Synthesis of Polyfunctional Unsaturated Amines by the Addition of Functionalized Organomagnesium Reagents to Unsaturated Imminium Ions

Nina Gommermann, Christopher Koradin, Paul Knochel*

Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus F, 81377 München, Germany Fax +49(89)21807680; E-mail: paul.knochel@cup.uni-muenchen.de

Received 18 July 2002

Dedicated to Prof. Dieter Seebach on the occasion of his 65th birthday.

Abstract: The reaction of propargylic and allylic aminals with trifluoromethanesulfonic anhydride at low temperature produces imminium salts, which react in the presence of *N*-methylpyrrolidinone (NMP) with functionalized arylmagnesium compounds, providing polyfunctional propargylic and allylic amines in satisfactory yields.

Key words: functionalized organomagnesium reagents, imminium salts, propargylic amines, allylic amines, aminals

The preparation of polyfunctional organic molecules without the use of protecting groups is an important synthetic task. Polyfunctional organometallics are particularly well suited for achieving this goal.¹ It is well known that functionalized organozinc compounds² are compatible with many functional groups, and it has also been shown that polyfunctional organomagnesium reagents can be readily obtained by an iodine- or a bromine-magnesium exchange.³ The preparation of functionalized unsaturated amines is especially important, since many polyfunctional amino compounds are of interest due to their biological activity.⁴ Herein, we wish to report the reaction of the unsaturated aminals 1a,b^{5,6} and 2⁷ with functionalized arylmagnesium species of type 3, leading after treatment with trifluoromethanesulfonic anhydride to amines 4 and 5. Thus, trifluoromethanesulfonic anhydride reacts with the aminals 1,2, furnishing the corresponding imminium triflates 6a,b and 7, which react rapidly with Grignard reagents⁸ (see Scheme 1, Tables 1 and 2).

A range of different functionalized arylmagnesium reagents can be used. Thus, several *para*-substituted arylmagnesium species like **3a,b** react well with the alkynyl aminals **1a** and **1b** leading to the corresponding propargyl amine derivatives (**4a,b** and **4h,i**; entries 1, 2, 8 and 9 of Table 1). Sterically hindered *ortho*-substituted arylmagnesium compounds **3c**-**f** bearing carbethoxy, bromine, nitro or trialkylsilyloxy groups react with **1a**-**b** forming products **4c**-**f** in good yields (55–79%, entries 3–6 of Table 1). The reactions involve treatment of aminals **1a,b** with Tf₂O at -65 °C or -78 °C respectively, leading to an intensely yellow solution of the imminium salts **6a,b**. A precipitate forms after a few minutes and redissolves after the addition of *N*-methylpyrrolidinone (NMP; 5 equiv). A

Synthesis 2002, No. 14, Print: 07 10 2002. Art Id.1437-210X,E;2002,0,14,2143,2149,ftx,en;C04402SS.pdf. © Georg Thieme Verlag Stuttgart · New York ISSN 0039-7881

THF solution of the Grignard reagent of type **3** (1.5 equiv) is added and the addition reaction is complete after 0.5 to 1.0 hours. A heterocyclic magnesium reagent such as 5-carbethoxyfurylmagnesium bromide (**3g**), obtained by a bromine-magnesium exchange,⁹ reacts with **1a,b** under our standard conditions, furnishing the furans **4g** and **4m** in 65% and 52% yield respectively (entries 7 and 13 of Table 1). Interestingly, alkyl-, alkenyl- or alkynyl magnesium halides, such as octylmagnesium bromide (**3i**), vinylmagnesium chloride (**3j**) and ethynylmagnesium bromide (**3k**) react with **1a,b** under typical conditions in satisfactory yields, showing the generality of our procedure.

 Table 1
 Functionalized Propargylic Amines 4a-p Obtained by the Reaction of Functionalized AryImagnesium Reagents 3 with Unsaturated Aminals 1a,b

Entry	Aminal	Grignard-Reagent	Product of Type 4	Yield (%) ^a
	NMe ₂ NMe ₂	R	NMe ₂	
1	Ph ⁻ 1a	3a R = OMe	4a R = OMe	67
2	1a	3b $\mathbf{R} = \mathbf{CO}_2\mathbf{Me}$	4b $\mathbf{R} = \mathbf{CO}_2\mathbf{Me}$	70
		MgBr R	Ph R	
3	1a	$3c R = CO_2Et$	$4c R = CO_2 Et$	79
4	1 a	$\mathbf{3d} \mathbf{R} = \mathbf{Br}$	4d R = Br	60
5	1a	$3e R = NO_2$	$4e R = NO_2$	68
6	1a	$3\mathbf{f} \mathbf{R} = \mathbf{OTIPS}$	$\mathbf{4f} \mathbf{R} = \mathbf{OTIPS}$	55
7	1a	EtO ₂ CMgBr 3g RMgBr	Ph Ph 4g NMe ₂ CO ₂ Et	65
	NMe ₂		Bu	
8	1b	3 a	4h : R = OMe	76
9	1b	$\mathbf{3h} \mathbf{R} = \mathbf{CO}_2 \mathbf{Et}$	$4\mathbf{i} \mathbf{R} = \mathbf{CO}_2 \mathbf{E} \mathbf{t}$	80
		MgBr R	Bu Bu	
10	1b	3c	$4\mathbf{j} \mathbf{R} = \mathbf{CO}_2 \mathbf{E} \mathbf{t}$	72
11	1b	3d	$4\mathbf{k} \mathbf{R} = \mathbf{B}\mathbf{r}$	69
12	1b	3e	$4l R = NO_2$	79
13	1b	EtO ₂ C MgBr 3g	Bu CO ₂ Et	52
14	1a	3i OctMgBr	4m NMe ₂ Oct	80
15	1a	3j CH ₂ =CHMgCl	4n NMe ₂ Ph	56
16	1a	3k HC=C-MgBr	40 Ph 4p	67

^a Yield of analytically pure product.

As can be seen in Table 2, the unsaturated aminal **2** reacts similarly with arylmagnesium compounds. In this case, the addition of Tf_2O at -65 °C produces an orange precipitate, which redissolves upon addition of NMP (5 equiv). The reactions with the Grignard reagents **3** are complete within 1 hour (Scheme 1 and Table 2). The functionalized allylic amines **5a**-**d** are obtained in 50–81% yield.

