ZrO₂-TiO₂ Materials

Ya. S. Mazurkevich and I. M. Kobasa

Fed'kovich State University, ul. Kotsyubinskogo 2, Chernovtsy, 274012 Ukraine e-mail: petro@sacura.chernovtsy.ua Received November 10, 2000; in final form, May 14, 2001

Abstract—The magnetic, electrical, catalytic, and photocatalytic properties of ZrO_2 –TiO₂ materials were studied. The ZrO_2 –TiO₂ system was shown to contain ZrO_2 -, TiO₂, and $ZrTiO_4$ -based solid solutions. Procedures for the preparation of high-activity ZrO_2 –TiO₂ photocatalysts and photostable pigments were developed.

INTRODUCTION

 ZrO_2 -TiO₂ materials are potential candidates for the fabrication of refractory ceramics [1, 2] and development of advanced coating processes [3]. The ZrO_2 -TiO₂ system is known to contain both TiO₂- and ZrO_2 based solid solutions, but there is no general agreement as to their extents. The existence of zirconium titanate, ZrTiO₄, was first reported in [4] and then confirmed in [5]. At 590 K, ZrTiO₄ reacts eutectoidally with monoclinic ZrO₂. The purpose of this work was to investigate the electrical, magnetic, catalytic, and photocatalytic properties of ZrO₂-TiO₂ samples with the aim of preparing photosensitive materials and photostable pigments.

EXPERIMENTAL

Samples for this investigation were prepared via coprecipitation of zirconium and titanium hydroxides obtained by reacting ammonia with $ZrOCl_2$ and $TiCl_4$, followed by washing with water to remove the ammonium salts. The residual ammonia was removed by calcination at 870 K. Next, the hydroxide mixtures were heat-treated in a muffle furnace at 1070 K for 6 h. The resultant materials were ground in a ball mill to the preset particle size.

The photocatalytic performance of the materials was characterized by their activity for the reduction of methylene blue to a leuco form [6]. We also assessed their catalytic activity for chemical metallization of composites [7]. Magnetic susceptibility was measured by the Faraday method in a stabilized magnetic field using an automatic balance. Electrical conductivity was measured at dc. Phase composition was determined on a DRON-3.0 x-ray diffractometer (Ni-filtered Cu K_{α} radiation) at room temperature. Modifiers were introduced by impregnating ZrO₂–TiO₂ samples with appropriate metal salts, followed by calcination in air at 1770 K for 4 h, or in the course of flame hydrolysis at 1370 K. The specific surface area S_{sp} was determined by low-temperature argon BET measurement.

RESULTS AND DISCUSSION

According to x-ray diffraction data (Fig. 1), the phase composition of the ZrO_2 -TiO₂ materials was dependent on TiO₂ content. The samples containing 1.0 and 5.0 wt % TiO₂ were single-phase and consisted of monoclinic ZrO_2 -based solid solutions. The diffraction patterns of the samples containing 20.0 wt % TiO₂

Fig. 1. Schematic diffraction patterns of (1) anatase, (2) rutile, (3) ZrO_2 , and (4–8) ZrO_2 – TiO_2 samples containing (4) 1.0, (5) 5.0, (6) 20.0, (7) 40.0, and (8) 60.0 wt % TiO_2.

Fig. 2. Magnetic susceptibility as a function of temperature for (1, 2) TiO₂ prepared by flame and liquid-phase hydrolysis, respectively; (6) ZrO₂; and (3–5, 7, 8) ZrO₂–TiO₂ samples containing (3) 40.0, (4) 60.0, (5) 20.0, (7) 1.0, and (8) 5.0 wt % TiO₂.

showed, along with peaks from monoclinic ZrO_2 , reflections from $ZrTiO_4$. The relative intensity and number of such reflections increased with TiO_2 content. At

40.0 wt % TiO₂, the samples were again single-phase and consisted of a $ZrTiO_4$ -based solid solution. The diffraction patterns of the samples containing 60.0 wt % TiO₂ showed reflections from $ZrTiO_4$ and rutile.

