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Direct Approach to N-Acyl Enamine Amides
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ABSTRACT: The robustness of iron catalysis enabling the unprecedented oxidative coupling reactions of enamides with 
formamides is described. Routing from readily accessible feedstocks, the efficient approach is implemented to furnish a 
broad array of value-added N-acyl enamine amide derivatives, which serve as versatile precursors of biologically relevant 
N-heterocycles including pyrimidin-4-ones and 4-hydroxypyridin-2-ones. Preliminary mechanistic studies supported the 
notion that this direct carbamoylation reaction proceeded through an aminoacyl radical species.
KEYWORDS: oxidative coupling, enamide, formamide, iron, radicals        

Enamides are versatile reactive intermediates for the 
synthesis of nitrogen-containing building blocks due to 
their intrinsically tempered nucleophilicity.1 Their 
amenability to participate in an array of selective 
functionalization reactions, as rendered by dual 
characteristics, coupled with transition metal catalysis has 
indisputably boosted their synthetic values.2 Direct olefinic 
C−H functionalization of enamides has emerged as a useful 
synthetic platform to prepare various multisubstituted 
amine and olefin derivatives,3 serving as the pivotal 
structural motifs in natural products as well as organic 
materials. Consequently, the use of activated coupling 
partners,4 often involving halides, organometallic reagents, 
and acrylates, based on C−H bond functionalization have 
been investigated to introduce different molecular entities 
onto enamide scaffolds, including aryl,5 alkenyl,6 alkynyl,7 
alkyl,8 acyl,9 etc.10 Despite these impressive progress, an 
appealing alternative strategy to realize the oxidative 
cross-coupling of enamides with simple hydrocarbons in 
an efficient and selective manner is highly desirable yet 
remains an underdeveloped area for C−C bond formation.11

On the other hand, N,N-dimethylformamide (DMF) and 
its variants have been intensively exploited as a carbamoyl 
source via acyl C−H activation in Heck-type 
carbamoylation.12 The application of this well-established 
protocol on unsaturated substrates, however, largely 
resulted in the hydrocarbamoylation adducts.13 Only two 
precedent exceptions have emerged for iron-catalyzed E-
selective carbamoylation and carbooxygenation of styrenes 
which assembled α,β-unsaturated amides and β-peroxy 
amides,14 respectively. Inspired by the above studies, we 
speculated that the feasibility of the direct coupling of 
enamides with formamides via aminoacyl radical species in 

which the stereoselectivity could be controlled by the 
amide moiety. If realized, the protocol would grant a direct 
access to value-added N-acyl enamine amides. Notably, 
pertaining to the presence of N,O-functionalities in the 
scaffold, these compounds can be facilely derived into 
many important bioactive molecules such as β-amino 
amides upon reduction15 and pyrimidin-4-ones upon 
cyclodehydration.16 In fact, thanks to the elegant 
contributions by Ellman,17 Chang,18 Li,19 and Luo,20 the 
target molecules have been efficiently assembled via C−H 
activation protocols, including C−H carbamoylation of 
enamides with isocynates or isocyanides, as well as C−H 
amidation of acrylamides with acyl azides or dioxazolones 
(Scheme 1a). Herein, we disclose a strategically distinct 
approach to N-acyl enamine amides via the oxidative 
coupling between enamides and formamides by 
environmentally friendly iron catalysis, which notably 
circumvents the use of precious transition metals and toxic 
reagents. Further, the present transformation contributes 
to a new reaction pattern for enamides to forge C−C bond 
via a free-radical pathway in addition to C−H activation, 
which is relatively scarce in the enamide chemistry. 

Scheme 1. Direct Synthesis of N-Acyl Enamine Amides
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Preliminary investigation began with the oxidative 
coupling of N-(1-phenylvinyl)acetamide (1a) with 
DMF (2a) as model substrates. To our delight, the 
coupling product 3aa was obtained in 46% yield using 
1 equiv of 1a, DMF as solvent, tert-butyl hydroperoxide 
(TBHP) as oxidant in the presence of FeCl3 (15 mol%) 
at 65 oC. After extensive screening of iron salts, we 
found that FeCl2 catalyzed the reaction in higher yield 
(entries 1−7). Other inexpensive first-row transition 
metal salts, such as CuCl2, MnCl2, and CoCl2, proved 

less efficient (entries 8−10). In addition, no desired 
product was observed when other common oxidants 
were employed (entries 11−13) by using FeCl2 as catalyst, 
except for di-tert-butyl peroxide (DTBP), which 
delivered 81% yield of 3aa as the optimum (entry 14). 
Control experiment in the absence of FeCl2 gave no 
product (entry 15). Despite the satisfactory results 
obtained under the neat conditions at the current 
stage, we were interested in pursuing the reaction with 
stoichiometric amounts of DMF instead of behaving as 
a solvent. Our focus was then to identify an adequate 
medium for this transformation. Using 1,2-
dichloroethane (DCE) as solvent, a decreased amount 
of DMF (12 equiv) led to a sluggish conversion (entry 
16). Pleasingly, elevating the temperature to 80 °C and 
increasing the loading of DTBP to 5.0 equiv, 
remarkably improved the yield from 13% to 45% 
(entries 17 and 18). A subsequent solvent modification 
showed that chlorobenzene was the best choice, 
furnishing a compromised 49% yield of 3aa (entries 
19‒23). Considering the beneficial role of base for 
radical-mediated C−C double bond formation, a set of 
bases were examined, among which KOAc was found 
to be suitable promoter (entries 24−28). Attempts to 
decrease the stoichiometry of DMF affected the 
reaction negatively (entry 29). 

