

Bioorganic & Medicinal Chemistry Letters 12 (2002) 69-72

New Readily Accessible Peroxides with High Anti-Malarial Potency

Nobutoshi Murakami,^a Motoyuki Kawanishi,^a Sawako Itagaki,^b Toshihiro Horii^b and Motomasa Kobayashi^{a,*}

^aGraduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan ^bResearch Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan

Received 13 August 2001; accepted 1 October 2001

Abstract—In an explorative study for new anti-malarial substances using the methyl esters (1 and 2) of peroxyplakoric acids A_3 and B_3 as scaffolds, 6-carbomethoxymethyl-3-methoxy-3-pentyl-1,2-dioxane, which has been readily synthesized from 6-keto- α , β -unsaturated ester, was found to exhibit potent anti-malarial activity with high selective toxicity. © 2001 Elsevier Science Ltd. All rights reserved.

In the last two decades, malaria has regained its status as a serious threat to the health and economic prosperity of the human race. It is estimated that approximately 300 million clinical cases were observed and people in excess of 2.5 million die from this disease each year. Due to resistance of the vector (*Anopheles* mosquito) to insecticides and an ongoing spread of the drug-resistant strains of *Plasmodium falciparum* against chloroquine and other clinically used drugs, exploration of new effective anti-malarials has been needed urgently.¹

In the previous paper, we reported two potent antimalarial spongean peroxides, the methyl esters (1 and 2) of peroxyplakoric acids A_3 and B_3 .^{2,3} Furthermore, a facile construction method for 6-carbomethoxymethyl-3-methoxy-1,2-dioxane (3), the core structure of 1 and 2, was developed.³ In our continued program exploring for more potent anti-malarials by use of 1 and 2 as scaffold substances, we have undertaken an accessible synthesis of two congeners (5 and 6). This paper communicates the synthetic method of 5 and 6 and an assessment of their anti-malarial potency.

When 6-carbomethoxymethyl-3-methoxy-3-methyl-1,2dioxane (3) (a mixture of diastereomers; 3a:3b = 4.8:1)³ was evaluated for inhibitory effect on proliferation of *P*. *falciparum*, the anti-malarial effect of 3 was significantly reduced as compared with those of 1 and 2 (Table 2). Similarly, another peroxide relative to 1 and 2, chondrillin $(4)^4$ isolated from a marine sponge of *Xestospongia* sp., was shown to display weaker anti-malarial activity as well as low selective toxicity. These findings allowed us to presume that the anti-malarial potency of 1 and 2 involving high selective toxicity would be related to three functionalities: a 1,2-dioxane ring, a conjugated diene portion in a side chain, and a methyl residue adjacent to a carbomethoxyl group (Fig. 1).

As a preliminary investigation on participation of the three functions, we designed accessible 6-carbomethoxymethyl-3-methoxy-1,2-dioxane analogues possessing linear side chains on C-3. On the basis of cLogP,^{5,6} which is an effective parameter to predict both permeability and in vivo biological activity of drugs, two analogues were designed as shown in Figure 2. Namely, one analogue 6 possesses nearly as large cLogP as 1 and 2, the other 5 has cLogP that is considered to belong to the range for exerting in vivo biological efficacy.

The synthesis of the two analogues (5 and 6) was conducted as illustrated in Scheme 1. Treatment of γ -butyrolactone (7) with MeNHOMe and Me₂AlCl afforded the corresponding Weinreb amide,⁷ which was converted to a keto-alcohol (8) with pentylmagnesium bromide in 78% yield for two steps. Swern oxidation of 8 followed by Wittig reaction with (carbethoxymethylene)triphenylphosphorane provided an α , β -unsaturated ester (10) in 90% yield for two steps. Next, the

^{*}Corresponding author. Tel.: +81-6-6879-8215; fax: +81-6-6879-8210; e-mail: kobayasi@phs.osaka-u.ac.jp

⁰⁹⁶⁰⁻⁸⁹⁴X/02/\$ - see front matter \odot 2001 Elsevier Science Ltd. All rights reserved. P11: S0960-894X(01)00673-4

0

unsaturated ester **10** was submitted to Sc(OTf)₃-mediated peroxyhemiacetalization³ to afford **12** in 68% yield. Contrary to our expectation, the intramolecular Michael addition³ of **12** with Et₂NH in (CF₃)₂CHOH caused considerable reduction of the yield of the desired 1,2-dioxane **5** (14%) unlike the preparation of **3**.

