

View Article Online View Journal

ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: C. Qi, Y. Peng, J. Liu, G. Yuan, J. Li and H. Jiang, *Chem. Commun.*, 2017, DOI: 10.1039/C6CC09762F.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/chemcomm

ChemComm

*n*Bu₄NI-catalyzed oxidative cross-coupling of carbon dioxide, amines, and aryl ketones: access to *O*-β-oxoalkyl carbamates

Received 00th January 20xx, Accepted 00th January 20xx

Youbin Peng,^{a†} Juan Liu,^{b†} Chaorong Qi,*^a Gaoqing Yuan,*^b Jiawei Li,^b and Huanfeng Jiang^b

carbamates is still highly desirable.

DOI: 10.1039/x0xx00000x

www.rsc.org/

Published on 13 January 2017. Downloaded by University of Newcastle on 13/01/2017 18:37:34.

The first *n*Bu₄NI-catalyzed oxidative cross-coupling reaction of carbon dioxide, amines and arylketones has been successfully developed by using TBHP as the oxidant, providing an efficient, atom-economical and metal-free strategy for the synthesis of a range of O- β -oxoalkyl carbamates.

Organic carbamates are compounds of great interest because they are key units of many natural products,¹ pharmaceuticals² and agrochemicals (Figure 1).³ They also find increasing applications in organic synthesis as versatile building blocks or protecting groups for amines and amino acids.⁴

Traditionally, these important compounds can be prepared by the reaction of chloroformates with amines or the reaction of isocyanates with alcohols.⁵ However, both chloroformates and isocyanates are commonly obtained from highly toxic phosgene. To address the environmental and safe issues associated with the use of phosgene, great efforts have been made to develop new and environmentally friendly methods for the synthesis of carbamates in the past decades.⁶ Of particular note is the carbamation of amines using carbon dioxide (CO_2) as the raw material⁷ since CO_2 is inarguably regarded as a non-toxic, abundant, inexpensive and renewable C1 resource.⁸ Basically, these transformations rely on the in situ generation of carbamate anion via the reaction of amines and CO₂, followed by the reaction with electrophiles (Scheme 1, a). A variety of functional molecules, such as halohydrocarbons $^{7b,\ 7d,\ 7f}$ and alcohols, $^{7e,\ 7g,\ 7i}$ have been employed as the electrophile. Very recently, we have showed that N-tosylhydrazones^{9a} and diaryliodonium salts^{9b} could couple with CO₂ and amines to give the corresponding organic carbamates in the presence of bases. Although significant progress has been made in this research area, the development of more

This journal is © The Royal Society of Chemistry 20xx

 $\begin{array}{c} (+)-\text{Discodermolide} \\ (\text{Houral product}) \end{array} \\ (\text{Figure 1 Representative carbamate-bearing molecules.} \\ \end{array} \\ \begin{array}{c} (+) - \text{Discodermolide} \\ (\text{Natural product}) \end{array} \\ \end{array} \\ \begin{array}{c} (+) - \text{Discodermolide} \\ (\text{Natural product}) \end{array} \\ \end{array} \\ \begin{array}{c} (+) - \text{Discodermolide} \\ (\text{Natural product}) \end{array} \\ \end{array} \\ \begin{array}{c} (+) - \text{Discodermolide} \\ (\text{Natural product}) \end{array} \\ \end{array} \\ \begin{array}{c} (+) - \text{Discodermolide} \\ (\text{Natural product}) \end{array} \\ \end{array} \\ \begin{array}{c} (+) - \text{Discodermolide} \\ (\text{Natural product}) \end{array} \\ \end{array} \\ \begin{array}{c} (+) - \text{Discodermolide} \\ (\text{Natural product}) \end{array} \\ \end{array} \\ \begin{array}{c} (+) - \text{Discodermolide} \\ (\text{Natural product}) \end{array} \\ \end{array} \\ \end{array}$

facile and atom-economical methods for the construction of

Scheme 1 Strategies for the synthesis of organic carbamates from CO₂.