Table 1. Optimizations for the oxidative coupling of 1a and 2aa

+ NH OH
O

N
NMe2

O

MeNH

O

Me

Me
Me

additive, solvent
N2

H

1a 2a 3aa

[M] salt (15 mol%)
oxidant (3.0 equiv)

Entry [M] salt Oxidant (equiv) Additive Solvent Temp (°C) Time (h) Yieldb (%)
1 FeCl3 TBHP (3.0) - DMF 65 2.5 46
2 FeBr3 TBHP (3.0) - DMF 65 2.5 20
3 Fe(OTf)3 TBHP (3.0) - DMF 65 2.5 <5
4 FeBr2 TBHP (3.0) - DMF 65 2.5 35
5 FeI2 TBHP (3.0) - DMF 65 2.5 n.d.
6 Fe(OTf)2 TBHP (3.0) - DMF 65 2.5 23
7 FeCl2 TBHP (3.0) - DMF 65 2.5 72
8 CuCl2 TBHP (3.0) - DMF 65 2.5 16
9 MnCl2 TBHP (3.0) - DMF 65 2.5 12
10 CoCl2 TBHP (3.0) - DMF 65 2.5 13
11 FeCl2 BPO (3.0) - DMF 65 2.5 n.d.
12 FeCl2 CHP (3.0) - DMF 65 2.5 n.d.
13 FeCl2 K2S2O8 (3.0) - DMF 65 2.5 n.d.
14 FeCl2 DTBP (3.0) - DMF 65 2.5 81
15 - DTBP (3.0) - DMF 65 2.5 n.d.
16b FeCl2 DTBP (3.0) - DCE 65 2.5 13
17b FeCl2 DTBP (3.0) - DCE 80 13 40
18b FeCl2 DTBP (5.0) - DCE 80 13 45
19b FeCl2 DTBP (5.0) - DMSO 80 13 6
20b FeCl2 DTBP (5.0) - Toluene 80 13 17
21b FeCl2 DTBP (5.0) - THF 80 13 12
22b FeCl2 DTBP (5.0) - tAmOH 80 13 24
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23b FeCl2 DTBP (5.0) - PhCl 80 13 49
24b FeCl2 DTBP (5.0) CsOAc PhCl 80 13 58
25b FeCl2 DTBP (5.0) DABCO PhCl 80 13 32
26b FeCl2 DTBP (5.0) KOtBu PhCl 80 13 <5
27b FeCl2 DTBP (5.0) K2CO3 PhCl 80 13 13
28b FeCl2 DTBP (5.0) KOAc PhCl 80 13 68
29c FeCl2 DTBP (5.0) KOAc PhCl 80 13 51

aUnless otherwise noted, reaction was performed with 1a (0.2 mmol), Fe salt (15 mol%), oxidant (3.0 equiv), and additive (30 mol%) in 
solvent (0.8 mL) under N2. Isolated yield. b12 equiv of 2a used. c8 equiv of 2a used. n.d. = not detected. BPO = dibenzoyl peroxide. CHP 
= cumyl hydroperoxide.

Using the optimal conditions uncovered in Table 1, 
entry 14, the substrate generality with respect to the 
enamides was examined in the Fe-catalyzed oxidative 
coupling with 2a (Scheme 2). A variety of N-
vinylacetamides tested underwent carbamoylation 
smoothly under our catalytic protocol, providing 
various N-acyl enamine amides in good yields and with 
complete Z-selectivity, irrespective of the electronic 
and steric properties of substituents on the phenyl ring. 
Functional moieties of synthetic potential such as 
halides, methoxy, trifluoromethyl, sulfonyl, and cyano 
groups, were well tolerated. Naphthalenyl and 
thiophenyl substituted enamides could also deliver 
the coupling products in 84% and 52% yields (3ka and 
3la), respectively. Nonetheless, by switching to cyclic 
enamide, moderate conversion into the corresponding 
product 3ma was observed even after a prolonged 
reaction time. Along with N-acetyl enamides (1a−m), 
replacing substitution pattern with other acyl groups 
at the nitrogen atom, such as N-propionyl and 
isobutyryl substituents, did not influence the reaction 
efficiency (3na and 3oa).
Scheme 2. Substrate Scope of Enamides
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Conditions: 1 (0.2 mmol), 2a (0.8 mL), FeCl2 (0.03 mol), DTBP 
(0.6 mmol), N2, 65 °C, 2.5 h. a24 h. b12 h. c80 °C, 13 h.