Table 2Functionalized Allylic Amines 5a-d Obtained by the Reaction of Functionalized Arylmagnesium Reagents 3 with the Unsaturated Aminal 2

Entry	Grignard-Reagent	Product of Type 5	Yield (%) ^a
	RMgBr	Ph R	
1	3 a	5a : R = OMe	81
2	3h	5b : $R = CO_2Et$	80
3	3c	NEt ₂	50
		Ph EtO ₂ C	
4	2-	5c	(1
4	уc	Ph CO ₂ Et	01
		5d	

^a Yield of analytically pure product.

The preparation of primary propargylic amines can be achieved starting from the aminal **1a**. Its treatment with excess diallylamine at 110 °C for 8 h produces the corresponding tetraallylated aminal **8** in 71% yield.¹⁰ The reaction of **8** with Tf₂O leads, after the addition of an organomagnesium reagent, to extensive decomposition. However, the addition of trifluoroacetic anhydride cleanly provides the imminium trifluoroacetate **9** at -60 °C, which after the addition of NMP (5 equiv) reacts with the arylmagnesium compounds **3a** and **3h**, furnishing the desired proparylic amines **10a,b** in 66–76% yield (Scheme 2).

The allyl substituent can be readily removed by using the method of Guibé.¹¹ Thus, the reaction of **10a** with 1,3-dimethylbarbituric acid (6 equiv) in the presence of Pd(PPh₃)₄ (5 mol%) in CH₂Cl₂ at 25 °C leads in 30 minutes to the propargylic amine **11** in 71% yield (Scheme 3).

In conclusion, we have described conditions allowing the addition of a range of functionalized Grignard reagents to alkynyl and alkenyl aminals, leading to functionalized propargylic and allylic amines, respectively.

Commercially available starting materials with a purity >97% were used without further purification. Solvents were dried and distilled before use.

NMR-spectra were recorded in CDCl₃ at 300 MHz for ¹H NMR and 75 MHz for ¹³C NMR (Varian XL 300). Chemical shifts are reported in ppm relative to TMS. IR-spectra were recorded on a Perkin-Elmar FT-IR Spectrum 1000. Low-resolution mass spectra were re-

Scheme 2 Reagents and conditions: (a) diallylamine (excess), 110 °C, 8 h (b) $(CF_3CO)_2O$ (1.1 equiv), -60 °C, 15 min (c) NMP (5 equiv).

corded using a GC/MS-combination of the type HP 6890/MSD 5973 fitted with a HP-5 column ($30 \text{ m} \times 0.25 \text{ mm} \times 0.25 \text{ µm}$). High-resolution mass spectra were recorded on a Finnigan-MAT 95Q spectrometer (electron impact, 70 eV). Column chromatographical purifications were carried out using Silicagel 60 (0.063-0.200 mm, purchased from Merck, Darmstadt).

Aminals 1a-b were prepared according to known methods.^{5,6} The aminal **2** was obtained by condensation of cinnamaldehyde with diethylamine. The crude product was used without further purification.

Grignard Reagents 3a-h; General procedure³

To a stirred soln of the aromatic halide (1.0 equiv, 1.0 to 0.5 mol/L in THF) at $-40 \rightarrow -20$ °C, a soln of *i*-PrMgBr (1.05 to 1.1 equiv, 0.5 mol/L in THF) was added dropwise. The halogen-magnesium exchange was followed by GC/MS.

Addition of Grignard Reagents 3 to Aminals 1a-b, 2; General Procedure for 4 and 5

To a stirred soln of the aminal 1a-b or 2 (1.0 mmol) in THF (2 mL) at -60 to -78 °C, Tf₂O (310 mg, 1.1 mmol) was added dropwise. After 10 min, NMP (0.5 mL, 5 mmol) was added. To this soln of the imminium triflate, the soln of the Grignard reagent 3 (1.5 mmol) was added dropwise. After 0.5–1 h, the reaction was complete according to GC/MS-analysis and was quenched with aq NH₄Cl soln (10 mL). The aq layer was extracted with Et₂O (3 × 20 mL), the combined organic layers were washed with brine (30 mL), dried (MgSO₄), filtered and evaporated under reduced pressure. Purification by column chromatography with pentane–CH₂Cl₂–MeOH as eluent gave the corresponding products 4 or 5.

1-(4-Methoxyphenyl)-*N*,*N*-dimethyl-3-phenyl-2-propyn-1-amine (4a)

Column chromatographic purification using CH_2Cl_2 -MeOH (100:0 \rightarrow 99:1) as eluent yielded **4a** (177 mg, 0.67 mmol, 67%) as a brown oil.

IR (film): 2934 (m), 2858 (w), 2822 (w), 2777 (w), 1610 (m), 1510 (vs), 1490 (m), 1249 (vs), 1173 (s), 1037 (s), 806 (w), 956 (s), 692 (m) cm⁻¹.

¹H NMR (300 MHz, $CDCl_3$): $\delta = 7.54-7.51$ (m, 4 H), 7.35-7.32 (m, 3 H), 6.90 (d, J = 8.4 Hz, 2 H), 4.78 (s, 1 H), 3.82 (s, 3 H), 2.32 (s, 6 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 159.1, 131.8, 130.9, 129.6, 128.3, 128.1, 123.2, 113.5, 88.1, 85.1, 61.6, 55.3, 41.5.

MS: *m*/*z* (%) = 265 (7) [M⁺], 222 (19), 221 (100), 178 (11).

HRMS: *m*/*z* calcd for C₁₈H₁₉NO, 265.1467; found, 265.1480.

4-[1-(Dimethylamino)-3-phenyl-2-propynyl]benzoic Acid Methyl Ester (4b)

Column chromatographic purification using CH_2Cl_2 -MeOH (100:0 \rightarrow 99:1) as eluent yielded **4b** (205 mg, 0.70 mmol, 70%) as a brown oil.

IR (film): 2949 (m), 2861 (w), 2824 (w), 2781 (w), 1723 (vs), 1611 (m), 1435 (s), 1279 (vs), 1112 (s), 1104 (s), 757 (s), 692 (m) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 8.04 (d, *J* = 8.4 Hz, 2 H), 7.71 (d, *J* = 8.4 Hz, 2 H), 7.69–7.52 (m,

2 H), 7.36–7.33 (m, 3 H), 4.86 (s, 1 H), 3.92 (s, 3 H), 2.33 (s, 6 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 166.9, 143.9, 131.8, 129.5, 128.4, 128.3, 128.2, 122.9, 115.3, 88.9, 83.9, 62.0, 52.1, 41.6.

