View Article Online View Journal

# Journal of Materials Chemistry A

# Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: J. Guo, C. Wu, J. Zhang, P. Yan, J. Tian, T. Taylor Isimjan and X. Yang, *J. Mater. Chem. A*, 2019, DOI: 10.1039/C8TA10695A.



This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.



rsc.li/materials-a

# Hierarchically Structured Rague-Like RuP<sub>3</sub>-CoP Arrays<sup>Alderson</sup> as Robust Catalyst Synergistically Promoting Hydrogen Generation Jingya Guo,<sup>†</sup> Chongbei Wu,<sup>†</sup> Jifang Zhang,<sup>†</sup> Puxuan Yan,<sup>†</sup> Jianniao Tian,<sup>†</sup> Tayirjan Taylor Isimjan,\*<sup>‡</sup> Xiulin Yang\*<sup>†</sup> <sup>†</sup>Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), College of Chemistry and Pharmacy, Guangxi Normal

8 University, Guilin 541004, People's Republic of China

<sup>‡</sup>Saudi Arabia Basic Industries on (SABIC) at King Abdullah University of Science and
Technology (KAUST)

11 E-mail: xiulin.yang@kaust.edu.sa; isimjant@sabic.com

12

Published on 15 January 2019. Downloaded by Stockholms Universitet on 1/22/2019 12:07:16 PM.

14

### 1 Abstract

View Article Online DOI: 10.1039/C8TA10695A

Designing a highly active and stable catalyst for NaBH<sub>4</sub> hydrolysis is a key step towards 2 3 overcoming the challenges of hydrogen storage. Herein, we have developed a controllable 4 strategy to fabricate a series of hierarchically structured cobalt-ruthenium-phosphide arrays on 5 nickel foam (Co-Ru-P@NF) as a highly efficient and stable catalyst for hydrogen generation from NaBH<sub>4</sub> hydrolysis in alkaline media. SEM and TEM analyses show that the 6 7 interconnected rague-like Co-Ru-P arrays are vertically grown on the surface of Ni foam, together with uniformly distributed RuP<sub>3</sub> nanoclusters on the surface of CoP nanosheet. More 8 9 importantly, the optimized Co-Ru-P@NF catalyst exhibits an outstanding catalytic 10 performance on NaBH<sub>4</sub> hydrolysis in alkaline media with a high turnover frequency (TOF) of 2123.6 mol<sub>H2</sub> min<sup>-1</sup> mol<sub>Ru<sup>-1</sup></sub> at 25 °C, which is one of the highest known so far. Furthermore, 11 the exceptional catalytic performance is in line with the outcome of the low activation energy 12 (40.3 kJ mol<sup>-1</sup>). Additionally, the catalyst also shows a high stability with less than 8.0% lost 13 14 after 5 consecutive cycles. The superior catalytic performance is ascribed to the synergetic 15 effect between RuP<sub>3</sub> and CoP species resulting in a significant electron transfer effect, together 16 with the unique morphologies associated to a large specific surface area and open-channels for 17 effective solute transport/adsorption and H<sub>2</sub> gas emissions.

18

Published on 15 January 2019. Downloaded by Stockholms Universitet on 1/22/2019 12:07:16 PM

Keywords: CoP nanosheet; RuP<sub>3</sub> nanoclusters; Synergistic effect; NaBH<sub>4</sub> hydrolysis;
Hydrogen generation

- 21
- 22 23
- 24
- 25
- 26

Dealing with the continuously growing energy demand resulting from the fossil fuel depletion 2 and a related environmental crisis is prompting vigorous research on the field of clean and 3 4 sustainable alternative energy sources.<sup>1-3</sup> Molecule hydrogen with the highest gravimetric energy density (120 MJ/kg) is regarded as a promising candidate.<sup>4-6</sup> However, H<sub>2</sub> storage and 5 transportation are two main hindrances to launch a H<sub>2</sub> economy.<sup>7-9</sup> The H<sub>2</sub> can be stored both 6 7 in physical and chemical methods where the H<sub>2</sub> either is adsorbed on highly porous materials such as MOFs and porous carbon which requires extremely low temperature or stored as metal-8 hydride complexes including boron hydrides (NaBH<sub>4</sub>, NH<sub>3</sub>BH<sub>3</sub> and LiBH<sub>4</sub>) which has the 9 advantages of high H<sub>2</sub> content (10~20%), high water solubility and stability at room 10 temperature as well as non-toxicity.<sup>10-12</sup> Nevertheless, the boron hydrides hydrolysis generally 11 suffer from sluggish kinetics.<sup>13</sup> Therefore, developing a low cost and high-performance catalyst 12 become an essential step to promote the H<sub>2</sub> storage through boron hydrides. Although the noble 13 metal catalysts such as such as Pt/CeO<sub>2</sub>-Co<sub>7</sub>Ni<sub>2</sub>O<sub>8</sub>,<sup>14</sup> Pd/PD-ZIF-67,<sup>15</sup> Pt/3D SiC,<sup>16</sup> Pt<sub>58</sub>Ni<sub>33</sub>Au<sub>9</sub>,<sup>17</sup> 14 Pt/mesoporous silica,<sup>18</sup> Ru@SiO<sub>2</sub>,<sup>19</sup> Ni-Ru,<sup>20</sup> Rh/Ni BNPs,<sup>21</sup> Co<sub>0.8</sub>-Ag<sub>0.2</sub>-B,<sup>22</sup> etc. exhibit the 15 high catalytic performances, they also limited by the cost. As a result, developing the transition 16 17 metal (Co, Fe, and Ni) based catalysts become the main focus on boron hydride hydrolysis. 18 The recent studies reveal a significant enhancement in the catalytic performance of the transition metal catalyst by incorporating foreign elements including B and P.<sup>23-26</sup> The 19 20 improvement of the catalytic performance could be due to electron transfer from B or P to the 21 vacant d-orbital of the metal and the electron enriched metal sites further donate the electrons 22 to the surface attached hydrogen atoms thereby accelerates detachment of the surface adsorbed hydrogen atoms.<sup>27</sup> Furthermore, for metal phosphate, in particular, introducing additional 23 foreign metals can further increase the catalytic performance.<sup>28, 29</sup> However, the actual catalytic 24 25 performance is largely altered by the catalyst preparations, microstructure engineering, surface

