.59 mmol) of NaBH₄. After 96 hr, the DMF was evaporated, and the residue was hydrolyzed at room temperature in an N₂ atmosphere in 360 ml of 0.2 N NaOH for 16 hr.

Acidification (HCl) to pH 3.5 afforded a yellow solid which was isolated and washed once with dilute HCl by centrifugation; freeze-drying of the wet solid afforded 779 mg of crude 12a. A solution (final pH 6.8) of this material in 1500 ml of dilute NH₄OH containing 22 ml of 2-mercaptoethanol was applied to a DEAEcellulose column (30 g, 2.8×50 cm, phosphate form), and the column was then washed with 500 ml of $0.2 \ M$ 2-mercaptoethanol. The column was eluted with a linear gradient of NaCl (0.0-0.7 MNaCl, 4000 ml total volume); input of 0.7 M NaCl from the reservoir was ended at the halfway point in the gradient, and elution was continued with 0.35 M NaCl. All fractions were monitored by uv absorbance, and those fractions collected between 200 and 610 ml of 0.35 M NaCl were pooled and acidified (HCl) to pH 3.5. The yellow solid was isolated and washed once with dilute HCl by centrifugation and then redissolved in 500 ml of dilute NaOH containing 5 ml of 2-mercaptoethanol. This solution was acidified (HCl) to pH 3.5 and refrigerated, and the solid was isolated and washed three times with dilute HCl by centrifugation before drying (P₂O₅) for 24 hr at 0.1 mm and room temperature: 378 mg; 28% yield; uv_{max} (0.1 N HCl) 245 nm (ϵ 13,900), 298 (21,300); uvmax (pH 7) 280 nm (e 27,100), 297 (sh), 346 (7730); uvmax (0.1 N NaOH) 255 nm (¢ 25,800), 286 (23,300), 365 (9270); pmr data were as expected. Anal. $(C_{21}H_{23}N_7O_6\!\cdot\!O.25H_2O)$ C, H, N

N-[4-[[2-Amino-3,4-dihydro-4-oxo-6-pteridinyl)methyl]amino]-3-isopropylbenzoyl]-L-glutamic Acid (3'-Isopropylfolic Acid, 12b). A solution of 698 mg of the column product containing 9b (89% of 9b by weight; 621 mg or 1.7 mmol of 9b) and 466 mg (2 mmol) of 10 in 10 ml of anhydrous DMSO was allowed to

stir at room temperature for 3 days; the reaction mixture was added to 90 ml of anhydrous DMF containing 95 mg (2.5 mmol) of NaBH₄. The DMF was evaporated after 96 hr, the residue was hydrolyzed in 500 ml of 0.1 N NaOH, and crude 12b (322 mg) was obtained by acidification as described for 12a. A solution (final pH 6.5) of this material in 500 ml of dilute NH4OH containing 7.5 ml of 2-mercaptoethanol was applied to a DEAE-cellulose column (20 g, 2.8×33 cm, phosphate form), and the column was washed with 500 ml of 0.2 M 2-mercaptoethanol before elution with 0.2 MNaCl. All fractions were monitored by uv absorbance, and the most intensely uv-absorbing fractions corresponded to a yellowcolored zone on the column. These fractions were pooled, and the product was isolated and reprecipitated as described for 12a. The product was pulverized before final drying (P₂O₅) for 24 hr at 0.25 mm and room temperature: 210 mg; 25% yield; uvmax (0.1 N HCl) 246 nm (ϵ 13,900), 299 (21,500); uv_{max} (pH 7) 280 nm (ϵ 26,100), 298 (sh), 346 (6950); uv_{max} (0.1 N NaOH) 255 nm (ϵ 25,600), 285 (22,600), 365 (8940); pmr data were as expected. Anal. $(C_{22}H_{25}N_7O_6 \cdot H_2O) C, H, N.$

The Analysis of 12a and 12b. It was determined that analogs 12a and 12b contained a major uv-absorbing component and a minor uv-fluorescent impurity by the analysis on Cell-DEAE developed with a potassium phosphate (0.005 M) buffer solution at pH 7.0 containing NaCl (0.5 M) and 2-mercaptoethanol (0.2 M). The fluorescent impurity in 12a and 12b was determined to be 6-formylpterin by the comparison with an authentic sample; side by-side the comparisons with standards containing known amounts of 6-formylpterin indicated that the content of this impurity was approximately 1% in 12a (Cell-A developed with 5% aqueous Na₂HPO₄) and 3% in 12b (Cell-DEAE developed with the potassium phosphate buffer solution described above).

Acknowledgments. The authors are indebted to Dr. W. C. Coburn, Jr., and members of the Molecular Spectroscopy Section of Southern Research Institute for the spectral and microanalytical data reported, to Dr. W. R. Laster, Jr., for the L1210 *in vivo* testing results, to Dr. L. J. Wilkoff for the cytotoxicity data, to Dr. R. F. Pittillo for the bacteriological testing, to Miss Suzanne Straight for the enzymological testing, to Dr. J. W. Williams and Mr. David Turbeville for preparation of certain of the intermediates, and to Dr. R. F. Struck and Dr. John A. Montgomery for helpful discussions.

References

- (1) E. C. Roberts and Y. F. Shealy, J. Med. Chem., 14, 125 (1971).
- (2) E. C. Roberts and Y. F. Shealy, J. Med. Chem., 15, 1310 (1972).
- (3) E. C. Roberts and Y. F. Shealy, J. Med. Chem., 16, 697 (1973).
- (4) E. S. Gould, "Mechanism and Structure in Organic Chemistry," Holt, Rinehart and Winston, New York, N. Y., 1959, pp 217-219.
- (5) K. Altau, J. G. Beasley, H. J. Pine, R. H. Crawford, W. T. Tucker, A. D. Brown, Jr., and J. D. Capps, J. Chem. Eng. Data, 8, 122 (1963).
- (6) D. A. Denton, R. K. Smalley, and H. Suschitzky, J. Chem. Soc., 2421 (1964).
- (7) L. Friedman and H. Schechter, J. Org. Chem., 26, 2522 (1961).
- (8) J. P. Greenstein and M. Winitz, Ed., "Chemistry of the Amino Acids," Vol. 2, Wiley, New York, N. Y., 1961, p 891.
- (9) J. P. Greenstein and M. Winitz, Ed., ref 8, pp 1018-1019.
- (10) B. R. Baker, B. T. Ho, and T. Neilson, J. Heterocycl. Chem., 1, 88 (1964).
- (11) B. R. Baker, "Design of Active-Site-Directed Irreversible Enzyme Inhibitors," Wiley, New York, N. Y., 1967, p 192 ff.
- (12) H. J. Backer and A. C. Houtman, Recl. Trav. Chim. Pays-Bas, 70, 738 (1951).
- (13) L. M. Flynn, V. B. Williams, B. L. O'Dell, and A. G. Hogan, Anal. Chem., 23, 180 (1951).