MS: *m*/*z* (%) = 293 (19) [M⁺], 250 (19), 249 (100), 190 (17), 189 (25), 158 (53).

HRMS: *m/z* calcd for C₁₉H₁₉NO₂, 293.1416; found, 293.1400.

2-[1-(Dimethylamino)-3-phenyl-2-propynyl]benzoic Acid Ethyl Ester (4c)

Column chromatographic purification using CH_2Cl_2 -pentane (1:1 \rightarrow 1:0) as eluent yielded **4c** (244 mg, 0.79 mmol, 79%) as a brown solid, mp 72 °C.

IR (KBr): 2977 (m), 1723 (vs), 1489 (m), 1443 (m), 1310 (m), 1292 (s), 1262 (s), 1128 (s), 1087 (m), 1045 (m), 1015 (m), 758 (s), 744 (s), 694 (m) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.79 (dd, *J* = 8.2, 0.8 Hz, 1 H), 7.60 (dd, *J* = 7.5, 1.7 Hz, 1 H), 7.49–7.46 (m, 3 H), 7.38 (td, *J* = 7.5, 1.5 Hz,1 H), 7.29–7.24 (m, 3 H), 5.59 (s, 1 H), 4.30 (qd, *J* = 7.1, 3.4 Hz, 2 H), 2.16 (s, 6 H), 1.32 (t, *J* = 7.1 Hz, 3 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 169.0, 138.8, 132.1, 131.8, 130.3, 129.3, 128.7, 128.3, 128.1, 127.5, 123.2, 89.3, 84.0, 60.9, 58.7, 41.1, 14.2.

MS: *m*/*z* (%) = 307 (17) [M⁺], 292 (48), 278 (100), 262 (24), 260 (66), 246 /76), 235 (23), 234 (88), 219 (35), 218 (23), 189 (51), 184 (35), 162 (20), 158 (21), 133 (54).

HRMS: *m*/*z* calcd for C₂₀H₂₁NO₂, 307.1572; found, 307.1541.

1-(2-Bromophenyl)-*N*,*N*-dimethyl-3-phenyl-2-propyn-1-amine (4d)

Column chromatographic purification using CH_2Cl_2 -pentane (1:1 \rightarrow 1:0) as eluent yielded **4d** (188 mg, 0.60 mmol, 60%) as a brown oil.

IR (film): 2943 (m), 2821 (m), 2777 (m), 1490 (s), 1469 (s), 1440 (s), 1028 (s), 753 (vs), 691 (s),

 $596 (m) cm^{-1}$.

¹H NMR (300 MHz, CDCl₃): δ = 7.76 (dd, *J* = 7.6, 1.8 Hz, 1 H), 7.60 (dd, *J* = 7.9, 1.4 Hz, 1 H), 7.54–7.50 (m, 2 H), 7.35–7.32 (m, 4 H), 7.17 (td, *J* = 7.9, 1.8 Hz, 1 H), 5.13 (s, 1 H), 2.37 (s, 6 H).

¹³C NMR (75 MHz, CDCl₃): δ = 138.0, 133.2, 131.8, 130.5, 129.7, 128.3, 128.2, 126.9, 125.1, 123.0, 88.5, 84.4, 61.5, 41.5.

MS: *m*/*z* (%) = 315 (13), 314 (11) [M⁺], 313 (13), 272 (12), 271 (68), 270 (12), 269 (70), 234 (15),

190 (13), 189 (68), 188 (11), 187 (11), 159 (13), 158 (100), 115 (17).

HRMS: *m*/*z* calcd for C₁₇H₁₆BrN, 313.0466; found, 313.0462.

N,*N*-Dimethyl-1-(2-nitrophenyl)-3-phenyl-2-propyn-1-amine (4e)

Column chromatographic purification using CH_2Cl_2 -pentane (1:4 \rightarrow 1:0) as eluent yielded **4e** (192 mg, 0.68 mmol, 68%) as a brown solid, mp 75 °C.

IR (KBr): 2822 (m), 1540 (vs), 1489 (m), 1359 (s), 1016 (m), 784 (m), 756 (s), 732 (m), 691 (m) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.96 (d, *J* = 7.5 Hz, 1 H), 7.73 (dd, *J* = 8.0, 1.3 Hz, 1 H), 7.59–7.53 (m, 3 H), 7.40 (td, *J* = 7.6, 1.4 Hz, 1 H), 7.38–7.35 (m, 3 H), 5.66 (s, 1 H), 2.21 (s, 6 H).

¹³C NMR (75 MHz, CDCl₃): δ = 149.7, 133.3, 131.9, 131.6, 129.9, 128.6, 128.5, 128.4, 124.4, 122.7, 90.2, 82.2, 57.9, 41.4.

MS: m/z (%) = 280 (2) [M⁺], 264 (10), 263 (100), 246 (14), 145 (18), 233 (17), 232 (73), 218 (17), 190 (20), 189 (40), 158 (17), 118 (17), 115 (24), 105 (14), 77 (14).

HRMS: m/z calcd for C₁₇H₁₆N₂O₂, 280.1212; found, 280.1203.

N,*N*-Dimethyl-3-phenyl-1-{2-[(trisisopropylsilyl)oxy]-phenyl}-2-propyn-1-amine (4f)

Column chromatographic purification using CH_2Cl_2 -pentane (1:1 \rightarrow 1:0) as eluent yielded **4f** (226 mg, 0.55 mmol, 55%) as a brown oil.

IR (film): 2945 (m), 2867 (m), 1490 (s), 1452 (m), 1282 (m), 1266 (m), 920 (m), 756 (s), 690 (m) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.63 (dd, *J* = 7.9, 2.2 Hz, 1 H), 7.50–7.45 (m, 2 H), 7.32–7.28 (m,

3 H), 7.15 (td, *J* = 8.1, 1.8 Hz, 1 H), 6.95 (td, *J* = 7.5, 1.3 Hz, 1 H), 6.84 (dd, *J* = 8.1, 1.3 Hz, 1 H), 5.16 (s, 1 H), 2.32 (s, 6 H), 1.36 (sept., *J* = 7.2 Hz, 3 H), 1.15 (t, *J* = 7.1 Hz, 18 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 153.8, 131.7, 130.4, 128.8, 128.6, 128.2, 127.8, 123.5, 120.3, 118.5, 86.7, 86.5, 55.8, 41.9, 18.1, 13.1.