area, and the catalyst support. In general, the porous supports such as nickel foam  $(NF)_{D} copperative Online Control of the catalyst support. In general, the porous supports such as nickel foam (NF), copperative Online Control of the catalyst support.$ 

foam, titanium sheet, porous carbon, Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub>, TiO<sub>2</sub> not only supply high surface area but 2 also inhabit the catalyst aggregation thereby improve both activity and stability.<sup>30-33</sup> Compare 3 4 to powder catalyst, the metal sheet supported catalysts can be easily separated from the solution and used as on/off switch for on-demand hydrogen production.<sup>34</sup> Liu and co-workers found 5 that CoP nanowire array integrated on Ti mesh showed a high hydrogen generation rate for 6 hydrolytic dehydrogenation of NaBH<sub>4</sub> in alkaline solutions.<sup>34</sup> Moreover, Sun and co-workers 7 also reported that the Fe-doped CoP nanoarray on Ti foil exhibited high hydrogen generation 8 rate and low activation energy for hydrolytic dehydrogenation of NaBH<sub>4</sub> in basic media.<sup>29</sup> 9 Recently, NF support attracted a lot of attention due to the distinguished features such as three-10 11 dimensional reticular configuration, high surface area, high flexibility and low cost.<sup>8, 35</sup> 12

Herein, we have developed a facile and controllable strategy to synthesize a novel RuP<sub>3</sub> coated CoP on NF hybrid catalyst where the cheapest noble metal Ru<sup>36</sup> was used in a small 13 14 quantity in order to minimize the cost. X-ray diffraction patterns indicate that the RuP<sub>3</sub> and 15 CoP species are formed, and the contents of Ru and Co in the optimized catalyst are indicated to be Co<sub>0.991</sub>Ru<sub>0.09</sub>P by ICP-AES. SEM and TEM demonstrate that rague-like CoP arrays are 16 17 grown on the skeleton of NF, and RuP<sub>3</sub> nanoclusters are uniformly dispersed on the CoP nanosheet surface. The optimized Co-Ru-P@NF catalyst exhibits an outstanding catalytic 18 19 performance and high stability for NaBH<sub>4</sub> hydrolysis. This exceptional performance can be 20 ascribed to the synergetic effect of RuP<sub>3</sub> and CoP species, along with the unique morphologies and high surface area offered by NF. Furthermore, a catalytic mechanism of NaBH<sub>4</sub> hydrolysis 21 22 on the Co-Ru-P@NF hybrid catalyst was purposed.

# 23 2. Experimental section

# 24 2.1. Synthesis of Co-species@NF

4

Co-species nanosheet arrays on NF (Ni foam) was prepared as follows, where a pie Xiew Affecte Online
NF (1 cm×1 cm×1.6 mm) was carefully pretreated in 1.0 M HCl, deionized water and ethanol
for 5 min respectively. It was then repeated three times to confirm that the surface of NF was
well cleaned.

5 To prepare the Co-species@NF, 1.0 mmol of Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O was ultrasonically dissolved in 40 mL deionized water to form a uniform solution. The electrodeposition experiments were 6 7 carried out at room temperature in a standard three-electrode system with NF as the working 8 electrode, a Pt sheet as the counter electrode, and a standard SCE as the reference electrode. The applied current density was set as  $-10 \text{ mA cm}^{-2}$ , and different electrodeposition times were 9 conducted to control the amount of the Co-species (20, 30, 40, 50 and 60 min). The resulted 10 samples were washed by abundant deionized water and dried in air at room temperature. The 11 12 loadings of Co-species on NF surface are calculated for 3.67, 5.5, 7.34, 9.17 and 11.01 mg cm<sup>-</sup> <sup>2</sup>, respectively. 13

# 14 2.2. Synthesis of CoRu-species@NF

15 50 mg of ruthenium(III) 2,4-pentanedionate was ultrasonically dispersed into 10 ml ethanol 16 to form a homogeneous solution. Then, the mixture solution was pipetted onto the surface of 17 Co-species@NF-60 and dried in air at room temperature. For a better comparison, different 18 volumes of the precursors on the NF-60 surface are investigated. Moreover, the precursor 19 covered fresh NF is also studied.

# 20 2.3. Synthesis of Co-Ru-P@NF by vapor phase phosphidation

The phosphidation process was performed in a tube furnace, where the NaH<sub>2</sub>PO<sub>2</sub> in a porcelain boat was put in the upstream side and a series of CoRu-species/NF samples were placed next to the NaH<sub>2</sub>PO<sub>2</sub> at a downstream side. The furnace was heated to 350 °C with 2 °C min<sup>-1</sup> in Ar atmosphere (20 sccm), and kept at 350 °C for 2 h. After the phosphidation, the

Published on 15 January 2019. Downloaded by Stockholms Universitet on 1/22/2019 12:07:16 PM

samples were cooled down to ambient temperature in flowing Ar gas. As a comparison<sup>VierhEicle Online</sup>
 CoP@NF, RuP<sub>3</sub>@NF and Ni<sub>2</sub>P@NF were also prepared by a similar phosphidation process.