 ^a School of Chemistry and Chemical Engineering, State Key Lab of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China. E-mail: crqi@scut.edu.cn

^b Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China. E-mail: gqyuan@scut.edu.cn

⁺ These authors contributed equally to this work.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

COMMUNICATION

Published on 13 January 2017. Downloaded by University of Newcastle on 13/01/2017 18:37:34.

Over the past decades, catalytic functionalization of C-H bonds has become one of the most efficient strategies in organic synthesis because it avoids the requirement for prefunctionalization of substrates and thus shows improved atom- and step-economy.¹⁰ However, to the best of our knowledge, the direct assembly of organic carbamates via C-H functionalization has not yet been developed. As part of our ongoing interest in developing efficient methods for the conversion of CO₂ into valuable chemicals,⁹ herein, we wish to report a *n*Bu₄NI-catalyzed direct α -carbamoyloxylation of arylketones with CO₂ and amines via C(sp³)-H oxidative cross-coupling reactions, providing an efficient, atom-economical and metal-free protocol for the synthesis of a diverse range of *O*- β -oxoalkyl carbamates (Scheme 1, b).

Initially, propiophenone (1a) and diethylamine (2a) was chosen as the model substrates for the optimization of the reaction conditions, and the results are summarized in Table 1. When the reaction was carried out in DMF with nBu_4NI as catalyst and TBHP as the oxidant under 3 MPa of CO₂ at 90 °C for 12 h, the desired product **3aa** was formed in 77% yield (entry 1). DMSO also gave **3aa** in 60% yield while other solvents such as CH₃CN and DCE led to relatively low yields (entries 2, 4 and 5). Pleasingly, the yield of **3aa** was sharply increased to 92% when the reaction was conducted in a mixed DMF-DMSO (2:1) solvent (entry 3), which might be due to that the mixed solvent system could facilitate the formation of active intermediates of the reaction. Other iodides including KI, NH₄I, NIS, and even I₂ could also catalyse the reaction

Table 1 Optimization of the reaction ^a					
	+ CO ₂ +	•	Catalyst, Oxidant		
1a		2a		3aa	
Entry	Catalyst	Oxidant	Solvent (v:v)	Yield (%) ^b	
1	<i>n</i> Bu₄NI	TBHP	DMF	77	
2	<i>n</i> Bu₄NI	TBHP	DMSO	60	
3	<i>n</i> Bu₄NI	TBHP	DMF/DMSO (2:1)	92 (87)	
4	<i>n</i> Bu₄NI	TBHP	CH₃CN	32	
5	<i>n</i> Bu₄NI	TBHP	DCE	9	
6	KI	TBHP	DMF/DMSO (2:1)	86	
7	NH₄I	TBHP	DMF/DMSO (2:1)	85	
8	NIS	TBHP	DMF/DMSO (2:1)	83	
9	I ₂	TBHP	DMF/DMSO (2:1)	78	
10	Cul	TBHP	DMF/DMSO (2:1)	10	
11	<i>n</i> Bu₄NBr	TBHP	DMF/DMSO (2:1)	n.d.	
12	<i>n</i> Bu₄NBr	$K_2S_2O_8$	DMF/DMSO (2:1)	n.d.	
13	<i>n</i> Bu₄NI	DTBP	DMF/DMSO (2:1)	n.d.	
14	<i>n</i> Bu₄NI	TBPB	DMF/DMSO (2:1)	trace	
15	<i>n</i> Bu₄NI	BPO	DMF/DMSO (2:1)	n.d.	
16	<i>n</i> Bu₄NI	H_2O_2	DMF/DMSO (2:1)	n.d.	
17 ^c	<i>n</i> Bu₄NI	TBHP	DMF/DMSO (2:1)	76	
18^d	<i>n</i> Bu₄NI	TBHP	DMF/DMSO (2:1)	73	
19 ^e	<i>n</i> Bu₄NI	TBHP	DMF/DMSO (2:1)	46	
20	-	TBHP	DMF/DMSO (2:1)	n.d.	
21	<i>n</i> Bu₄NI	-	DMF/DMSO (2:1)	n.d.	