The data in Table 1 demonstrates that the catalytic and photocatalytic activity of TiO_2 prepared by hightemperature heat treatment is much higher than that of ZrO_2 , TiO_2 , or ZrO_2 - TiO_2 prepared by liquid-phase hydrolysis. The likely reason is the presence of hydrogen during flame hydrolysis, which leads to a defectrich structure of the material, as supported by magnetic susceptibility measurements (Fig. 2), which indicate a high concentration of paramagnetic centers.

It can be seen from Table 1 that, in the ZrO_2 -TiO₂ system, the catalytic and photocatalytic activity reaches a maximum at 40.0 wt % TiO₂ and slightly decreases as the TiO₂ content increases to 60.0 wt %, which is likely associated with the formation of the rutile phase, as evidenced by x-ray diffraction data (Fig. 1). According to earlier studies [8], rutile has a low activity. Reducing the TiO₂ content to 20.0 wt % leads to a sharp drop in catalytic and photocatalytic activity. Note that the paramagnetic contribution also decreases with increasing TiO₂ content (Fig. 2). The samples containing more than 20.0 wt % TiO₂ are paramagnetic.

These findings indicate that the paramagnetism is mainly due to TiO_2 . Given that, in the reactions studied, photocatalysis is due to $[Ti^{3+}]$ paramagnetic centers [9, 10], the TiO_2 -rich materials, unstable under UV irradiation, would be expected to exhibit high photocatalytic activity, whereas the ZrO_2 -rich materials, stable to UV irradiation, must have low photocatalytic activity, as observed in experiment.

The electrical conductivity of the materials studied depends on the preparation procedure and TiO_2 content (Table 1). The titania prepared by high-temperature heat treatment and consisting of defect-rich anatase and

Table 1. Photocatalytic activity (PCA), catalytic activity (CA), and conductivity of TiO_2 , ZrO_2 , and ZrO_2 – TiO_2 (numbers in parentheses indicate wt % TiO_2)

Preparation procedure	$S_{\rm sp},{\rm m^2/g}$	Specific PCA, g/(1 min m ²)	CA, %	σ, S/cm
Flame hydrolysis of TiCl ₄	50	1.4	70.0	3.6×10^{-6}
Liquid-phase hydrolysis of TiCl ₄	26	3.2×10^{-1}	45.2	$9.8 imes 10^{-8}$
"	20	1.6×10^{-2}	30.6	8.7×10^{-9}
Liquid-phase hydrolysis of ZrOCl ₄	28	1.3×10^{-2}	28.6	8.1×10^{-9}
Hydroxide coprecipitation	20	1.2×10^{-2}	27.5	7.1×10^{-9}
"	22	1.0×10^{-2}	23.0	6.7×10^{-9}
"	24	$1.8 imes 10^{-2}$	34.0	9.3×10^{-9}
"	27	2.7×10^{-2}	43.8	12.9×10^{-9}
"	25	2.1×10^{-2}	41.3	11.3×10^{-9}
	Preparation procedure Flame hydrolysis of TiCl ₄ Liquid-phase hydrolysis of TiCl ₄ " Liquid-phase hydrolysis of ZrOCl ₄ Hydroxide coprecipitation " "	Preparation procedure $S_{sp}, m^2/g$ Flame hydrolysis of TiCl ₄ 50Liquid-phase hydrolysis of TiCl ₄ 26"20Liquid-phase hydrolysis of ZrOCl ₄ 28Hydroxide coprecipitation20"22"24"25	$\begin{array}{c c} \mbox{Preparation procedure} & S_{\rm sp}, m^2/g & Specific PCA, \\ g/(1 \min m^2) \\ \hline \mbox{Flame hydrolysis of TiCl}_4 & 50 & 1.4 \\ \mbox{Liquid-phase hydrolysis of TiCl}_4 & 26 & 3.2 \times 10^{-1} \\ \mbox{''} & 20 & 1.6 \times 10^{-2} \\ \mbox{Liquid-phase hydrolysis of ZrOCl}_4 & 28 & 1.3 \times 10^{-2} \\ \mbox{Hydroxide coprecipitation} & 20 & 1.2 \times 10^{-2} \\ \mbox{''} & 22 & 1.0 \times 10^{-2} \\ \mbox{''} & 24 & 1.8 \times 10^{-2} \\ \mbox{''} & 27 & 2.7 \times 10^{-2} \\ \mbox{''} & 25 & 2.1 \times 10^{-2} \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Weight percent impurity	Photocatalytic activity, g/(l min m ²)								
	W			V			Al		
	Ι	II	III	Ι	II	III	Ι	II	III
0.001	1.5×10^{-2}	9.5×10^{-1}	2.4×10^{-2}	1.3×10^{-2}	7.2×10^{-1}	$2.5 imes 10^{-2}$	9.7×10^{-3}	2.1×10^{-2}	9.9×10^{-3}
0.01	$1.7 imes 10^{-2}$	1.2	$2.9 imes 10^{-2}$	1.8×10^{-2}	9.1×10^{-1}	$2.8 imes 10^{-2}$	$8.2 imes 10^{-3}$	4.5×10^{-3}	8.7×10^{-3}
0.1	$2.8 imes 10^{-2}$	1.5	3.6×10^{-2}	2.2×10^{-2}	1.1	3.4×10^{-2}	$7.1 imes 10^{-3}$	1.3×10^{-3}	7.2×10^{-3}
1.0	3.2×10^{-2}	1.8	4.2×10^{-2}	2.7×10^{-2}	1.4	3.8×10^{-2}	9.0×10^{-4}	4.0×10^{-4}	9.5×10^{-4}
5.0	6.4×10^{-3}	4.3×10^{-2}	8.7×10^{-3}	2.1×10^{-3}	3.5×10^{-2}	7.2×10^{-3}	0	0	0