# 3 2.4. Catalyst characterizations

The crystal structures of catalysts were analyzed by X-ray powder diffraction (XRD, 4 Rigaku D/Max 2500 V/PC) with a sweep speed for 2.0 degree min<sup>-1</sup>. The morphologies and 5 6 microstructures of the catalysts were characterized by scanning electron microscope (SEM, 7 FEI Quanta 200 FEG) and transmission electron microscope (TEM, JEM-2100F). The X-ray photoelectron spectrometer (XPS, JPS-9010 Mg Ka) was used to analyze the chemical states 8 9 of different elements. The specific surface area of the as-prepared product was measured on a 10 Quantachrome Autosorb AS-1 instrument. The actual loadings of different metals in the 11 catalyst were checked by inductive coupled plasma atomic emission spectroscopy (ICP-AES, 12 IRIS Intrepid II XSP).

# 13 2.5. Catalytic measurements

The catalytic activity, cycle stability and activation energy of the catalytic material were 14 15 obtained by the following methods. Typically, 50 mL mixture solution (contained 150 mM 16 NaBH<sub>4</sub>+0.4 wt% NaOH) was kept in a three-necked round-bottom flask (100 mL), which was 17 placed in a water bath at 25 °C. The volume of H<sub>2</sub> was monitored by a drainage which was connected to a computer to record the instantly changed qualities of water. The catalytic 18 19 reaction was started when the catalyst was added into the flask under constant magnetic stirring 20 conditions. In order to test the recyclability of the catalyst, we continued to use the fresh NaBH<sub>4</sub> 21 solution instead of the fully decomposed NaBH<sub>4</sub> solution for five consecutive cycles at 25 °C. 22 After each stability test, we centrifuged the catalytic material, dried it under vacuum condition at room temperature, and weighed the catalytic material. All experiments were repeated three 23 times to ensure the reliable results. The activation energy of the designed catalyst was evaluated 24 25 in the same device in the temperature range of 25 to 45 °C.

The specific H<sub>2</sub> generation rate (HGR) and turnover frequency (TOF) values is calculated along the specific H<sub>2</sub> generation rate (HGR) and turnover frequency (TOF) values is calculated along the specific H<sub>2</sub> generation rate (HGR) and turnover frequency (TOF) values is calculated along the specific H<sub>2</sub> generation rate (HGR) and turnover frequency (TOF) values is calculated along the specific H<sub>2</sub> generation rate (HGR) and turnover frequency (TOF) values is calculated along the specific H<sub>2</sub> generation rate (HGR) and turnover frequency (TOF) values is calculated along the specific H<sub>2</sub> generation rate (HGR) and turnover frequency (TOF) values is calculated along the specific H<sub>2</sub> generation rate (HGR) and turnover frequency (TOF) values is calculated along the specific H<sub>2</sub> generation rate (HGR) and turnover frequency (TOF) values is calculated along the specific H<sub>2</sub> generation rate (HGR) and turnover frequency (TOF) values is calculated along the specific H<sub>2</sub> generation rate (HGR) and turnover frequency (TOF) values is calculated along the specific H<sub>2</sub> generation rate (HGR) and turnover frequency (TOF) values is calculated along the specific H<sub>2</sub> generation rate (HGR) and turnover frequency (TOF) values is calculated along the specific H<sub>2</sub> generation rate (HGR) along the specific H<sub>2</sub> generation rate (HGR) and turnover frequency (TOF) values is calculated along the specific H<sub>2</sub> generation rate (HGR) along the specific 1 as follows,<sup>34, 37</sup> 2

$$HGR = \frac{V_{H_2O}(mL)}{t(min)}$$

$$HGR = \frac{1}{t \,(\min) \times m \,(g)} \tag{1}$$

3

$$TOF = \frac{n_{H_2}(mol)}{t \,(\min) \times n_{Ru} \,(\mathrm{mol})} \tag{2}$$

where  $V_{\rm H2O}$  is the volume of drained water, m is the total mass of the catalyst,  $n_{\rm H2}$  is the moles 5 of generated H<sub>2</sub>,  $n_{Ru}$  is the moles of Ru in the catalyst, and t is the total reaction time in 6 7 minutes.

#### 8 3. Results and discussion

#### 9 3.1. Synthetic strategy analysis



Fig. 1. Schematic diagram of the formation of Co-Ru-P@NF catalyst. 11

12

13

14

15

16

17

10

Published on 15 January 2019. Downloaded by Stockholms Universitet on 1/22/2019 12:07:16 PM

The three dimension Co-Ru-P@NF catalysts were prepared through three steps including electrodeposition of Co species, Ru modification and high-temperature phosphorization (Fig. 1). Initially, the Co-species were loaded on NF surface (Co@NF) by electrodeposition at a constant current density within various time lengths. Thereafter, Ru-precursors in ethanol solution were loaded dropwise onto the surface of Co@NF. Finally, the Ru loaded Co@NFs

18 were placed in a porcelain boat next to another porcelain boat in the upside containing 19 NaH<sub>2</sub>PO<sub>2</sub> as phosphor sources. The hierarchically structured Co-Ru-P@NF materials were 20 prepared through a vapor deposition of phosphorous under constant argon flow at 350 °C for 2

h. The metal loadings were determined by ICP-AES, which were used to calculate the TOF AFCE Online
H<sub>2</sub> generation (Table S1). Moreover, the pictures of the sample at different stages indicate the
surface transformations by various chemical treatments as shown in Fig. S1 and the weight
changes of the catalysts were monitored using a precision balance to calculate the following
H<sub>2</sub> generation rates (Table S2).