^{*a*} Reaction conditions: **1a** (1.0 mmol), **2a** (7.0 mmol), CO₂ (3 MPa), *n*Bu₄NI (0.2 mmol), TBHP (6.0 mmol), solvent (3 mL), 90 °C, 12 h. ^{*b*} Yields were determined by GC-MS analysis with n-dodecane as internal standard; number in parentheses is the yield of isolated product. ^{*c*} At 110 °C. ^{*d*} At 70 °C. ^{*e*} Under 1 MPa of CO₂.

2 | J. Name., 2012, 00, 1-3

efficiently to furnish 3aa in high yields (entries 6-9) while Cul exhibited exceedingly low catalytic partivity 39/entry 09140). Moreover, the reaction did not occur when *n*Bu₄NBr was used as the catalyst (entries 11 and 12), implying that the use of iodides or iodine was critical for the reaction. Screening of different oxidants showed that the oxidant play an important role in this transformation. TBHP was the optimal oxidant; other oxidants, such as DTBP, TBPB, BPO and H₂O₂, were ineffective (entries 13-16). Both increasing and decreasing the reaction temperature decreased the yield of 3aa (entries 17 and 18). Further optimization showed that a decrease in the pressure of CO₂ resulted in a decrease in the yield of the product (entry 19). The effect of the amount of oxidant and 2a on the reaction was investigated, and the results showed that 6 equiv of TBHP and 7 equiv of 2a were required to achieve high yield (see the Supporting Information for details). Finally, the control experiments showed that both nBu₄NI and TBHP are essential for the transformation (entries 20 and 21).

To examine the scope and limitations of the present carbamoyloxylation, a variety of aryl and heteroaryl ketones were examined as substrates to react with CO_2 and **2a** under the optimized reaction conditions (Scheme 2). Gratifyingly, various propiophenone derivatives bearing electron-donating

Scheme 2 Substrate scope with respect to ketones. Reaction conditions: 1 (1.0 mmol), 2a (7.0 mmol), nBu_4NI (0.2 mmol), TBHP (6.0 mmol), DMF/DMSO (v:v = 2:1, 3 mL), CO₂ (3 MPa), 90 °C, 12 h. Isolated yields based on 1.

Journal Name

Published on 13 January 2017. Downloaded by University of Newcastle on 13/01/2017 18:37:34.

Journal Name

or electron-withdrawing groups at the ortho, meta, or para positions of the benzene ring, including methyl, methoxy, trifluoromethyl, halide (F, Cl and Br) and nitro groups, could undergo the reaction smoothly to give the desired products (3ba-3ja) in moderate to high yields. It was found that the electronic nature of the substituents has a great effect on the formation of the desired carbamates. In general, ketones with electron-withdrawing groups generated the desired products (3da-3ia) in higher yields than those with electron-donating ones (3ba and 3ca). Besides mono-substitued propiophenones, the di-substituted substrate, 1-(2,4-dichlorophenyl)propan-1one (3k) could also work well to furnish the expected product 3ka in 82% yield. Notably, a variety of heteroaryl ketones containing the furan, thiophene and pyridine rings were all suitable substrates for the transformation, delivering the desired products (3la-3na) in good yields. Moreover, the substrates with longer alkyl chains (1o and 1p) reacted smoothly to afford the corresponding products 3oa and 3pa in good yields. 1,2-Diphenylethanone could also enter into the reaction to give the desired carbamate 3qa in a moderated vield. Interestingly, 3-chloro-1-phenylpropan-1-one (1r) generated an unsaturated carbamate 3ra, which might be formed through the dehydrohalogenation of the desired product.¹¹ However, the reaction of acetophenone gave a complex mixture, and the desired product was not detected. Aliphatic ketones also failed to undergo the reaction, and the starting materials were recovered unchanged.

