TWO FLAVONOID GLYCOSIDES FROM THE BARK OF PROSOPIS JULIFLORA

RANJANA VAJPEYI NEE' SHUKLA and KRISHNA MISRA

Chemical Laboratories, Allahabad University, Allahabad-211 002, India

(Revised received 29 April 1980)

Key Word Index—*Prosopis juliflora*; Leguminoseae; flavonol glycoside; kaempferol 4'-methyl ether $3-O-\beta$ -D-galactopyranoside; isoflavone glycoside; retusin 7-O-neohesperidoside.

Abstract—Two new glycosides, kaempferol 4'-methyl ether $3-O-\beta$ -D-galactopyranoside and retusin 7-O-neohesperidoside, have been characterized from the stem bark of *Prosopis juliftora*.

Plants of the genus *Prosopis* (Leguminoseae) are well known for their medicinal value [1]. The leaf extract of *P. juliflora* has been shown to have antibiotic properties [2] and tannins have been reported from the bark [3].

The stem bark was extracted successively with boiling acetone and ethanol. The ether soluble fraction from the acetone concentrate yielded a flavonol glycoside (1), while an isoflavone glycoside was obtained from the ethanol extract (2).

1, $C_{22}H_{22}O_{11}$, mp 168° (d), gave a positive Molisch test. Acid hydrolysis yielded an aglycone and galactose. UV spectral data and the characteristic colour tests of the aglycone (1a) indicated its flavonol nature [4]. The formation of a triacetate and a tetramethyl ether suggested the presence of three free hydroxyls and one methoxyl group in the molecule. Positive colour tests for C-5 and C-7 hydroxyls were observed [5]. Bathochromic shifts in the absorption maxima with AlCl₃-HCl and fused NaOAc confirmed the presence of free C-5 and C-7 hydroxyls. KMnO₄ oxidation of the aglycone yielded anisic acid, fixing the methoxyl group at the 4'-position and alkaline fission yielded phloroglucinol and anisic acid thus establishing the structure of 1a as kaempferol 4'methyl ether (kaempferide).

Spectral shifts and colour reactions indicated that 1 also contained free hydroxyls at C-5 and C-7. The aglycone gave a positive colour test for a free C-3 hydroxyl but the glycoside did not [6]. Methylated 1, on acid hydrolysis, yielded kaempferol 5,7,4'-trimethyl ether, mp 150° (lit. 151°) [7], confirming the sugar attachment at C-3. Quantitative sugar estimation and periodate oxidation of the methylated glycoside confirmed the presence of one mol of galactose per mol of the glycoside, and that the sugar was in the pyranose form. Hydrolysis of 1 with almond emulsin gave galactose confirming the sugar linkage as β . Thus 1 is characterized as kaempferide 3-O- β -D-galactopyranoside. Although kaempferide occurs commonly in nature, its galactoside has not been reported previously.

2. $C_{28}H_{32}O_{14}$, mp 177° (*d*), gave a green ferric reaction and a positive Molisch test. Acid hydrolysis yielded an

aglycone (2a), glucose and rhamnose. The colourless aglycone, mp 249°, analysed for $C_{16}H_{12}O_5$. Characteristic colour reactions and λ_{max}^{1-tOH} nm at 261 and 308 (sh) indicated its isoflavonoid nature [4]. Formation of a diacetate and a trimethyl ether indicated the presence of two free hydroxyls and one methoxyl group in the molecule. Bathochromic shifts in the UV spectrum with NaOAc, NaOAc-H₃BO₃ and AlCl₃ indicated a free C-7 hydroxyl and another free hydroxyl ortho to the C-7 hydroxyl. ¹H NMR of the aglycone diacetate (90 MHz, $CDCl_3$) δ : 7.94 (1H, s, C-2), 6.96 (2H, d, J = 9 Hz, C-3' and C-5'), 7.47 (2H, d, C-2' and C-6'), 7.25 (1H, d, C-6) fixed the other hydroxyl at C-8. The proton at C-5, ortho to the carbonyl group, occurred downfield as a doublet $(J = 9.0 \text{ Hz at } \delta 8.20)$. Anisic acid was obtained as one of the products of KMnO₄ oxidation, fixing the methoxyl group at position 4'. Alkaline fission of the aglycone dimethyl ether gave formic acid and a deoxybenzoin, as 4-methoxybenzyl-(2-hydroxy-3,4identified dimethoxy)phenyl ketone. The aglycone was thus characterized as 7,8 dihydroxy-4'-methoxyisoflavone (retusin).