# 6 3.2. Crystal structures and microstructures analysis



Fig. 2. X-ray diffraction (XRD) patterns of (a) CoP@NF and Co-Ru-P@NF along with (b)
RuP<sub>3</sub>. Scanning electron microscopy (SEM) images of (c) NF, (d) Co-species@NF, (e)
CoP@NF and (f) Co-Ru-P@NF. The inserts are the magnified SEM images.

The crystal structures of as-prepared materials are initially investigated by XRD patterns. As shown in **Fig. S2**a, the electrodeposited Co-species on NF surface are consistent with the standard XRD features of Co(OH)<sub>2</sub> (JCPDS: 30-0443).<sup>38</sup> After phosphorization process, the color of Co@NF changed from dark blue to black. The cobalt phosphate species mainly

Published on 15 January 2019. Downloaded by Stockholms Universitet on 1/22/2019 12:07:16 PM

consists of CoP (JCPDS: 65-2593)<sup>39</sup> and a trace of Co<sub>2</sub>P species (JCPDS: 54-0413) where the the contract of the trace of Co<sub>2</sub>P species (JCPDS: 54-0413) where the trace of trace of the 1 2 XRD patterns of the Ru species cannot be detected due to the low Ru loading as shown in **Fig.** 3 2a. However, the pure Ru-species which were synthesized by similar conditions were detected 4 by the XRD pattern in Fig. 2b and the patterns are consistent with RuP<sub>3</sub> (JCPDS: 78-1268). In addition, the NF was phosphatized and used as a control sample. Small amounts of Ni<sub>2</sub>P species 5 (JCPDS: 03-0953) formed on the NF surface (Fig. S2b). Moreover, none of the diffraction 6 7 peaks of NF and Ni<sub>2</sub>P appeared on Co modified NF indicating a full surface coverage of NF. Therefore, the contribution of Ni<sub>2</sub>P towards the catalytic performance of RuP<sub>3</sub>-CoP is 8 9 negligible. As shown in Fig. 2c, the SEM images are used to distinguish the morphological changes of NF before and after deposition. The surface morphology of NF changes 10 11 dramatically from the relatively smooth surface to highly ring coiled hierarchical structures in 12 micro level after different electrodeposition times, indicating the formation of Co(OH)<sub>2</sub> 13 nanosheets on NF surface which becomes denser upon increase of the deposition time (Fig. S3, Fig. 2d). After phosphorization at 350 °C, the vertically oriented hierarchical structure starts to 14 15 shrink because of the crystal structure transformation from amorphous to crystalline. The similar phenomena are observed on both CoP@NF and Co-Ru-P@NF (Fig. 2e and 2f). The 16 17 hierarchical structures not only provide the high surface area thereby promoting a better mass transfer but also exposes more active sites. Therefore, a high catalytic performance is expected. 18 19 Moreover, the N<sub>2</sub> adsorption-desorption isotherms at 77 K of Co-Ru-P@NF catalysts with 20 different loadings of Ru species were used to investigate the Brunauer-Emmett-Teller (BET) surface area. The results revealed that when the loading of Ru in the Co-Ru-P@NF is 0.197 21 mg cm<sup>-2</sup>, the BET surface area is  $11.4 \text{ m}^2 \text{ g}^{-1}$ , and when the loading of Ru is 0.455 mg cm<sup>-2</sup>, the 22 BET surface area is  $13.3 \text{ m}^2 \text{ g}^{-1}$  (**Fig. S4**). 23



2 Fig. 3. (a) Transmission electron microscopy (TEM) and (b) high-resolution TEM images of 3 Co-Ru-P material. The inset of Fig. 3a represents the particle size distribution of RuP<sub>3</sub>. (c) Typical TEM image of Co-Ru-P and the corresponding Ru, Co and P elemental mappings.

To further examine the microscopic features of the Co-Ru-P@NF, detailed TEM studies 6 7 were undertaken. As shown in **Fig. 3**a, the  $RuP_3$  nanoclusters with an average particle size of 2.6 nm are uniformly dispersed on the surface of CoP nanosheet. The crystal structures of both 8 9 CoP and RuP<sub>3</sub> are confirmed in Fig. 3b where the distinct lattice fringe with a spacing of 0.28 10 nm is corresponding to the (111) plane of CoP, and the two closely related spacings of 0.25 11 and 0.39 nm are attributed to the (002) and (110) planes of RuP<sub>3</sub>, respectively. Furthermore, 12 the HAADF-STEM (Fig. 3c) and corresponding elemental mapping images reveal the 13 homogenous distribution of Ru, Co, and P in the Co-Ru-P nanostructures. Notably, the much 14 sparser Ru dispersion patterns are consistent with features the low content Ru-based material 15 in the hybrid composite.

1

4

1

4

Published on 15 January 2019. Downloaded by Stockholms Universitet on 1/22/2019 12:07:16 PM.