Subsequently, a wide range of amines were employed for coupling with propiophenone (1a) and CO_2 (Scheme 3).

Pleasingly, different dialkylamines, including symmetric and asymmetric ones, underwent the one-potimeaction smoothy and furnished the corresponding products (**3ab-3ai**) in moderate to excellent yield. Moreover, various types of cyclic secondary amines could also take part in the reaction, giving rise to the desired products in moderate to good yield (**3aj-3ao**). The structure of the product **3an** was unambiguously confirmed by means of X-ray crystallographic analysis.¹² Unfortunately, primary amines and anilines could not afford the desired products but resulted in the formation of a complex mixture of unidentified products under our conditions.

COMMUNICATION

To understand the mechanism of the reaction, a series of control experiments were carried out as shown in Scheme 4. Firstly, it was found that the present reaction could be inhibited by the radical scavengers 2,2,6,6-teramethyl-1piperidinyloxy (TEMPO) and 2,6-di-tert-butyl-4-methylphenol (BHT) (Scheme 4, a and b). Moreover, diphenylcyclopropyl ketone 4 could undergo ring-opening radical clock reaction under the standard conditions to afford the conjugated diene 5 in 62% NMR yield (Scheme 4, c).¹³ These results suggest that a radical pathway should be involved in the reaction. Next, when 2-hydroxy-1-phenylpropan-1-one was employed as substrate to react with CO₂ and diethylamine under the standard conditions, no product 3aa was detected (Scheme 4, d). However, the reaction of 2-iodo-phenylpropan-1-one with CO₂ and diethylamine could furnish the carbamate **3aa** in 83% yield (Scheme 4, e), indicating that 2-iodo-phenylpropan-1-one might be the intermediate for the reaction.

On the basis of aforementioned observations and previous reports,^{7, 9a, 9b, 13, 14} a plausible mechanism of the reaction is depicted in Scheme 5. Initially, in the presence of nBu_4NI and TBHP, the propiophenone **1a** is oxidized to form a radical intermediate **A**, which could react with the in situ-generated iodine (I_2) to give the key intermediate 2-iodo-phenylpropan-1-one (**B**). Then, **B** undergoes nucleophilic attack by carbamate anion **C** generated in situ from CO₂ and diethylamine to afford the desired product **3aa** (Path a). Alternatively, the reaction might proceed through path b, in which **1a** is oxidized to form a cation intermediate **D** via radical **A**. Then the interaction of **D**

Journal Name

with the in situ generated carbamate anion ${\bf C}$ could also produce the final product ${\bf 3aa}.$

In summary, we have developed a *n*Bu₄NI-catalyzed oxidative cross-coupling of ketones, carbon dioxide and amines using TBHP as the oxidant. This reaction represents the first example of constructing organic carbamates via C-H bond functionalization strategy, and thus has many merits, such as the use of readily available substrates, high atom economy, and metal-free catalysis. Further investigation on the reaction mechanism and the application of this strategy to the synthesis of other kinds of carbamates are currently ongoing in our laboratory.

We thank the National Program on Key Research Project (2016YFA0602900), the National Natural Science Foundation of China (21572071, 21420102003 and 21572070) and the Fundamental Research Funds for the Central Universities (2015zz038) for financial support.