MS: *m*/*z* (%) = 407 (32) [M⁺], 393 (33), 392 (100), 351 (15), 350 (49), 319 (29), 249 (17), 235 (16),

189 (17), 149 816), 125 (16), 115 (20).

HRMS: m/z calcd for C₂₆H₃₇NOSi, 407.2644; found, 407.2641.

5-[1-(Dimethylamino)-3-phenyl-2-propynyl]-2-furan-carboxylic Acid Ethyl Ester (4g)

Column chromatographic purification using CH_2Cl_2 -pentane (1:2) \rightarrow CH₂Cl₂-MeOH (99:1) as eluent yielded **4g** (192 mg, 0.65 mmol, 65%) as an orange oil.

IR (film): 2979 (m), 2944 (m), 1729 (vs), 1519 (m), 1490 (m), 1298 (vs), 1214 (s), 1136 (vs), 1016 (s), 759 (s), 692 (m) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.43–7.40 (m, 2 H), 7.27–7.24 (m, 3 H), 7.06 (d, *J* = 3.6 Hz, 1 H), 6.53 (dd, *J* = 3.5, 0.9 Hz, 1 H), 4.84 (s, 1 H), 4.27 (qd, *J* = 7.1, 3.1 Hz, 2 H), 2.27 (s, 6 H), 1.28 (t, *J* = 7.0 Hz, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 158.6, 156.1, 144.8, 131.8, 128.3, 123.1, 122.5, 118.2, 111.1, 87.3, 82.0, 60.9, 56.2, 41.4, 14.3.

MS: m/z (%) = 297 (9) [M⁺], 282 (12), 254 (18), 253 (100), 225 (39).

HRMS: *m*/*z* calcd for C₁₈H₁₉NO₃, 297.1365; found, 297.1394.

1-(4-Methoxyphenyl)-N,N-dimethyl-2-heptyn-1-amine (4h)

Column chromatographic purification using CH_2Cl_2 -pentane (1:1) \rightarrow CH₂Cl₂-MeOH (99:1) as eluent yielded **4h** (189 mg, 0.77 mmol, 77%) as an orange oil.

IR (film): 2957 (s), 2934 (s), 2860 (m), 1611 (m), 1510 (s), 1464 (m), 1248 (vs), 1174 (m),

 $1038 (m) cm^{-1}$.

¹H NMR (300 MHz, CDCl₃): δ = 7.44 (d, *J* = 8.5 Hz, 2 H), 6.86 (d, *J* = 8.9 Hz, 2 H), 4.51 (s, 1 H), 3.80 (t, *J* = 1.7 Hz, 3 H), 2.32 (td, *J* = 6.7, 1.9 Hz, 2 H), 2.21 (s, 6 H), 1.70–1.40 (m, 4 H), 0.94 (t, *J* = 7.1 Hz, 3 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 158.9, 131.5, 129.5, 113.3, 88.2, 75.2, 61.2, 55.2, 41.3, 31.2, 22.0, 18.4, 13.6.

MS: m/z (%) = 245 (6) [M⁺], 202 (17), 201 (100), 121 (17), 115 (10).

HRMS: *m/z* calcd for C₁₆H₂₃NO, 245.1780; found, 245.1783.

4-[1-(Dimethylamino)-2-heptynyl]-benzoic Acid Ethyl Ester (4i)

Column chromatographic purification using CH_2Cl_2 -pentane (1:2) \rightarrow CH₂Cl₂-MeOH (99:1) as eluent yielded **4i** (230 mg, 0.80 mmol, 80%) as an orange oil.

IR (film): 2959 (s), 2936 (s), 2863 (m), 1721 (vs), 1275 (vs), 1101 (s), 1018 (m), 753 (m) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 8.01 (d, *J* = 8.4 Hz, 2 H), 7.61 (d, *J* = 8.0 Hz, 2 H), 4.59 (s, 1 H), 4.37 (q, *J* = 7.1 Hz, 2 H), 2.34 (td, *J* = 7.0, 2.2 Hz, 2 H), 2.21 (s, 6 H), 1.63–1.44 (m, 4 H), 1.39 (t, *J* = 7.1 Hz, 3 H), 0.94 (t, *J* = 7.1 Hz, 3 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 166.5, 144.5, 129.6, 129.3, 128.3, 89.1, 74.2, 61.6, 60.9, 41.5, 31.1, 22.0, 18.4, 14.3, 13.6.

MS: m/z (%) = 287 (12) [M⁺], 243 (12), 242 (10), 155 (10), 139 (12), 138 (100), 129 (11).

HRMS: *m*/*z* calcd for C₁₈H₂₅NO₂, 287.2885; found, 287.2838.

2-[1-(Dimethylamino)-2-heptynyl]-benzoic Acid Ethyl Ester (4j)

Column chromatographic purification using CH_2Cl_2 -pentane (1:2) \rightarrow CH₂Cl₂-MeOH (99:1) as eluent yielded **4j** (208 mg, 0.72 mmol, 72%) as an orange oil.

IR (film): 2958 (s), 2936 (s), 2861 (s), 1723 (vs), 1448 (m), 1261 (vs), 1136 (s), 1077 (s), 1014 (m), 741 (s) cm⁻¹.

¹H NMR (300 MHz, $CDCl_3$): $\delta = 7.78$ (d, J = 7.4 Hz, 1 H), 7.59 (dd, J = 7.1, 1.2 Hz, 1 H), 7.41 (td, J = 7.9, 1.6 Hz, 1 H), 7.30 (td, J = 7.5, 1.5 Hz, 1 H), 5.36 (t, J = 1.8 Hz, 1 H), 4.32 (dq, J = 29.1, 7.0 Hz, 2 H), 2.35 (td, J = 7.2, 2.2 Hz, 2 H), 2.12 (s, 6 H), 1.64–1.40 (m, 4 H), 1.36 (t, J = 7.0 Hz, 3 H), 0.95 (t, J = 7.5 Hz, 3 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 169.1, 139.4, 132.2, 130.1, 129.0, 128.6, 127.3, 89.4, 73.9, 60.8, 58.2, 41.0, 31.2, 22.0, 18.5, 14.2, 13.6.