Fig. 4. High-resolution X-ray photoelectron spectroscopy (XPS) of (a) C 1s + Ru 3d, (b) Co
2p and (c) P 2p regions from Co-Ru-P@NF, RuP<sub>3</sub>@NF and CoP@NF.

5 The chemical states of each elements in Co-Ru-P@NF are further analyzed by XPS, where the Ni cannot be detected on the surface of the Co-Ru-P@NF (Fig. S5), which not only shows 6 7 a uniform deposition of Co but also indicates the Co film is thicker that the penetration depth 8 of XPS (around 10 nm). The high-resolution XPS spectra of C 1s + Ru 3d regions (Fig. 4a) are convoluted into C-C (284.8 eV) and C-O (286.0 eV) used as a calibration standard,<sup>40,41</sup> as well 9 as the Ru 3d core level from RuP<sub>3</sub> are convoluted at the binding energies of 280.8 eV (Ru  $3d_{5/2}$ ) 10 and 285.0 eV (Ru  $3d_{3/2}$ ).<sup>42</sup> As shown in **Fig. 4**b, three peaks in the Co  $2p_{3/2}$  regions at 778.3, 11 782.0 and 785.5 eV can be ascribed to the Co-P, Co-O and satellite peaks, respectively.<sup>43</sup> In 12 addition, the high-resolution XPS spectrum of P 2p core level shows three types of peaks, 13 14 where a pair of peaks located at 129.1 eV (P 2p<sub>3/2</sub>) and 130.1 eV (P 2p<sub>1/2</sub>) are considered as P 2p in CoP.<sup>44</sup> The another pair of peaks located at 129.7 eV (P 2p<sub>3/2</sub>) and 130.8 eV (P 2p<sub>1/2</sub>) are 15 attributed to P 2p in RuP<sub>3</sub><sup>45</sup> along with a broad peak at 133.6 eV is assigned to phosphate 16 species.<sup>46</sup> These distinct oxidation species peaks of Co-O and P-O can be explained by the 17 inevitable surface oxidation.<sup>47</sup> We have compared the high-resolution Ru 3d XPS spectra of 18 19 RuP<sub>3</sub>@NF and Co-Ru-P@NF in Fig. 4a. The results show that the binding energy of Ru 3d of Co-Ru-P@NF exhibits a negative shift of ca. 0.23 eV compared to that of RuP<sub>3</sub>@NF<sub>oindicativeSA10695A</sub>
higher electron density on Ru in the Co-Ru-P@NF as compare to that of RuP<sub>3</sub>@NF due to the
partial electron transfer from Co species indicating that the electron density on Ru species is
lower than that of Co species. However, almost no shift was observed in the case of Co 2P
because Ru amounts are so small consequently the charge transfer is not significant enough to
cause the shift on Co 2P signal.

# 7 3.4. Catalytic hydrolysis analysis





Published on 15 January 2019. Downloaded by Stockholms Universitet on 1/22/2019 12:07:16 PM

Fig. 5. (a) The relationship between the H<sub>2</sub> generation rates and electro-deposition times of
CoP@NF catalysts, and (b) the summarized TOF values. (c) The relationship between the H<sub>2</sub>
generation rates and loadings of Ru species on Co-Ru-P@NF catalysts, and (d) the summarized
TOF values. All the experiment are conducted in 150 mM NaBH<sub>4</sub> + 0.4 wt % NaOH at 25 °C.

The H<sub>2</sub> production of NaBH<sub>4</sub> hydrolysis using the designed catalysts were performed the online 1 2 alkalized NaBH<sub>4</sub> solution at 25 °C. The schematic illustration of the experimental setup is shown in Fig. S6, where the amounts of the generated  $H_2$  was calculated according to the 3 weight of the water displaced by H<sub>2</sub>. The effect of electrodeposition of CoP at various time on 4 the H<sub>2</sub> production was investigated in **Fig. 5**a-b. The results show that the H<sub>2</sub> generation rate is 5 gradually increased with the prolonged deposition times and the 60 min deposition time was 6 selected as the basis of all the other experiments performed blow. In addition, the optimal Ru 7 8 loading was investigated by altering the deposition methods such as drop casting and dip 9 coating as well as the use of several Ru precursors including C<sub>15</sub>H<sub>21</sub>O<sub>6</sub> Ru, RuCl<sub>2</sub> and Ru nanoparticles (Fig. S7). Then, the catalytic performance of the resulting catalysts on  $H_2$ 10 11 generation was monitored (Fig. S8). Finally, the best catalytic performance was achieved by 12 using ethanol solution of  $C_{15}H_{21}O_6Ru$  through drop casting method. The optimal loading is around 0.2 mg (Ru)/cm<sup>2</sup> measured by ICP-AES (Table S1-S2) and the overall Ru loading 13 14 against Co is around 1.57 wt% (0.09% mole%). The corresponding TOF to the fastest hydrogen evolution rate (4840 mL min<sup>-1</sup> g<sup>-1</sup> catalyst) is 2123.6 mol min<sup>-1</sup> mol<sub>Ru</sub><sup>-1</sup>, which is the highest 15 16 TOF value reported so far among all the NaBH<sub>4</sub> hydrolysis catalysts (Table S3). This 17 outstanding catalytic performance can be related to the high surface roughness that exposes 18 more active sites, uniform distribution of the active sites and synergic effect between Ru and 19 Co.