Next, the compatibility of formamide derivatives 
with 1a as an enamide partner was investigated using 
the reaction conditions described in Table 1, entry 28. 
The results were summarized in Scheme 3. Broadly, 
both mono- and di-substituted formamides could be 
installed onto β-C−H bond of enamides in moderate to 
good yields. Specifically, beyond dialkyl chain 
substituted formamides (3ab−ad), a range of aza-
cyclic derivatives embedding pyrrolidine, piperidine, 
morpholine, and piperazine, underwent the reaction 
smoothly to afford the products (3ae−ah). Regarding 
the scope of N-monosubstituted formamides, ethyl 
and cyclohexyl groups as the representative aliphatic 
substitution showed higher reactivity than aryl 
substituted derivative toward this transformation (3ai 
and 3aj vs. 3ak). N,N-diphenylformamide failed to 
produce the desired product under the standard 
conditions (3am). It is worth mentioning that N-
formylglycinate of biological relevance turned out to 
be a competent substrate (3al).

Scheme 3. Substrate Scope of Formamides
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Conditions: 1a (0.2 mmol), 2 (12 equiv), FeCl2 (0.03 mmol), DTBP 
(0.6 mmol), KOAc (0.06 mmol), PhCl (0.8 mL), N2, 80 °C, 5 h. 
aWithout KOAc.
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Have established the substrate generality and 
limitation of the present method, we sought to further 
illustrate the synthetic utility of the products. As can 
be expected from the precedent literatures,16 
subjecting the coupled products N-ethyl, phenyl and 
cyclohexyl amides (3ai−ak) to potassium 
hexamethyldisilazane (KHMDS) in THF solution 
afforded the cyclodehydration products (4ai−ak), 
namely pyrimidin-4-ones, which act as significant 
pharmacophores within drug discovery enterprise 
(Scheme 4a).21 Intriguingly, exposure of benzyl 
protected amides 5 under the same basic conditions 
led to the quick assembly of 4-hydroxypyridin-2-ones 
6 via cyclodeamination process. As depicted in 
Scheme 4b, a set of electronically and sterically varied 
amides 3 were exemplified to assess the breadth of this 
novel transformation, which serves as a convenient 
alternative protocol to other condensation methods 
for the synthesis of such privileged frameworks.22

Scheme 4. Synthetic Utility of Some Coupling 
Products
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a) Synthesis of multisubsituted pyrimidin-4-ones
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Several experiments were carried out to elucidate the 
mechanism of this catalytic reaction. As expected, addition 
of a stoichiometric amount of a known radical quencher, 
2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), to the 
reaction system resulted in no detectable amidation 
product 3aa; instead, carbamoylated TEMPO adduct 7 was 
formed in 11% yield, which indicated the intermediacy of 
an aminoacyl radical species in the process (Scheme 5a). 
Furthermore, the deuterium kinetic isotope effect (KIE) for 
the carbamoylation was studied to better understand the 
process of the C−H bond cleavage. The value of KIE = 3.3 
from intermolecular competitive reaction as well as the 
value of KIE = 3.1 from two parallel experiments revealed 
that the cleavage of formyl C−H bond might be involved in 
the rate-determining step (Scheme 5b).

Scheme 5. Mechanistic Studies
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On the basis of the above experimental findings 
combined with precedent reports,14 a plausible mechanism 
was proposed for the current oxidative carbamoylation 
reaction shown in Scheme 6. The initial step involves 
Fe(II)-mediated decomposition of DTBP to tert-butoxyl 
radical and tert-butoxide anion via a single-electron-
transfer (SET) redox reaction.23 The aminoacyl radical A 
generated in situ by homolytic cleavage of formyl C(sp2)−H 
bond, which is clearly evidenced by a radical-trapping 
experiment, will then add to the double bond of enamide 
at the β position. Of note, iron salt could serve as Lewis 
acid to coordinate with the nitrogen and oxygen atoms, 
which thereby accounts for the exclusive stereoselectivity 
of the reaction. Fe(III) then oxidizes the benzylic radical B 
to the corresponding cation C via SET process, along with 
the regeneration of Fe(II) species. It is feasible that alkyl 
cation C can be isomerized to more stable iminium ion D. 
Finally, the olefinic functionality is restored upon 
deprotonation to afford the carbamoylation product. 
When the reaction was run in PhCl medium, the use of 
KOAc leads to the enhancement of the chemical yield 
might due to its beneficial role in the β-H elimination step.

Scheme 6. Proposed Mechanism for Fe-Catalyzed 
Oxidative Carbamoylation
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In summary, the development of a practical method for 
the synthesis of N-acyl enamine amides via Fe-catalyzed 
oxidative coupling of enamides and formamides has been 
reported. Under neat conditions or PhCl as solvent, 
synthetically useful yields and complete Z-selectivities of 
the target products were achieved. Apart from the 
generality of the reaction with respect to a broad substrate 
scope as well as excellent functional group tolerance, 
conversion of the N-acyl enamine amides products into 
biologically important pyrimidin-4-ones and 4-
hydroxypyridin-2-ones demonstrates the versatility of 
the transformation. Moreover, control experiments 
disclosed a preliminary radical mechanism. Further 
extensions of this approach and deeper mechanistic 
studies are currently underway in our laboratory.
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