MS: *m*/*z* (%) = 287 (3) [M⁺], 272 (42), 259 (26), 258 (95), 245 (76), 242 (27), 226 (24), 214 (31), 197 (15), 184 (67), 173 (19), 172 (100), 170 (18), 143 (15), 128 (17), 115 (18).

HRMS: *m*/*z* calcd for C₁₈H₂₅NO₂, 287.1885; found, 287.1869.

1-(4-Bromophenyl)-N,N-dimethyl-2-heptyn-1-amine (4k)

Column chromatographic purification using CH_2Cl_2 -pentane (1:4 \rightarrow 1:0) as eluent yielded **4k** (202 mg, 0.69 mmol, 69%) as a brown oil.

IR (film): 2957 (vs), 2934 (vs), 2860 (s), 2821 (m), 2777 (m), 1466 (s), 1440 (s), 1025 (s), 1012 (s), 750 (vs), 683 (m) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.66 (dd, *J* = 7.4, 1.8 Hz, 1 H), 7.55 (dd, *J* = 7.9, 1.3 Hz, 1 H), 7.29 (td, *J* = 7.9, 1.2 Hz, 1 H), 7.13 (td, *J* = 7.4, 1.8 Hz, 1 H), 4.86 (t, *J* = 2.3 Hz, 1 H), 2.32 (td, *J* = 7.0, 2.3 Hz, 2 H), 2.26 (s, 6 H), 1.62–1.41 (m, 4 H), 0.94 (t, *J* = 7.6 Hz, 3 H).

 ^{13}C NMR (75 MHz, CDCl_3): δ = 138.6, 133.0, 130.5, 129.0, 126.8, 125.1, 88.7, 74.5, 61.0, 41.4, 31.1, 22.0, 18.4, 13.6.

MS: *m*/*z* (%) = 294 (4) [M⁺], 171 (11), 169 (11), 155 (11), 139 (14), 138 (100), 128 (18).

HRMS: *m*/*z* calcd for C₁₅H₂₀BrN, 293.0979; found, 293.0973.

N,N-Dimethyl-1-(2-nitrophenyl)-2-heptyn-1-amine (4l)

Column chromatographic purification using CH_2Cl_2 -pentane (1:4 \rightarrow 1:0) as eluent yielded **41** (205 mg, 0.79 mmol, 79%) as a red oil.

IR (film): 2958 (s), 2937 (s), 2862 (m), 1533 (vs), 1456 (m), 1362 (s), 1015 (m), 730 (m) $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 7.88 (d, *J* = 7.6 Hz, 1 H), 7.67 (dd, *J* = 8.1, 1.3 Hz, 1 H), 7.52 (td, *J* = 8.0, 1.8 Hz, 1 H), 7.40 (td, *J* = 7.6, 1.2 Hz, 1 H), 5.37 (t, *J* = 2.1 Hz, 1 H), 2.37 (td, *J* = 6.6, 2.1 Hz, 2 H), 2.10 (s, 6 H), 1.65–1.43 (m, 4 H), 0.96 (t, *J* = 7.2 Hz, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 149.7, 134.0, 131.4, 130.0, 128.3, 124.2, 90.5, 72.5, 57.4, 41.2, 31.1, 22.0, 18.4, 13.6.

MS: *m*/*z* (%) = 260 (4) [M⁺], 243 (83), 213 (20), 212 (100), 198 (23), 197 (63), 183 (36), 171 (21), 170 (40), 138 (20).

HRMS: m/z calcd for C₁₅H₂₀N₂O₂, 260.1525; found, 260.1504.

5-[1-(Dimethylamino)-2-heptynyl]-2-furancarboxylic Acid Ethyl Ester (4m)

Column chromatographic purification using CH_2Cl_2 -pentane (1:4) \rightarrow CH₂Cl₂-MeOH (99:1) as eluent yielded **4m** (143 mg, 0.52 mmol, 52%) as a brown oil.

IR (film): 2937 (s), 2863 (s), 1732 (vs), 1531 (s), 1519 (s), 1456 (m), 1301 (vs), 1213(s), 1174 (m), 1136 (vs), 1015 (s), 762 (m) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.10 (d, *J* = 3.2 Hz, 1 H), 6.50 (dd, *J* = 3.2, 1.0 Hz, 1 H), 4.66 (t, *J* = 1.7 Hz, 1 H), 4.33 (qd, *J* = 7.1 Hz, 2.7 Hz, 2 H), 2.29 (td, *J* = 6.5, 1.8 Hz, 2 H), 2.25 (s, 6 H), 1.59–1.39 (m, 4 H), 1.35 (t, *J* = 7.1 Hz, 3 H), 0.93 (t, *J* = 7.1 Hz, 3 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 158.7, 157.0, 144.5, 118.2, 110.8, 87.7, 72.4, 60.8, 55.7, 41.3, 30.9, 21.9, 18.3, 14.3, 13.5.

MS: *m*/*z* (%) = 277 (15) [M⁺], 234 (17), 233 (100), 204 (37), 159 (12), 153 (12), 138 (15), 131 (20), 125 (31), 91 (11).

HRMS: *m*/*z* calcd for C₁₆H₂₃NO₃, 277.1678; found, 277.1632.

N,*N*-Dimethyl-1-phenyl-1-undecyn-3-amine (4n)

Column chromatographic purification using pentane– Et_2O (4:1) as eluent yielded **4n** (235 mg, 0.86 mmol, 86%) as an orange oil.

IR (film): 2927 (vs), 2956 (vs), 2823 (m), 2780 (m), 1490 (m), 1468 (m), 755 (s), 691 (s) cm⁻¹.

¹H NMR (300 MHz, $CDCl_3$): $\delta = 7.44-7.42$ (m, 2 H), 7.30-7.24 (m, 3 H), 3.49 (t, J = 7.2 Hz, 1 H), 2.31 (s, 6 H), 1.71-1.61 (m, 2 H), 1.54-1.42 (m, 2 H), 1.35-1.26 (m, 10 H), 0.86 (t, J = 7.2 Hz, 3 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 131.7, 128.2, 127.8, 123.5, 87.1, 85.9, 58.2, 41.4, 34.0, 31.9, 29.5, 29.4, 29.3, 26.7, 22.7, 14.1.

MS: *m*/*z* (%) = 159 (13), 158 (100), 115 (17).

HRMS: m/z calcd for C₁₉H₂₇N, 270.2222; found, 270.2230.