Table 2. Effect of impurities on the photocatalytic activity of ZrO_2 (I), TiO_2 prepared by high-temperature heat treatment (II), and ZrO_2 -60.0 wt % TiO_2 (III)

Note: The photocatalytic activity of unmodified ZrO_2 , TiO_2 , and ZrO_2 – TiO_2 samples is 1.3×10^{-2} , 6.0×10^{-1} , and 2.1×10^{-2} g/(1 min m²), respectively; impurities were introduced by impregnation.

rutile phases has a high conductivity, whereas the σ of rutile TiO₂ prepared by liquid-phase hydrolysis, whose structure is stabilized by Al³⁺ ions, is fairly low [11]. The samples containing 1.0–5.0 wt % TiO₂ have the lowest conductivity, below the σ of pure ZrO₂ (Table 1). As the TiO₂ content increases to 40 wt %, σ rises. Since the measurements were performed at dc on powder compacts, they yielded surface conductivity [12].

Previous studies of $TiO_2-M_nO_m$ materials showed that, depending on its nature, M_nO_m may act as an inert support (Li₂O, Al₂O₃, SiO₂, V₂O₅, WO₃) or exhibit catalytic activity (ZnO, ZrO₂) [13, 14]. It was found that the catalytic properties of such materials depend on their phase composition, TiO₂ content, and specific surface.

As shown above, the catalytic and photocatalytic properties of ZrO_2 -TiO₂ materials depend on the Zr/Ti ratio, since the activity of ZrO_2 is notably lower than that of TiO₂. The catalytic, photocatalytic, magnetic, and electrical properties of ZrO_2 and TiO₂ depend strongly on the preparation procedure, heat-treatment conditions, and sample purity. High-purity, close-to-stoichiometry ZrO_2 and TiO₂ exhibit neither photocatalytic not catalytic activity and have low χ . Such materials are good insulators [15].

The introduction of metal impurities into TiO₂-containing materials, followed by calcination at 1270 K, changes their conductivity. The dopants with a valence below 4+ act as acceptors, and those with a valence above 4+ act as donors [8]. Since heat treatment at 1270 K yields monolithic materials, measurements on such samples allow one to determine their bulk conductivity. The specific surface of the samples is very small and has no effect on the measurement results. At the same time, if the calcination temperature does not exceed 770 K, impurities present in low concentrations act as donors, regardless of their valence, thereby reducing the work function and enhancing the catalytic activity [16]. The impurities have no effect on the S_{sp} of TiO₂ and accumulate in the surface layer.