To further evaluate this synergetic effect, a comparison study of NaBH<sub>4</sub> decomposition was
performed between all the intermediate catalysts including CoP@NF, RuP<sub>3</sub>@NF, Cospecies@NF, Ni<sub>2</sub>P@NF and NF. The results show that the hydrogen generation rate of 1.57
wt% Ru loaded CoP@NF is significantly higher than that of CoP@NF and RuP<sub>3</sub>@NF (Fig.
S9). Meanwhile, the NF and Ni<sub>2</sub>P@NF show almost no activity towards H<sub>2</sub> generation towards
NaBH<sub>4</sub> hydrolysis (Fig. 6a). The specific H<sub>2</sub> evolution rate of Co-Ru-P@NF is 4839.8 mL min<sup>-</sup>

<sup>1</sup>  $g_{cat}$ <sup>-1</sup> (total mass of catalyst), which are 2.52 and 23.55 folds higher than those of CoP 0.57 Co 1 2 and RuP<sub>3</sub>@NF respectively. To measure the activation energies, a set of experiments were 3 conducted at different temperatures using the two most active catalysts such as the Co-Ru-4 P@NF and the CoP@NF. As shown in **Fig. S10-S11**, the rate of  $H_2$  generation increases rapidly 5 with increasing the reaction temperatures from 298 K to 318 K, and the rate constant  $\kappa$  is calculated from the initial slope of each experiment. The activation energy of Co-Ru-P@NF 6 catalyst is calculated to be 40.3 kJ mol<sup>-1</sup> by the Arrhenius plot (ln  $\kappa$  vs 1/T), which is much 7 lower than that of CoP@NF (56.1 kJ mol<sup>-1</sup>) (Fig. 6b), implying a kinetically enhanced catalytic 8 9 activity towards NaBH<sub>4</sub> hydrolysis to produce H<sub>2</sub> owing to the Ru.<sup>48</sup>



Fig. 6. (a) The summarized TOF values of different catalysts for hydrolysis of 150 mM NaBH<sub>4</sub>
+ 0.4 wt % NaOH solution at 25 °C. (b) The summarized Arrhenius plots of CoP@NF and CoRu-P@NF at different reaction temperatures for alkalized NaBH<sub>4</sub> hydrolysis. (c) Recycling
stability test of the Co-Ru-P@NF catalyst in 150 mM NaBH<sub>4</sub> + 0.4 wt % NaOH at 25 °C. (b)

The specific H<sub>2</sub> evolution rates and the corresponding TOF values of Co-Ru-P@NF\_catallyiev infice Online
 the different recycling test.

3

The stability of the optimized Co-Ru-P@NF catalyst was evaluated by the continuous recycling experiments of the NaBH<sub>4</sub> hydrolysis in basic solution. The catalyst was cleaned, freeze-dried and weighed after each cycle. The results show almost no changes in catalytic performance after five consecutive cycles after normalizing to the catalyst-mass (**Fig. 6**c-d). However, the time required to reach the 500 mL of H<sub>2</sub> was increased from 5.9 to 13.9 min after five cycles. The catalyst deactivation could be ascribed to the RuP<sub>3</sub> exfoliation, structural damages and catalyst poisoning by BO<sub>2</sub><sup>-</sup> species (**Fig. S12-S13**).<sup>49</sup>

# 11 3.5. Catalytic mechanism analysis



12

Fig. 7. Catalytic mechanism diagram of the Co-Ru-P@NF catalyst for H<sub>2</sub> generation by
hydrolysis of alkalized NaBH<sub>4</sub> solution.

Published on 15 January 2019. Downloaded by Stockholms Universitet on 1/22/2019 12:07:16 PM

As mentioned above, the high catalytic activities of Co-Ru-P@NF series are directly allogs and the series are directly allows are directly allows and the series are directly allows are directly allows and the series are directly allows are directly al 1 2 related to the synergetic effect between Ru and Co along with the unique morphology associated with the large surface area and the open-channels for effective mass transport. The 3 4 negative shift of the Ru 3d binding energy in XPS caused by the partial electron transfer from Co species to Ru species indicates a higher electron density on Co species as compared to that 5 of Ru species. Accordingly, the partially electron negative hydrogen atoms preferred to attach 6 to the Ru<sup>3+</sup> atoms. As a result, the BH<sub>4</sub><sup>-</sup> goes a reversible dissociation on Co and Ru metal sites 7 8 where the hydrogen atom adsorbs on Ru and BH<sub>3</sub> attaches to the Co species. The negatively 9 charged boron species transfer the electron to Ru through the conductive balk and then the partially negatively charged hydrogen atom on the Ru surface extracts a hydrogen from water 10 11 while the OH ion attacks the BH<sub>3</sub> to release the H<sub>2</sub> molecule followed by transferring one hydrogen atom of the BH<sub>3</sub> to the free Ru site. The surface adsorbed BH<sub>2</sub>(OH) species forms 12 13 after one cycle. The reaction continues until all the hydrogen atoms are replaced by OH ions and then the B(OH)<sub>4</sub><sup>-</sup> leaves the surface.<sup>50</sup> 14

# 16 **4. Conclusion**

15

In summary, we have successfully developed a simple and novel strategy to fabricate 17 18 hierarchically structure of RuP<sub>3</sub> loaded CoP@NF nanosheets for H<sub>2</sub> generation from NaBH<sub>4</sub> hydrolysis in alkaline solution. The XRD, XPS and TEM analysis of the Co-Ru-P@NF 19 material show that the RuP<sub>3</sub> nanoclusters are uniformly dispersed on the surface of vertically 20 21 grown CoP nanosheets on the NF, which creates the channels for rapid mass transfer and 22 sufficient exposure of the active sites. The resulted Co-Ru-P@NF catalyst exhibits an exceptionally high TOF value of 2123.6 mol<sub>H2</sub> min<sup>-1</sup> mol<sup>-1</sup><sub>Ru</sub> at 25 °C, which is one of the 23 highest result reported so far. The superior catalytic activity is a strong agreement with the low 24 activation energy (40.3 kJ mol<sup>-1</sup>). Additionally, the Co-Ru-P@NF catalyst shown a slight decay 25