N,N-Dimethyl-1-phenyl-1-penten-4-yn-3-amine (40)

Column chromatographic purification using CH_2Cl_2 as eluent yielded **40** (109 mg, 0.59 mmol, 59%) as a brown oil.

IR (film): 2942 (m), 2860 (m), 2780 (m), 1490 (s), 1031 (s), 993 (m), 928 (m), 756 (vs), 691 (s) cm⁻¹.

¹H NMR (300 MHz, $CDCl_3$): $\delta = 7.49-7.46$ (m, 2 H), 7.33–7.29 (m, 3 H), 5.93 (ddd, J = 16.9, 10.3, 5.1 Hz, 1 H), 5.59 (dt, J = 17.4, 1.8 Hz, 1 H). 5.30 (dt, J = 9.9, 1.7 Hz, 1 H), 4.25 (dt, J = 4.8, 1.8 Hz, 1 H), 2.34 (s, 6 H).

¹³C NMR (75 MHz, CDCl₃): δ = 136.0, 131.7, 128.2, 128.1, 123.1, 117.7, 88.2, 83.9, 60.5, 41.5.

MS: *m*/*z* (%) = 185 (14) [M⁺], 159 (13), 158 (100), 141 (33), 115 (56).

HRMS: *m/z* calcd for C₁₃H₁₅N, 185.1204; found, 185.1202.

N,N-Dimethyl-1-phenyl-1,4-pentadiyn-3-amine (4p)

Column chromatographic purification using CH_2Cl_2 as eluent yielded **4p** (122 mg, 0.67 mmol, 67%) as a brown oil.

IR (film): 3293 (m), 2947 (m), 2864 (m), 2827 (m), 2784 (m), 1490 (s), 1285 (m), 1038 (s), 757 (vs), 691 (s), 653 (m) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.43–7.39 (m, 2 H), 7.27–7.24 (m, 3 H), 4.50 (d, *J* = 2.6 Hz, 1 H), 2.37 (d, *J* = 2.6 Hz, 1 H), 2.36 (s, 6 H).

¹³C NMR (75 MHz, CDCl₃): δ = 131.8, 128.4, 128.2, 122.4, 84.5, 83.1, 77.9, 72.5, 49.3, 41.2.

MS: *m/z* (%) = 183 (34) [M⁺], 182 (69), 168 (28), 167 (11), 140 (14), 139 (100).

HRMS: *m*/*z* calcd for C₁₃H₁₃N, 183.1048; found, 183.1027.

(2E)-N,N-Diethyl-1-(4-methoxyphenyl)-3-phenyl-2-propen-1-amine (5a)

Column chromatographic purification using CH_2Cl_2 -pentane (1:4) \rightarrow CH₂Cl₂-MeOH (99:1) as eluent yielded **5a** (239 mg, 0.81 mmol, 81%) as an orange oil.

IR (film): 2968 (s), 2933 (m), 1609 (m), 1509 (vs), 1247 (vs), 1173 (s), 1036 (s), 969 (m), 831 (s), 741 (s), 693 (m) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 7.31-7.10$ (m, 6 H), 6.79 (d, J = 8.9 Hz, 2 H), 6.43 (d, J = 15.4 Hz, 2 H), 6.27 (dd, J = 15.8, 8.7 Hz, 1 H), 4.18 (d, J = 8.5 Hz, 1 H), 3.72 (s, 3 H), 2.54 (qd, J = 7.2, 1.4 Hz, 4 H), 0.93 (t, J = 7.1 Hz, 6 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 158.5, 137.2, 135.0, 131.8, 130.6, 128.9, 128.5, 127.2, 126.3, 113.7, 68.0, 55.2, 43.0, 11.6.

MS: m/z (%) = 295 (8) [M⁺], 224 (18), 223 (100), 145 (14), 115 (23).

4-[(2E)-1-(Diethylamino)]-3-phenyl-2-propenylbenzoic Acid Ethyl Ester (5b)

Column chromatographic purification using CH_2Cl_2 -pentane (1:1) \rightarrow CH₂Cl₂-MeOH (99:1) as eluent yielded **5b** (268 mg, 0.80 mmol, 80%) as an orange oil.

IR (film): 2971 (s), 2817 (m), 1717 (vs), 1609 (s), 1449 (m), 1368 (m), 1275 (vs), 1172 (m), 1104 (s), 1020 (m), 970 (m), 747 (s), 694 (s) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.96 (d, *J* = 8.3 Hz, 2 H), 7.49 (d, *J* = 8.4 Hz, 2 H), 7.35–7.15 (m, 5 H), 6.52 (d, *J* = 16.0 Hz, 1 H), 6.27 (dd, *J* = 16.0, 8.9 Hz, 1 H), 4.33 (q, *J* = 7.0 Hz, 2 H), 4.31 (d, *J* = 8.8 Hz, 1 H), 2.64–2.51 (m, 4 H), 1.34 (t, *J* = 7.1 Hz, 3 H), 0.97 (t, *J* = 7.1 Hz, 6 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 166.6, 148.5, 136.8, 131.7, 130.5, 129.7, 129.1, 128.5, 127.8, 127.5, 126.4, 68.6, 60.8, 43.1, 14.3, 11.6.

MS: *m*/*z* (%) = 337 (34) [M⁺], 336 (38), 265 (69), 246 (39), 192 (34), 191 (41), 189 (26), 188 (69), 115 (100), 91 (28).

HRMS: *m*/*z* calcd for C₂₂H₂₇NO₂, 337.2042; found, 337.2005.

2-[(2E)-1-(Diethylamino)]-3-phenyl-2-propenylbenzoic Acid Ethyl Ester (5c)

Column chromatographic purification using CH_2Cl_2 -pentane (1:1 \rightarrow 1:0) as eluent yielded **5c** (169 mg, 0.50 mmol, 50%) as an orange oil.

IR (film): 2972 (s), 2934 (m), 1721 (vs), 1449 (m), 1268 (s), 1253 (s), 1132 (s), 1095 (s), 1074 (s), 146 (s), 695 (s) cm⁻¹.