Methylation of **2** followed by acid hydrolysis yielded an aglycone, mp 221° (lit. mp 221°) [8], characterized as 8-O-methylretusin. It could thus be concluded that both sugars are linked at position 7. The λ max of **2** did not give bathochromic shifts with NaOAc, NaOAc-H₃BO₃ or AlCl₃.

Quantitative sugar estimation and periodate oxidation of the glycoside methyl ether confirmed the sugar moiety as a disaccharide, and that both sugars are in the pyranose form. The disaccharide moiety was confirmed as rhamnosylglucose by mild acid hydrolysis, rhamnose being released first, followed by glucose. Permethylation of the glycoside followed by hydrolysis yielded 3,4,6-tri-Omethyl-D-glucose and 2,3,4-tri-O-methyl-L-rhamnose, confirming a $1 \rightarrow 2$ linkage between the two sugars. A doublet at δ 1.32 in the ¹H NMR spectrum of **2** due to the rhamnose methyl protons, gave further evidence for a $1 \rightarrow 2$ linkage [9, 10]. Hydrolysis of the glycoside with diastase liberated only rhamnose indicating the α -nature of the intersugar linkage. The liberation of glucose on hydrolysis with almond emulsin showed the β -nature of the glycosidic linkage. The compound is thus characterized as retusin 7-*O*-neohesperidoside (2), the first report of its occurrence in nature.

EXPERIMENTAL

Plant material. The stem bark of *Prosopis juliflora* (Hindi: Kabuli kikar) was collected locally and identified by the Allahabad branch of the Botanical Survey of India.

Isolation and purification. The air-dried and powdered stem bark (2.75 kg) was exhaustively extracted with Me₂CO (5 × 41.) and EtOH (5 × 41.), respectively. Both extracts were coned under red. pres. to 150 ml and 250 ml, respectively, and separately extracted with petrol, Et₂O and EtOAc. The coned Et₂O fraction from EtOAc-petrol (bp 40–60) as yellow needles. The coned column. The C₆H₆-CHCl₃ (1:4) eluate yielded 1. TLC on Si gel G. R_f 0.38 (C₆H₆ EtOAc, 3:2; spray; 2 N H₂SO₄), which cryst. from EtOAc petrol (bp 40–60°) as yellow needles. The coned Et₂O fraction from the EtOH extract was also chromatographed on a Si gel column. The C₆H₆ EtOAc (1:1) eluate yielded **2**. TLC R_f 0.47 (C₆H₆-MeOH, 4:1; spray; 2 N H₂SO₄) and cryst. from EtOAc petrol (bp 40–60°) as crean crystals. mp 177° (d).

1. Found: C, 57.09; H, 4.73, $C_{22}H_{22}O_{11}$ requires: C, 57.14; H, 4.76 ${}^{\circ}_{i\nu} \lambda_{inax}^{MeOH}$ (nm): 269, 345; +AlCl₃ 272, 399; +AlCl₃-HCl 271, 397; + NaOAc 276, 353, *Hydrolysis*, 1 (0.5g) was refluxed with H_2SO_4 (7 ${}^{\circ}_{in}$ aq. 5 ml) for 3 hr. The aglycone (1a) crystallized from EtOAc-petrol (bp 40.60) as cream crystals, mp 227 ${}^{\circ}$. Found: C, 63.97; H, 3.96. Calculated for $C_{16}H_{12}O_6$; C, 64.00; H, 4.00 ${}^{\circ}_{in} \lambda_{max}^{MeOH}$ (nm): 267, 367; +AlCl₃ 271, 423; +AlCl₃ HCl 270, 422; + NaOAc 274, 384.