Our results obtained on ZrO2-TiO2 samples doped with metals via impregnation demonstrate that small amounts of V^{5+} and W^{6+} raise the catalytic activity (Table 2) and σ of the material. Heterovalent impurities would be expected to change the carrier concentration. The likely location of impurities in the TiO₂ lattice was considered in [15]. It was shown that substitutionally incorporated vanadium and tungsten raise the carrier concentration in titania. Based on this conclusion and our experimental results and taking into account that the ionic radii of the dopants ($r_{v_{1}^{5+}} = 0.59$ Å, $r_{w_{1}^{6+}} =$ 0.65 Å) are close to that of Ti⁴⁺ ($r_{Ti^{4+}} = 0.64$ Å), we believe that, in the materials studied, the V and W ions are incorporated substitutionally. Since the catalytic and photocatalytic properties are determined mainly by TiO₂, it seems likely that the W⁶⁺ and V⁵⁺ dopants influence, for the most part, the concentration of active centers in TiO_2 , thereby altering the properties of the material as a whole. With increasing dopant concentration, the photocatalytic activity of the samples decreases,

Table 3. Effect of impurities introduced during flame hydrolysis of $TiCl_4$ vapor on the photocatalytic activity of TiO_2

Photocatalyst	Specific surface, m ² /g	Photocatalytic activity, g/(1 min m ²)
Unmodified TiO ₂	50	1.4
$\Gamma iO_2 + W^{6+}$	52	2.8
$\Gamma iO_2 + V^{5+}$	49	2.1
$\Gamma iO_2 + Bi^{5+}$	120	2.3
$\Gamma iO_2 + Al^{3+}$	54	1.4×10^{-4}
$\Gamma iO_2 + Cu^{2+}$	46	$1.0 imes 10^{-4}$
Unmodified TiO ₂ prepared by liquid-phase hydrolysis of TiCl ₄	20	1.6×10^{-2}

Note: Impurity content of 1.0 wt %.

which suggests that V⁵⁺ and W⁶⁺ may be present in a separate phase and that the active sites may be blocked. Doping of ZrO_2 -TiO₂ with Al³⁺ ions ($r_{Al^{3+}} = 0.57$ Å)

reduces the photocatalytic activity of the samples over the entire range of dopant concentrations (Table 2) owing to the formation of a substitutional solid solution, which reduces the concentration of structural defects [15]. This finding was used to prepare photostable Al-modified ZrO_2 -TiO₂ materials. However, fine-particle doped materials cannot be prepared by impregnation, which reduces the specific surface as a result of particle aggregation in water and during heat treatment. In view of this, we developed a technique for doping TiO₂ and TiO₂based materials via high-temperature hydrolysis of dissolved metal salts in air–hydrogen flames [17].

The materials thus obtained have a high specific surface (Table 3). By introducing different impurities and adjusting the process parameters, we can obtain materials with a high photocatalytic activity, potentially attractive as photocatalysts and photosensitive components of insulators in photoadditive printed circuit manufacture, as well as materials with zero photocatalytic activity, which can be used as stable white pigments for UV-reflecting coatings.

The ZrO_2 -TiO₂ materials precalcined at 1070 K in air exhibit no catalytic activity for the photoreduction of methylene blue to a leuco form or chemical metallization of composites. Heat treatment in a reducing atmosphere between 770–870 K has no effect on their catalytic and photocatalytic properties, while the samples calcined in hydrogen at 1070 K exhibit high catalytic activity and can be used as efficient photocatalysts. The χ of such materials is one order of magnitude higher than that of as-prepared samples.

Using the most active materials, we fabricated a set of catalyzed textolites and metallized their surfaces by the additive method. The high catalytic activity and small particle size of the materials prepared by hightemperature heat treatment ensured good adhesion both in total plating and photopatterning of the insulator. The use of the materials containing 1.0 and 5.0 wt % TiO₂ (with and without Al additions) as pigments makes it possible to obtain extremely weatherproof and thermally stable coatings.

CONCLUSION

The electrical, magnetic, and catalytic properties of ZrO_2 -TiO₂ materials were studied. The effects of different modifiers were examined, and procedures for the preparation of high-activity photocatalysts and photostable pigments were developed.