1 around 8.2% after five cycles demonstrating a good stability towards  $NaBH_{4}_{DOV}$  by the low stability towards  $NaBH_{4}_{2}$  by the low stability towards N

2 Furthermore, this study might shed light on designing a metal-phosphide based catalyst for

3 NaBH<sub>4</sub> hydrolysis as a high activity, good durability, and reusability.

4

Published on 15 January 2019. Downloaded by Stockholms Universitet on 1/22/2019 12:07:16 PM

# 5 Acknowledgements

6 This work has been supported by the National Natural Science Foundation of China (21363003,

7 21165004, 21163002), Natural Science Foundation of Guangxi Province

8 (2014GXNSFGA118008, 2014GXNSFFA118003), BAGUI scholar program (2014A001) and

9 Project of Talents Highland of Guangxi Province.

# 10 Appendix A. Supplementary data

11 Figs. S1-S13 and Tables S1-S3 give more details on characterization of our synthesized

12 materials and their catalytic performance data; additional photograph, XRD, SEM, XPS and

13 catalytic performance data (PDF).

# 14 Conflicts of interest

15 There are no conflicts to declare.

# 17 Notes and references

16

- X. Zhang, Y. Zhao, X. Jia, Y. Zhao, L. Shang, Q. Wang, G. I. N. Waterhouse, L.-Z.
   Wu, C.-H. Tung and T. Zhang, *Adv. Energy Mater.*, 2018, 8, 1702780.
- J. Chen, Z.-H. Lu, Q. Yao, G. Feng and Y. Luo, J. Mater. Chem. A, 2018, 6, 20746-20752.
- 23 3. D. G. Tong, D. M. Tang, W. Chu, G. F. Gu and P. Wu, J. Mater. Chem. A, 2013, 1,
  6425-6432.
- 25 4. N. Sahiner and S. Demirci, *Appl. Catal. B: Environ.*, 2017, **202**, 199-206.
- 26 5. T. Liu, K. Wang, G. Du, A. M. Asiri and X. Sun, J. Mater. Chem. A, 2016, 4, 1305327 13057.
- H.-L. Wang, J.-M. Yan, Z.-L. Wang, S.-I. O and Q. Jiang, *J. Mater. Chem. A*, 2013, 1, 14957-14962.
- 30 7. Y. Li, T. Gao, Y. Yao, Z. Liu, Y. Kuang, C. Chen, J. Song, S. Xu, E. M. Hitz, B. Liu,
- R. J. Jacob, M. R. Zachariah, G. Wang and L. Hu, *Adv. Energy Mater.*, 2018, 8, 1801289.