1a Methyl ether. **1a** was (0.1 g) refluxed with Me₂SO₄ -K₂CO₃ Me₂CO for 4 hr giving a solid which cryst. from EtOAc petrol (bp 40-60) as colourless prisms, mp 165. The percentage of methoxyls in (i) the aglycone and (ii) its methyl ether, was estimated [11]. (i) Found: -OMe, 10.31. Calculated for C₁₅H₉O₅. OMe; OMe, 10.33°₀ (ii) Found: OMe, 36.19. Calculated for C₁₅H₉O₅(OMe)₄: OMe, 36.25°₀.

1a Acetate. **1a** (0.05 g) was kept with Ac₂O (5 ml) and pyridine (2 ml) at room temp. for 48 hr. The product cryst. from EtOAc petrol (bp 40 60), mp 193. Found: Ac, 30.21. Calculated for $C_{10}H_0O_6(Ac)_3$: Ac, 30.28° [12].

KMnO₄ oxidation of **ta**. **ta** (0.1 g) was refluxed with 10°_{0} aq. KMnO₄ for 4 hr. Anisic acid was obtained, mp 183 (lit. 184), Co–PC with an authentic sample gave a single spot, R_f 0.37 (*n*-BuOH satd, with NH₃; spray; bromophenol blue).

Alkaline hydrolysis of **1a**. **1a** (0.1 g) dissolved in EtOH (25 ml) was refluxed with 25°_{n} aq. KOH (10 ml) for 4 hr.

Periodate oxidation. Methylated 1 (0.05 g) was treated with 0.1 M NaIO₄ (25 ml) in aq. EtOH at room temp. (25 C) for 48 hr. For each mol of glycoside, 2.1 mol of periodate were consumed and 1.0 mol of HCOOH liberated.

2, Found: C. 56.69; H, 5.44; $C_{28}H_{32}O_{14}$ requires: C. 56.75; H, 5.40°, λ_{max}^{110H} (nm): 257, 313; +AlCl₃ 258, 315; +AlCl₃-HCl 257, 313; +NaOAc 257, 313; +NaOAc -H₃BO₃ 256, 313. ¹H NMR (90 MHz, CDCl₃) δ : 1.32 (3H, d, J = 12 Hz, rhamnose Me), 4.00 (3H, s, -OMe), 4.90 (1H, s, H-1" rhamnosyl), 5.20 (1H, br, H1" glucosyl), 3.82 (10H, br, sugar protons). 7.94 (1H, s, C-2), 6.95 (2H, d, J = 8.5 Hz, C-3',5'), 7.46 (2H, d, J = 8.5 Hz, C-2',6'), 7.28 (1H, d, J = 9.0 Hz, C-6), 8.23 (1H, d, J = 9.0 Hz, C-5).

Aglycone (**2a**). Found: C. 67.8; H, 4.29; -OMe, 10:86: Calculated for $C_{16}H_{12}O_5$: C, 67.6; H, 4.22; -OMe, 10.91 °₀, $\lambda_{max}^{1:OH}$ (nm): 261, 308; +AlCl₃ 281, 322; +AlCl₃ -HCl 261, 308; +NaOAc 277, 314; +NaOAc-H₃BO₃ 269, 310. **2a** Diacetate. Cryst. from EtOAc petrol (bp 40-60°) as colourless needles. mp 166 . Found: C, 65.17; H, 4.34; Ac, 23.29. Calculated for $C_{16}H_{10}O_5(Ac)_2$; C, 65.2; H, 4.38; Ac, 23.36°, σ ¹H NMR (90 MHz, CDCl₃) δ 7.94 (1H, s. C-2), 4.00 (3H, s. OMe), 6.96 (2H, d, J = 9.0 Hz, C-3′, 5′), 7.47 (2H, d, J = 9.0 Hz, C-2′, 6′), 7.25 (1H, d, J = 9.0 Hz, C-6), 8.20 (1H, d, J = 9.0 Hz, C-5).