REFERENCES

1. Simpson, F.H., High Temperature Structural Ceramics, *Mater. Eng.*, 1960, vol. 52, no. 2, pp. 16–18.

- Noguchi, T. and Mizuno, M., Phase Changes in the ZrO₂–TiO₂ System, *Bull. Chem. Soc. Jpn.*, 1968, vol. 41, no. 12, pp. 2895–2899.
- Lopato, P.M. and Shevchenko, A.V., Phase Diagrams of Refractory Oxide Systems with Application to the Development of Materials with Improved Physicochemical Properties, in *Fazovoe ravnovesie, struktura i svoistva splavov* (Phase Equilibria, Structure, and Properties of Alloys), Kiev: Inst. Problem Materialovedeniya, 1990, pp. 25–32.
- Shevchenko, A.V., Lopato, P.M., Maister, I.M., and Gorbunov, O.S., System ZrO₂–TiO₂, *Zh. Neorg. Khim.*, 1980, vol. 25, no. 9, pp. 2496–2499.
- 5. Yamaguchi Osamu and Mogi Hiroschi, Formation of Zirconia Titanate Solid Solution from Alkoxides, *J. Am. Ceram. Soc.*, 1989, vol. 72, no. 6, pp. 1065–1066.
- Mazurkevich, Ya.S., Kobasa, I.M., and Zozulya, N.I., A Method for Testing Photocatalysts for the Production of Additive Printed Circuits, *Obmen Opytom Radiopromsti.*, 1985, no. 5, pp. 62–63.
- Mazurkevich, Ya.S., Zozulya, N.I., Rotaru, V.K., et al., USSR Inventor's Certificate no. 1688778, Byull. Izobret., 1991, no. 40, p. 58.
- 8. Pamfilov, A.V. and Mazurkevich, Ya.S., Photocatalytic Activity of Anatase and Rutile, *Ukr. Khim. Zh.* (Russ. Ed.), 1962, vol. 28, no. 5, pp. 289–294.
- Mazurkevich, Ya.S., Smogorzhevskii, A.V., Fedotova, I.M., and Ermolaeva, T.A., Magnetic Susceptibility and Photocatalytic Activity of Titania, *Lakokras. Mater. Ikh Primen.*, 1971, vol. 13, no. 1, pp. 22–27.
- Mazurkevich, Ya.S. and Kobasa, I.M., Magnetic Susceptibility and Photocatalytic Activity of the TiO₂–ZnO System, *Khim. Khim. Tekhnol.*, 1999, vol. 42, no. 3, pp. 82–87.
- Kozub, G.M., Zarko, V.I., Antonova, L.S., and Pavlov, V.I., Effect of Composition and Preparation Conditions on the Electrical Conductivity of Doped Titania, *Ukr. Khim. Zh.* (Russ. Ed.), 1982, vol. 48, no. 8, pp. 827–830.
- Gray, H., Investigation of the Semiconducting, Photoelectric, and Other Electronic Properties of Catalysts, in *Eksperimental'nye metody issledovaniya katalizatora* (Experimental Methods for Catalyst Characterization), Moscow: Mir, 1972, pp. 291–319.
- Mazurkevich, Ya.S. and Kobasa I.M., Ceramic Materials Based on Modified Pyrogenic Titania and Titania–Silica, *Neorg. Mater.*, 1997, vol. 33, no. 11, pp. 1403–1404 [*Inorg. Mater.* (Engl. Transl.), vol. 33, no. 11, pp. 1192–1193].
- Mazurkevich, Ya.S. and Kobasa, I.M., TiO₂–ZnO Ceramics, *Khim. Khim. Tekhnol.*, 1998, vol. 41, no. 4, pp. 59–61.
- 15. Kofstad, P., Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, New York: Wiley, 1972. Translated under the title Otklonenie ot stekhiometrii, diffuziya i elektroprovodnost' v prostykh okislakh metallov, Moscow: Mir, 1975.
- Pamfilov, A.V., Bondar', P.G., and Mazurkevich, Ya.S., Modification Effects on the Work Function of Titania, *Ukr. Khim. Zh.* (Russ. Ed.), 1965, vol. 31, no. 8, pp. 768–771.
- Mazurkevich, Ya.S., Borisov, M.B., Zozulya, N.I., et al., USSR Inventor's Certificate no. 1637299, Byull. Izobret., 1991, no. 11, p. 193.

INORGANIC MATERIALS Vol. 37 No. 12 2001