 $5 : R = (CH_2)_4 CH_3$

 $6: R = (CH_2)_8 CH_3$

2.17

4.29

A significant amount of formation of an epoxyketone 14 in comparison with the preparation³ for 3 led us to presume that the larger steric hindrance of the pentyl group in 5 would bring about a degradation of 5 in $(CF_3)_2CHOH$ with high acidity (Table 1, entry 1). In fact, treatment of 5 in $(CF_3)_2CHOH$ at room temperature gave a mixture of 5 and 10 in a ratio of 1:1. On the other hand, compound 5 was completely stable in CF_3CH_2OH . Thus, the reaction conditions from 12 to 5 were investigated using CF_3CH_2OH as a reaction solvent. As shown in entry 2, the replacement of

(CF₃)₂CHOH with CF₃CH₂OH resulted in increase of the yield of **5**. Reduction of the concentrations of **12**, Et₂NH, and reaction temperature stimulated the generation of **5**. Eventually, the condition illustrated in entry 6 afforded **5** (**5a**:**5b**=8.3:1) in moderate yield (62%). By application of this condition, a nonyl congener **6** (**6a**:**6b**=6:1) was also synthesized from **13** in a similar yield as shown in entry 7.

First of all, we assessed biological potency of the analogues without separating the diastereomeric mixtures. Table 2 summarizes the growth inhibitory activity against *P. falciparum* and the selective toxicity index between parasite and cells of host-animals, human epidermoid carcinoma KB 3-1.⁸ While the two designed analogues (5 and 6) showed similar potent growth inhibitory activities against *P. falciparum* comparable to the methyl esters (1 and 2) of peroxyplakoric acids A₃ and B₃, the nonyl congener 6 showed about 10-fold stronger cytotoxic effect against KB 3-1 cells than 5. With respect to the pentyl analogue 5, the reduction of cytotoxicity resulted in a higher selective toxicity score (360) relative to those of 1 and 2.

Next, the anti-malarial potency of 5 and 6 was evaluated after separation of the respective diastereomeric isomers. In order to carry out unambiguous elucidation of the relative stereostructures of both isomers, the methyl congener 3, which showed a simple signal pattern in the ¹H NMR spectrum, was analyzed. The coupling constants and NOE correlations revealed the methoxyl groups on C-3 to adopt axial orientation in both isomers. In the NOESY spectrum of 3a, the following pairs of protons, Hax-4 and Hax-6, and 3-OCH₃ and Hax-5, were correlated to each other. On the contrary, the NOESY spectrum of 3b showed the correlations among Hax-4 and H-7b, Heq-5 and H-7a, Heq-4 and Hax-5, and Hax-4 and 3-CH₃. Therefore, the former 3a and the latter 3b were deduced to be the syn- and the *anti*-dioxane, respectively.⁹ Comparison of the ¹H NMR data between **3a** and **3b** disclosed the conclusive difference that the signals ascribable to H_2 -7 in **3b** were resonated at lower field owing to deshielding effect from oxygen atoms in the dioxane ring as compared with those in 3a. By application of this physicochemical property, syn- (5a and 6a) and anti-isomers (5b and 6b) were completely distinguished after HPLC separation.¹⁰

Scheme 1. Synthesis of the designed analogues (5 and 6). Reagents and conditions: (a) MeNHOMe, Me₂AlCl; (b) BrMg-R, $[R = (CH_2)_n CH_3]$, two steps 78% for 8 (*n*=4), 75% for 9 (*n*=8); (c) (COCl₂, DMSO, Et₃N; (d) Ph₃P=CHCOOCH₃, CH₂Cl₂, two steps 90% for 10 (*n*=4), 89% for 11 (*n*=8); (e) H₂O₂·H₂NCONH₂, Sc(OTf)₃, MeOH, 68% for 12 (*n*=4), 67% for 13 (*n*=8); (f) Et₂NH, CF₃CH₂OH, 62% for 5 (*n*=4), 60% for 6 (*n*=8).

Table 1. Investigation on Michael addition of the peroxyhemiacetal

^aIn all reactions, the peroxyhemiacetals (12 and 13) gave the three products exclusively. The yields were estimated by ¹H NMR spectra after concentration of reaction mixtures.

^bThe nonyl congener 13 was used in the reaction. The yields of the corresponding congeners were given.

As designated in Table 2, the *syn*-isomers exhibited higher selective toxicity scores than the *anti*-ones in either case. Nevertheless, this purification little affected the anti-malarial potency of **5** and **6**. Finally, participation of the absolute configurations in the biological activity was examined in the case of the most potent analogue **5a**. The assessment of the biological property after chiral column separation¹¹ clarified that the asymmetric centers of the peroxides are independent of their anti-malarial potency.