2a Methyl ether. Methylation of **2a** with Me_2SO_4 . K_2CO_3 . Me_2CO for 2 hr gave a solid which cryst. from EtOAc-petrol (bp 40 60) as colourless needles, mp 151°. Found: C, 69.31; H, 5.08; OMe, 26.69. Calculated for $C_{15}H_3O_2(OMe)_3$; C, 69.2; H, 5.16; OMe, 29.8°,.

Alkaline hydrolysis of **2a** dimethyl ether. **2a** Dimethyl ether (0.25 g) was heated under reflux with EtOH (25 ml) and 10° , aq. KOH (4.0 ml) for 1 hr. The product recryst. from Me₂CO-MeOH to yield 4-methoxybenzyl-(2-hydroxy-3,4-dimethoxy)phenyl ketone as long colourless needles. mp 122°, which gave an intense wine-red colour with alcoholic FeCl₃. Found: C, 67.4; H, 6.02: -OMe, 30.7. Calculated for C_{1.7}H₁₈O₅: C, 67.5; H, 6.00: (-OMe)₃, 30.8°, Methylation of this compound gave 4-methoxybenzyl-(2.3,4-trimethoxy)phenyl ketone, as glistening needles, mp 54, which did not give positive colour with alcoholic FeCl₃.

Permethylation of 2 and hydrolysis of the permethylated product. 2 (0.20 g) was permethylated by repeated treatment with Me₂SO₄ (10 ml) and 10^o_n aq. NaOH (10 ml) and the product hydrolysed with 2 N H₂SO₄. PC, R_{c} : 0.79 and 1.01, of hydrolysate (*n*-BuOH-EtOH-H₂O, 5:1:4; spray, AHP) corresponded to 3.4,6-tri-*O*-methyl-D-glucose and 2.3.4-tri-*O*-methyl-L-rhamnose, respectively.

Periodate oxidation of methylated 2. For each mol of 2 3.01 mol of periodate were consumed and 1.1 mol of HCOOH liberated.

Enzymic hydrolysis of **2**. The glycoside (0.03 g) dissolved in EtOH and diastase solution (0.1 g in 25 ml) was left at 40 for 48 hr. The mixture was extracted with EtOAc and the coned aq. layer gave rhamnose, R_j 0.34 (*n*-BuOH HOAc-H₂O, 4:1:5, spray: AHP). The EtOAc extract was taken up in EtOH, 10 ml of emulsin soln added and the mixture kept at 40 for 48 hr. The hydrolysate gave glucose (PC, R_j 0.18).

REFERENCES

- Kirtikar, K. R. and Basu, B. D. (1935) Indian Medicinal Plants, Vol. II, p. 910. Leader Press, India.
- Shankarmurty, P. and Siddiqui, S. (1948) J. Sci. Ind. Res. Sect. B 7, 188.
- Theresa, Y. M., Swamy, M., Santappa, M. and Nayudamma, Y. (1977) Leather Sci. Madras 24, 115.
- 4. Jurd, L. (1962) Chemistry of Flavonoid Compounds (Geissman, T. A., ed.), p. 107. Pergamon Press, Oxford.
- 5. Hillis, W. E. and Urbach, G. (1958) Nature 182, 657.
- Horhammer, L. and Hansel, R. (1955) *Arch. Pharmacol.* 288, 315.
- Heilbron, I. and Bunbury, H. M. (1953) Dictionary of Organic Compounds, Vol. II, p. 477.
- Jurd, L., Stevens, K. and Manners, G. (1972) *Phytochemistry* 11, 2535.
- 9. Kutney, J. P., Warnock, W. D. C. and Gilbert, B. (1970) *Phytochemistry* **9**, 1877.
- Sherwood, R. T. and Shamma, M. (1973) *Phytochemistry* 12, 2275.
- 11. Belcher, R., Fildes, J. E. and Nutten, A. J. (1955) *Analyt. Chim. Acta* 13, 16.
- 12. Wiesenberger, A. (1947) Mikrochemie 33, 57.