140 (S), 093 (S) CIII⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.65 (d, *J* = 7.8 Hz, 1 H), 7.61 (dd, *J* = 7.6, 1.4 Hz, 1 H), 7.43 (dd, *J* = 7.7, 1.3 Hz, 1 H), 7.39–7.36 (m, 3 H), 7.32–7.17 (m, 3 H), 6.62 (d, *J* = 16.0 Hz, 1 H), 6.39 (dd, *J* = 15.9, 9.1 Hz, 1 H), 5.08 (d, *J* = 9.0 Hz, 1 H), 4.37 (qd, *J* = 7.6,

1,7 Hz, 2 H), 2.60 (sept, *J* = 7.5 Hz, 4 H), 1.41 (t, *J* = 7.1 Hz, 3 H), 0.96 (t, *J* = 7.1 Hz, 6 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 169.0, 143.5, 137.2, 131.8, 131.4, 130.8, 130.8, 129.5, 128.5, 128.4, 127.4, 126.5, 126.4, 64.6, 60.9, 43.1, 14.3, 11.3.

MS: m/z (%) = 337 (6) [M⁺], 309 (23), 308 (100), 265 (17), 264 (78), 246 (23), 219 (42), 204 (12), 191 (15), 189 (14), 188 (10), 130 (12), 15 (12), 91 (21).

HRMS: *m*/*z* calcd for C₂₂H₂₅NO₂, 336.1965; found, 336.1964.

5-[(2E)-1-(Diethylamino)-3-phenyl-2-propenyl]-2-furan-carboxylic Acid Ethyl Ester (5d)

Column chromatographic purification using CH_2Cl_2 -pentane (1:1) \rightarrow CH₂Cl₂-MeOH (99:1) as eluent yielded **5d** (200 mg, 0.61 mmol, 61%) as an orange oil.

IR (film): 2971 (vs), 1725 (s), 1514 (m), 1450 (m), 1300 (s), 1214 (m), 1136 (s), 1017 (m), 762 (m), 699 (m) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.40–7.20 (m, 5 H), 7.14 (d, J = 3.0 Hz, 1 H), 6.57 (d, J = 16.0 Hz, 1 H), 6.41–6.33 (m, 2 H), 4.59 (d, J = 7.5 Hz, 1 H), 4.34 (q, J = 7.0 Hz, 2 H), 2.73–2.51 (m, 4 H), 1.36 (t, J = 7.1 Hz, 3 H), 1.05 (t, J = 7.1 Hz, 6 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 159.9, 158.8, 143.8, 136.7, 132.9, 128.5, 127.7, 127.5, 126.5, 118.7, 109.5, 61.6, 60.7, 44.0, 14.4, 12.5.

MS: *m/z* (%) = 327 (10) [M⁺], 256 (21), 255 (100), 227 (54), 209 (26), 181 (18), 153 (27), 152 (16), 115 (12).

HRMS: *m*/*z* calcd for C₂₀H₂₅NO₃, 327.1834; found, 327.1831.

N,N,N',N'-Tetraallyl-3-phenyl-2-propin-1,1-diamine (8)

The aminal ${\bf 8}$ was prepared according to a known method 10 using aminal ${\bf 1a}.$

Yield: 1.73 g (5.6 mmol, 71%) orange oil (after distillation at 1.5×10^{-1} mbar, bp 93–97 °C).

¹H NMR (300 MHz, C_6D_6): δ = 7.40–7.37 (m, 2 H), 7.00–6.95 (m, 3 H), 5.98–5.85 (m, 4 H), 5.20 (dq, *J* = 17.2, 1.8 Hz, 4 H), 5.09–5.04 (m, 4 H), 4.55 (s, 1 H), 3.65 (ddt, *J* = 14.6, 5.7, 1.4 Hz, 4 H), 3.41 (dd, *J* = 14.1, 7.1 Hz, 4 H).

 ^{13}C NMR (75 MHz, $\text{C}_6\text{D}_6\text{)}$: δ = 136.5, 132.1, 128.6, 128.4, 123.5, 117.1, 88.1, 85.3, 71.6, 52.5.

Addition of Grignard Reagents 3a-h to Aminal 8: General Procedure for 10

To a stirred soln of the aminal **8** (306 mg, 1.0 mmol) in THF (2 mL) at -60 °C, (CF₃CO)₂O (231 mg, 1.1 mmol) was added dropwise. After 15 min, NMP (0.5 mL, 5 mmol) was added. To this soln, the

Grignard reagent **3** [1.5 mmol, dissolved in THF (3 mL)] was added dropwise. After 0.5 to 1 h, the reaction was complete according to GC/MS-analysis and quenched with sat. aq NH₄Cl soln (10 mL). The aq layer was extracted with Et₂O (3×20 mL), the combined organic layers were washed with brine (30 mL), dried (MgSO₄), filtered and evaporated under reduced pressure. Purification by column chromatography with pentane–CH₂Cl₂ as eluent gave the corresponding products **10a,b**.

*N,N-*Diallyl-*N-*[1-(4-methoxyphenyl)-3-phenyl-2-propynyl]-amine (10a)

Column chromatographic purification using CH_2Cl_2 -pentane (1:4 \rightarrow 1:2) as eluent yielded **10a** (242 mg, 0.76 mmol, 76%) as an orange oil.

IR (film): 2931 (w), 2835 (w), 2816 (w), 1610 (m), 1586 (m), 1510 (vs), 1490 (m), 1443 (m), 1249 (vs), 1171 (s), 1036 (m), 920 (m), 757 (s), 691 (m) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.58 (d, *J* = 8.9 Hz, 2 H), 7.55–7.51 (m, 2 H), 7.35–7.33 (m, 3 H), 6.89 (d, *J* = 8.8 Hz, 2 H), 5.92–5.79 (m, 2 H), 5.30–5.11 (m, 4 H), 5.04 (s, 1 H), 3.82 (s, 3H), 3.27 (ddt, *J* = 14.2, 4.0, 2.2 Hz, 2 H), 3.03 (dd, *J* = 14.2, 7.9 Hz, 2 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 158.9, 136.6, 131.8, 131.4, 129.4, 128.3, 128.1, 123.3, 117.2, 113.4, 87.7, 85.7, 56.0, 55.3, 53.4.

MS: m/z (%) = 317 (83) [M⁺], 222 (20), 221 (100), 178 (10).

HRMS: *m*/*z* calcd for C₂₂H₂₃NO, 317.1780; found, 317.1714.

4-[1-(Diallylamino)-3-phenyl-2-propynyl] Benzoic Acid Ethyl Ester (10b)

Column chromatographic purification using CH_2Cl_2 -pentane (1:6 \rightarrow 1:0) as eluent yielded **10b** (239 mg, 0.66 mmol, 66%) as an orange oil.