In summary, 6-carbomethoxymethyl-3-methoxy-3-pentyl-1,2-dioxane (5), which was accessibly synthesized by utilizing the spongean peroxides as a scaffold, was shown to exhibit potent anti-malarial activity with selective toxicity. Comparing the anti-malarial potency among 1, 2, and 5, not only the methyl residues on the asymmetric center but also the diene portions in the side chains of 1 and 2 were shown to participate in the bio-

Table 2. Anti-malarial activity and cytotoxicity of 1,2-dioxanes

Compd	IC ₅₀ (µM)		Selective
	P. falciparum	KB 3-1	toxicity
1	0.15	21	140
2	0.12	28	230
3	>2.4	> 0.49	
4	> 0.24	0.63	< 2.6
5	0.12	43	360
5a (syn)	0.15	53	350
5b (anti)	0.15	23	150
6	0.14	4.4	31
6a (syn)	0.17	4.4	26
6b (<i>anti</i>)	0.26	2.2	8
(+)-5a	0.22	77	350
(–) -5 a	0.22	82	370

logical activity slightly. Investigation of in vivo antimalarial effect of **5** is in progress in our laboratory.

Acknowledgements

The authors are grateful to the Kanae Foundation for Life and Socio-medical Science for financial support. This research is also financially supported by a Grantin-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports, and Culture of Japan.

References and Notes

1. Butler, D.; Maurice, J.; O'Brien, C. Nature 1997, 386, 535.

2. Kobayashi, M.; Kondo, K.; Kitagawa, I. Chem. Pharm. Bull. 1993, 41, 1324.

3. Murakami, N.; Kawanishi, M.; Itagaki, S.; Horii, T.; Kobayashi, M. *Tetrahedron Lett.* **2001**, *42*, 7281.

4. Quinoa, E.; Kho, E.; Manes, L. V.; Crews, P. J. Org. Chem. **1986**, *51*, 4260.

5. Leo, A. J. Chem. Rev. 1993, 93, 1281.

6. Obata, Y.; Sato, H.; Li, C. J.; Takayama, K.; Higashiyama, K.; Nagai, T.; Isowa, K. *Int. J. Pharm.* **2000**, *198*, 191. ClogP was calculated using the computer program (version 4.0, Bio Byte Corporation, Claremont, CA 91711, USA).

7. Shimizu, T.; Osako, K.; Nakata, T. Tetrahedron Lett. 1997, 38, 2685.

8. A strain of *P. falciparum* (FCR3, cycloguanil-resistant from Gambia) was used in sensitivity testing. After synchronization by the sorbitol treatment, a $50\,\mu$ L of parasite culture at ring stage (0.55% parasitemia and 2% hematocrit) was added to each well in 96-well microculture plates. The test samples were dissolved in DMSO and diluted to the appropriate concentration using complete medium, then a $50\,\mu$ L of each sample

solution was inoculated. The final concentration of DMSO in the culture is 1%. After incubation at 37 °C for 48 h, the proliferation of *P. falciparum* was assessed by Giemsa-stained smear by observing 10,000 erythrocytes per one thin blood film. Quinine was used as a reference anti-malarial. In this anti-malarial assay, quinine inhibited the proliferation of *P. falciparum* in a concentration-dependent manner with IC₅₀ of 40 ng/mL and IC₉₀ of 90 ng/mL. Cytotoxic potency was evaluated by colorimetric MTT assay, in which mitomycin C used as a positive control showed the IC₅₀ of 0.1 µg/mL.

9. 3a: colorless oil. IR v_{max} (KBr) cm⁻¹: 1745. ¹H NMR (500 MHz, CDCl₃) δ 1.19 (3H, s, 3-CH₃), 1.55 (1H, dddd, J = 15.3, 4.9, 4.3, 2.4 Hz, Heq-5), 1.67 (1H, ddd, J = 16.5, 12.2,4.3 Hz, Hax-4), 1.75 (1H, dddd, J=15.3, 12.2, 11.0, 4.3 Hz, Hax-5), 1.83 (1H, ddd, J = 16.5, 4.9, 4.3 Hz, Heq-4), 2.32 (1H, dd, J=15.9, 5.5 Hz, Ha-7), 2.44 (1H, dd, J=15.9, 7.9 Hz, Hb-7), 3.24 (3H, s, 3-OCH₃), 3.63 (3H, s, CO₂CH₃), 4.43 (1H, dddd, J=11.0, 7.9, 5.5, 2.4 Hz, H-6). FAB-MS m/z 227 $(M + Na)^+$. FAB-HR MS m/z calcd for C₉H₁₆O₅Na: 227.2117, found: 227.2101; **3b**: colorless oil. IR v_{max} (KBr) cm^-1: 1745. ¹H NMR (500 MHz, CDCl₃) δ 1.22 (3H, s, 3-CH₃), 1.37 (1H, m, Hax-5), 1.69 (1H, d, J=6.1 Hz, Hax-4), 1.70 (1H, dd, J = 5.5, 1.8 Hz, Heq-4), 2.20 (1H, dddd, J = 14.0, 6.7, 6.1, 5.5 Hz, Heq-5), 2.54 (1H, dd, J=15.3, 6.1 Hz, Ha-7), 2.93 (1H, dd, J=15.3, 7.9 Hz, Hb-7), 3.27 (3H, s, 3-OCH₃), 3.64 (3H, s, CO₂CH₃), 4.46 (1H, dddd, J=7.9, 6.7, 6.1, 5.5 Hz, H-6). FAB-MS m/z 227 (M+Na)⁺. FAB-HR MS m/z calcd for C₉H₁₆O₅Na: 227.2117, found: 227.2101.