Notes and references

Published on 13 January 2017. Downloaded by University of Newcastle on 13/01/2017 18:37:34

- (a) A. B. Smith, III, B. S. Freeze, M. J. LaMarche, T. Hirose, I. Brouard, P. V. Rucker, M. Xian, K. F. Sundermann, S. J. Shaw, M. A. Burlingame, S. B. Horwitz and D. C. Myles, *Org. Lett.*, 2005, 7, 311; (b) C. M. Pavlik, C. Y. B. Wong, S. Ononye, D. D. Lopez, N. Engene, K. L. McPhail, W. H. Gerwick and M. J. Balunas, *J. Nat. Prod.*, 2013, 76, 2026; (c) S. J. Conn, S. M. Vreeland, A. N. Wexler, R. N. Pouwer, R. J. Quinn and S. Chamberland, *J. Nat. Prod.*, 2015, 78, 120.
- (a) B. Shen and T. F. Jamison, Org. Lett., 2012, 14, 3348; (b) E. Sawatzky, S. Wehle, B. Kling, J. Wendrich, G. Bringmann, C. A. Sotriffer, J. Heilmann, and M. Decker, J. Med. Chem., 2016, 59, 2067; (c) J. Korhonen, A. Kuusisto, J. Bruchem, J. Z. Patel, T. Laitinen, D. N.-Paldanius, J. T. Laitinen, J. R. Savinainen, T. Parkkari and T. J. Nevalainen, Bioorg. Med. Chem., 2014, 22, 6694; (d) M. Fuchs, D. Koszelewski, K. Tauber, W. Kroutil and K. Faber, Chem. Commun., 2010, 46, 5500.
- (a) B. D. Eitzer, W. Hammack and M. Filigenzi, J. Agric. Food Chem., 2014, 62, 80; (b) P. Salisaeng, P. Arnnok, N. Patdhanagul and R. Burakham, J. Agric. Food Chem., 2016, 64,

2145; (c) K. J. Dorweiler, J. N. Gurav, J. S. Walbridger, V. S. Ghatge and R. H. Savant, J. Agric. Food Chem. 32916, 649 5498.