IR (film): 2980 (w), 2828 (w), 1719 (vs), 1275 (vs), 1104 (s), 1022 (m), 756 (s), 691 (m) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 8.03$ (d, J = 8.4 Hz, 2 H), 7.77 (d, J = 8.1 Hz, 2 H), 7.56–7.53 (m, 2 H), 7.38–7.33 (m, 3 H), 5.91–5.78 (m, 2 H), 5.28 (d, J = 17.3 Hz, 2 H), 5.14 (d, J = 12.4 Hz, 2 H), 5.12 (s, 1 H), 4.38 (q, J = 7.1 Hz, 2 H), 3.25 (ddt, J = 14.2, 4.5, 2.2 Hz, 2 H), 3.05 (dd, J = 14.1, 8.5 Hz, 2 H) = 14.0 (t, J = 7.1 Hz, 3 H)

2 H), 1.40 (t, *J* = 7.1 Hz, 3 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 166.5, 144.7, 136.2, 131.8, 129.7, 129.4, 128.4, 128.3, 128.2, 123.0, 117.6, 88.3, 84.5, 60.9, 56.5, 53.7, 14.3.

MS: *m*/*z* (%) = 359 (11) [M⁺], 358 (17), 264 (23), 263 (100), 235 (41), 210 (51), 191 (13), 190 (19), 189 (31).

HRMS: *m/z* calcd for C₂₄H₂₄NO₂, 358.1807; found, 358.1779.

1-(4-Methoxyphenyl)-3-phenyl-2-propynylamine (11)

To a stirred soln of Pd(PPh₃)₄ (16 mg, 0.014 mmol) and *N*,*N*-dimethylbarbituric acid (262 mg, 1.68 mmol) in CH₂Cl₂ (2 mL) was added a soln of **10a** (88 mg, 0.28 mmol) in CH₂Cl₂ (3 mL). After stirring for 30 min at r.t., the reaction was complete according to GC/MS-analysis. The solvent was removed under vacuo and the residue was redispersed in Et₂O (15 mL). The organic layer was washed with sat. Na₂CO₃ soln (2 × 30 mL) and extracted with 2 mOl/L HCl (40 mL). The aq phase was washed with Et₂O (2 × 50 mL) and treated with sat. Na₂CO₃ soln in the presence of Et₂O until pH 8 was reached. The aq phase was extracted with CH_2Cl_2 (6 × 25 mL), dried (MgSO₄) and filtered. The solvent was removed under reduced pressure to give the primary amine (47 mg, 0.20 mmol, 71%) as a brown oil.

IR (film): 3368 (w), 2959 (m), 2932 (m), 2836 (m), 1608 (s), 1511 (vs), 1490 (s), 1303 (s), 1250 (vs), 1174 (s), 1032 (s), 834 (s), 758 (s), 693 (s) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.52 (d, *J* = 8.7 Hz, 2 H), 7.47–7.44 (m, 2 H), 7.32–7.29 (m, 3 H), 6.91 (d, *J* = 8.9 Hz, 2 H), 4.97 (s, 1 H), 3.82 (s, 3 H), 1.87 (br s, 2 H).

 ^{13}C NMR (75 MHz, CDCl_3): δ = 159.1, 134.5, 131.6, 128.2, 128.1, 128.0, 123.1, 113.9, 88.7, 84.1, 55.3, 46.8.

MS: *m*/*z* (%) = 237 (23) [M⁺], 236 (100), 222 (29), 221 (19), 206 (17), 193 (13), 178 (10), 129 (21), 128 (15)

128 (15).

Acknowledgments

We thank the BASF AG for a fellowship to C. K. and the Fonds der Chemischen Industrie for financial support. We thank Chemetall GmbH (Frankfurt a. M.) and BASF AG (Ludwigshafen) for the generous gift of chemicals.

References

- (1) Boudier, A.; Bromm, L. O.; Lotz, M.; Knochel, P. Angew. Chem. Int. Ed. 2000, 39, 4415.
- (2) Knochel, P.; Millot, N.; Rodriguez, A. L.; Tucher, C. A. Organic Reactions, 58; Overman, L. E., Ed.; Wiley & Sons Ltd.: New York, 2001, 417.
- (3) (a) Boymond, L.; Rottländer, M.; Cahiez, G.; Knochel, P. *Angew. Chem.Int. Ed.* **1998**, *37*, 1701. (b) Rottländer, M.; Boymond, L.; Bérillon, L.; Leprêtre, A.; Varchi, G.; Avolio, S.; Laaziri, H.; Queguiner, G.; Ricci, A.; Cahiez, G.; Knochel, P. *Chem.-Eur. J.* **2000**, *6*, 767. (c) Varchi, G.; Jensen, A. E.; Dohle, W.; Ricci, A.; Cahiez, G.; Knochel, P. Synlett **2001**, 477. (d) Sapountzis, I.; Knochel, P. *Angew. Chem. Int. Ed.* **2002**, *41*, 1610.
- (4) (a) Huffman, M. A.; Yasuda, N.; DeCamp, A. E.; Grabowski, E. J. J. J. Org. Chem. **1995**, 60, 1590.
 (b) Koninski, M.; Okhuma, H.; Tsnuno, T.; Oki, T.; Van Duyne, G. D.; Chardy, J. J. J. Am. Chem. Soc. **1990**, 112, 3715.
- (5) Weingarten, H. Tetrahedron 1968, 24, 2767.
- (6) Bredereck, H.; Simchen, G.; Horn, P. Chem. Ber. **1970**, 103, 210.
- (7) (a) Sekiya, M.; Sakai, H. *Chem. Pharm. Bull.* **1969**, *17*, 32.
 (b) Betschart, C.; Schmidt, B.; Seebach, D. *Helv. Chim. Acta* **1988**, *71*, 1999.
- (8) Millot, N.; Piazza, C.; Avorio, S.; Knochel, P. *Synthesis* **2000**, 941.

(9) Abarbri, M.; Thibonnet, J.; Bérillon, L.; Dehmel, F.; Rottländer, M.; Knochel, P. J. Org. Chem. 2000, 65, 4618.

- (10) Kiesel, M.; Haug, E.; Kantlehner, W. J. Prakt. Chem. 1997, 339, 159.
- (11) Garro-Helion, F.; Merzouk, A.; Guibé, F. J. Org. Chem. 1993, 58, 6109.