10. **5a**: colorless oil. IR v_{max} (KBr) cm⁻¹: 1745. ¹H NMR (500 MHz, CDCl₃) δ 0.89 (3H, t, J=7.3 Hz, CH₃), 1.24–1.40 (6H, m), 1.58–1.70 (3H, m), 1.75–1.94 (3H, m), 2.38 (1H, dd,

J=15.9, 5.5 Hz, Ha-7), 2.51 (1H, dd, J=15.9, 7.3 Hz, Hb-7), 3.26 (3H, s, 3-OCH₃), 3.70 (3H, s, CO₂CH₃), 4.49 (1H, m, H-6). FAB-MS m/z 283 (M + Na)⁺. FAB-HR MS m/z calcd for C₁₃H₂₄O₅Na: 283.1526, found: 283.1521. **5b**: colorless oil. IR υ_{max} (KBr) cm⁻¹: 1745. ¹H NMR (500 MHz, CDCl₃) δ: 0.90 $(3H, t, J = 7.3 Hz, CH_3), 1.25 - 1.50 (8H, m), 1.50 - 1.80 (3H, m),$ 2.26 (1H, m), 2.62 (1H, dd, J=15.9, 6.1 Hz, Ha-7), 3.02 (1H, dd, J=15.9, 7.9 Hz, Hb-7), 3.29 (3H, s, 3-OCH₃), 3.71 (3H, s, CO_2CH_3 , 4.54 (1H, m, H-6). FAB-MS m/z 283 (M+Na)⁺. FAB-HR MS m/z calcd for C₁₃H₂₄O₅Na: 283.1526, found 283.1521. 6a: colorless oil. IR v_{max} (KBr) cm⁻¹: 1745. ¹H NMR (500 MHz, CDCl₃) δ 0.88 (3H, t, J=6.7 Hz, CH₃), 1.20-1.38 (15H, m), 1.58-1.70 (2H, m), 1.75-1.93 (3H, m), 2.38 (1H, dd, J=15.9, 5.5 Hz, Ha-7), 2.51 (1H, dd, J=15.9, 7.3 Hz, Hb-7), 3.26 (3H, s, 3-OCH₃), 3.70 (3H, s, CO₂CH₃), 4.49 (1H, m, H-6). FAB-MS m/z 339 (M+Na)⁺. FAB-HR MS m/z calcd for C₁₇H₃₂O₅Na: 339.2156, found: 339.2147. **6b**: colorless oil. IR υ_{max} (KBr) cm⁻¹: 1745. ¹H NMR (500 MHz, CDCl₃) δ 0.88 $(3H, t-like, J = ca. 6.5 Hz, CH_3), 1.19-1.38 (14H, m), 1.38-1.49$ (2H, m), 1.50-1.80 (3H, m), 2.25 (1H, m), 2.62 (1H, dd, J=15.9, 6.0 Hz, Ha-7), 3.02 (1H, dd, J=15.9, 7.9 Hz, Hb-7), 3.29 (3H, s, 3-OCH₃), 3.71 (3H, s, CO₂CH₃), 4.54 (1H, m, H-6). FAB-MS m/z 339 (M+Na)⁺. FAB-HR MS m/z calcd for C₁₇H₃₂O₅Na: 339.2156, found: 339.2147.

11. Enatiomeric mixture of **5a** was separated with Chiralcel OJ column (4.6 i.d.×250 mm, Daicel Chemicals Co. Ltd.) using *n*-hexane/AcOEt (30:1) as an eluent to furnish (+)-**5a** { $[\alpha]_D$ +227° (*c* 0.1, CHCl₃)} and (-)-**5a** { $[\alpha]_D$ -222° (*c* 0.1, CHCl₃)}. The absolute configurations of both have never elucidated because of their similar antimalarial potency.