- 4 (a) M. Binanzer, G. Y. Fang and V. K. Aggarwal, Angew. Chem. Int. Ed., 2010, 49, 4264; (b) H. Kurouchi, A. Sumita, Y. Otani and T. Ohwada, Chem. Eur. J., 2014, 20, 8682; (c) J. Li, C. Kornhaaβ and L. Ackermann, Chem. Commun., 2012, 48, 11343.
- 5 (a) P. Adams and F. A. Baron, *Chem. Rev.*, 1965, 65, 567; (b) S. Ozaki, *Chem. Rev.*, 1972, 72, 457; (c) R. A. Batey, V. Santhakumar, C. Y. Ishii and S. D. Taylor, *Tetrahedron Lett.*, 1998, 39, 6267.
- 6 (a) A. K. Ghosh and M. Brindisi, J. Med. Chem., 2015, 58, 2895; (b) D. Chaturvedi, Tetrahedron, 2012, 68, 15.
- 7 (a) J. Shang, X. Guo, Z. Li and Y. Deng, *Green Chem.*, 2016, 18, 3082; (b) M. Zhang, X. Zhao and S. Zheng, *Chem. Commun.*, 2014, 50, 4455; (c) J. Cai, M. Zhang and X. Zhao, *Eur. J. Org. Chem.*, 2015, 5925; (d) R. A. Watile and B. M. Bhanage, *RSC Adv.*, 2014, 4, 23022; (e) A. Ion, C. V. Doorslaer, V. Parvulescu, P. Jacobs and D. D. Vos, *Green Chem.*, 2008, 10, 111; (f) J. M. Hooker, A. T. Reibel, S. M. Hill, M. J. Schueller and J. S. Fowler, *Angew. Chem. Int. Ed.*, 2009, 48, 3482; (g) S. L. Peterson, S. M. Stucka and C. J. Dinsmore, *Org. Lett.*, 2010, 12, 1340; (h) B. Yu, B.-B. Cheng, W.-Q. Liu, W. Li, S.-S. Wang, J. Cao and C.-W. Hu, *Adv. Synth. Catal.*, 2016, 358, 90; (i) M. Abla, J.-C. Choi and T. Sakakura, *Chem. Commun.*, 2001, 2238; (j) D. B. DellAmico, F. Calderazzo, L. Labella, F. Marchetti, G. Pampaloni, *Chem. Rev.*, 2003, 103, 3857.
- 8 (a) M. Aresta, A. Dibenedetto and A. Angelini, *Chem. Rev.*, 2014, **114**, 1709; (b) Z.-Z. Yang, L.-N. He, J. Gao, A.-H. Liu and B. Yu, *Energy Environ. Sci.*, 2012, **5**, 6602; (c) Q. Liu, L. Wu, R. Jackstell and M. Beller, *Nat. Commun.*, 2015, **6**, 5933; (d) C. Martín, G. Fiorani and A. W. Kleij, *ACS Catal.*, 2015, **5**, 1353; (e) L. Zhang and Z. Hou, *Chem. Sci.*, 2013, **4**, 3395; (f) W.-H. Wang, Y. Himeda, J. T. Muckerman, G. F. Manbeck and E. Fujita, *Chem. Rev.*, 2015, **115**, 12936.
- 9 (a) W. Xiong, C. Qi, H. He, L. Ouyang, M. Zhang and H. Jiang, Angew. Chem. Int. Ed., 2015, 54, 3084; (b) W. Xiong, C. Qi, Y. Peng, T. Guo, M. Zhang and H. Jiang, Chem. Eur. J., 2015, 21, 14314; (c) C.-R. Qi, H.-F. Jiang, Green Chem., 2007, 9, 1284; (d) X. Tang, C. Qi, H. He, H. Jiang, Y. Ren and G. Yuan, Adv. Synth. Catal., 2013, 355, 2019; (e) L. Ouyang, X. Tang, H. He, C. Qi, W. Xiong, Y. Ren and H. Jiang, Adv. Synth. Catal., 2015, 357, 2556.
- 10 (a) C.-J. Li, Acc. Chem. Res., 2009, 42, 335; (b) S. A. Girard, T. Knauber and C.-J. Li, Angew. Chem. Int. Ed., 2014, 53, 74; (c) C. S. Yeung and V. M. Dong, Chem. Rev., 2011, 111, 1215; (d) C. Liu, J. Yuan, M. Gao, S. Tang, W. Li, R. Shi and A. Lei, Chem. Rev., 2015, 115, 12138; (e) P. B. Arockiam, C. Bruneau and P. H. Dixneuf, Chem. Rev., 2012, 112, 5879; (f) D. A. Colby, R. G. Bergman and J. A. Ellman, Chem. Rev., 2010, 110, 624.
- 11 C. G. Overberger, H. Ringsdorf and N. Weinshenker, J. Org. Chem., 1962, 27, 4331.
- 12 CCDC 1520713 (**3an**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_reques/cif.
- (a) M. P. DeMartino, K. Chen and P. S. Baran, J. Am. Chem. Soc., 2008, 130, 11546; (b) M. Uyanik, D. Suzuki, T. Yasui and K. Ishihara, Angew. Chem. Int. Ed., 2011, 50, 5331.
- 14 (a) B. Tan, N. Toda and C. F. Barbas III, Angew. Chem. Int. Ed., 2012, **51**, 12538; (b) W.-P. Mai, H.-H. Wang, Z.-C. Li, J.-W. Yuan, Y.-M. Xiao, L.-R. Yang, P. Mao and L.-B. Qu, Chem. Commun., 2012, **48**, 10117; (c) C. Zhu, Y. Zhang, H. Zhao, S. Huang, M. Zhang and W. Su, Adv. Synth. Catal., 2015, **357**, 331; (d) C. Li, T. Jin, X. Zhang, C. Li, X. Jia and J. Li, Org. Lett., 2016, **18**, 1916; (e) B. Mondal, S. C. Sahoo and S. C. Pan, Eur. J. Org. Chem., 2015, 3135; (f) M. Uyanik, H. Okamoto, T. Yasui and K. Ishihara, Science, 2010, **328**, 1376.