C. Tang, L. Xie, K. Wang, G. Du, A. M. Asiri, Y. Luo and X. Sun, J. Mater Cherrie Cher 1 8. 2 2016, 4, 12407-12410. 3 9. Q. Yao, Z.-H. Lu, W. Huang, X. Chen and J. Zhu, J. Mater. Chem. A, 2016, 4, 8579-4 8583. 5 10. F. Fu, C. Wang, O. Wang, A. M. Martinez-Villacorta, A. Escobar, H. Chong, X. Wang, S. Moya, L. Salmon, E. Fouquet, J. Ruiz and D. Astruc, J. Am. Chem. Soc., 6 7 2018, 140, 10034–10042. H. Zhang, G. Xia, J. Zhang, D. Sun, Z. Guo and X. Yu, Adv. Energy Mater., 2018, 8, 8 11. 9 1702975. 10 12. Z. Zhang, S. Zhang, Q. Yao, X. Chen and Z.-H. Lu, Inorg. Chem., 2017, 56, 11938-11 11945. 12 A. Kantürk Figen, K. Taşçi and B. Coşkuner Filiz, Kinet. Catal., 2018, 59, 128-135. 13. 13 14. C. Wu, J. Zhang, J. Guo, L. Sun, J. Ming, H. Dong, Y. Zhao, J. Tian and X. Yang, 14 ACS Sustain. Chem. Eng., 2018, 6, 7451-7457. 15 15. C. Wu, J. Guo, J. Zhang, Y. Zhao, J. Tian, T. T. Isimjan and X. Yang, *Renew. Energy*, 16 2018, DOI: doi.org/10.1016/j.renene.2018.09.070, 17 doi.org/10.1016/j.renene.2018.1009.1070. 18 A. Lale, A. Wasan, R. Kumar, P. Miele, U. B. Demirci and S. Bernard, Int. J. Hydrog. 16. 19 Energy, 2016, 41, 15477-15488. 20 17. J.-X. Kang, T.-W. Chen, D.-F. Zhang and L. Guo, Nano Energy, 2016, 23, 145-152. 21 18. M. Irum, M. Zaheer, M. Friedrich and R. Kempe, RSC Adv., 2016, 6, 10438-10441. 22 19. Q. Yao, W. Shi, G. Feng, Z.-H. Lu, X. Zhang, D. Tao, D. Kong and X. Chen, J. 23 Power Sources, 2014, 257, 293-299. 24 20. H. X. Nunes, M. J. F. Ferreira, C. M. Rangel and A. M. F. R. Pinto, Int. J. Hydrogen 25 Energy, 2016, 41, 15426-15432. 26 21. L. Wang, L. Huang, C. Jiao, Z. Huang, F. Liang, S. Liu, Y. Wang and H. Zhang, 27 Catalysts, 2017, 7, 25. 28 L. Wei and Z. Yuan, AIP Conf. Proc., 2017, 1794, 020004. 22. 29 23. C. Li, D. Wang, Y. Wang, G. Li, G. Hu, S. Wu, Z. Cao and K. Zhang, J. Colloid 30 Interface Sci., 2018, 524, 25-31. 31 F. Wang, Y. Zhang, Y. Wang, Y. Luo, Y. Chen and H. Zhu, Int. J. Hydrogen Energy, 24. 32 2018, **43**, 8805-8814. 33 25. Y. Zou, Y. Yin, Y. Gao, C. Xiang, H. Chu, S. Qiu, E. Yan, F. Xu and L. Sun, Int. J. 34 Hydrogen Energy, 2018, 43, 4912-4921. 35 26. Q. Li, W. Yang, F. Li, A. Cui and J. Hong, Int. J. Hydrog. Energy, 2018, 43, 271-282. K. A. Holbrook and P. J. Twist, J. Chem. Soc. A, 1971, 0, 890-894. 36 27. 37 C.-C. Hou, Q. Li, C. Wang, C.-Y. Peng, Q.-Q. Chen, H.-F. Ye, W. Fu, C.-M. Che and 28. N. Lopez, Energy Environ. Sci., 2017, 10, 1770-1776. 38 39 29. C. Tang, R. Zhang, W. Lu, L. He, X. Jiang, A. M. Asiri and X. Sun, Adv. Mater., 40 2017, 29, 1602441. 41 30. Y. Wei, Y. Wang, L. Wei, X. Zhao, X. Zhou and H. Liu, Int. J. Hydrog. Energy, 42 2018, 43, 592-600. 43 31. L. He, D. Zhou, Y. Lin, R. Ge, X. Hou, X. Sun and C. Zheng, ACS Catal., 2018, 8, 44 3859-3864. 45 32. A. H. Tamboli, S. W. Gosavi, C. Terashima, A. Fujishima, A. A. Pawar and H. Kim, 46 Chemosphere, 2018, 202, 669-676. X. Peng, D. Chen, X. Yang, D. Wang, M. Li, C.-C. Tseng, R. Panneerselvam, X. 47 33. 48 Wang, W. Hu, J. Tian and Y. Zhao, ACS Appl. Mater. Interfaces, 2016, 8, 33673-49 33680. 50 34. L. Cui, Y. Xu, L. Niu, W. Yang and J. Liu, Nano Res., 2017, 10, 595-604.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

| L. Wei, M. Ma, Y. Lu, S. Zhang, J. Gao and X. Dong, <i>Funct. Mater. Lett.</i> , 2017, 10, wArticle Online 1750065. |        |
|---------------------------------------------------------------------------------------------------------------------|--------|
| K. Mori, K. Miyawaki and H. Yamashita, ACS Catal., 2016, 6, 3128-3135.                                              |        |
| Q. Yao, ZH. Lu, Y. Yang, Y. Chen, X. Chen and HL. Jiang, Nano Res., 2018, 11,                                       |        |
| 4412-4422.                                                                                                          | ō      |
| X. Yang, H. Li, AY. Lu, S. Min, Z. Idriss, M. N. Hedhili, KW. Huang, H. Idriss                                      |        |
| and LJ. Li, <i>Nano Energy</i> , 2016, <b>25</b> , 42-50.                                                           | 0      |
| X. Yang, AY. Lu, Y. Zhu, M. N. Hedhili, S. Min, KW. Huang, Y. Han and LJ.                                           | 5      |
| Li, Nano Energy, 2015, 15, 634-641.                                                                                 | 5      |
| T. Tang, Q. Gan, X. Guo, H. Dong, J. Zhang, Y. Zhao, J. Tian and X. Yang, Sustain.                                  | Ē      |
| Energ. Fuels, 2018, 2, 229-236.                                                                                     |        |
| Y. Zeng, S. Tian, D. Wang, H. Dong, X. Cheng, Y. Zhao, J. Tian and X. Yang,                                         | 5      |
| ChemistrySelect, 2017, 2, 9291-9297.                                                                                |        |
| C. Jing-Qi, G. Wen-Kun, L. Jia-Hui, D. Bin, Y. Kai-Li, Q. Jun-Feng, L. Bin, C.                                      | 0      |
| Yong-Ming and L. Chen-Guang, ChemSusChem, 2018, 11, 743-752.                                                        | Ð      |
| S. Liu, Q. Liu, Y. Lv, B. Chen, Q. Zhou, L. Wang, Q. Zheng, C. Che and C. Chen,                                     | T      |
| Chem. Commun., 2017, 53, 13153-13156                                                                                |        |
| W. Gao, M. Yan, HY. Cheung, Z. Xia, X. Zhou, Y. Qin, CY. Wong, Y. Qu, CR.                                           | ŏ      |
| Chang and J. C. Ho, <i>Nano Energy</i> , 2017, <b>38</b> , 290-296.                                                 | 8      |
| Z. Pu, I. S. Amiinu, Z. Kou, W. Li and S. Mu, Angew. ChemInt. Edit., 2017, 56,                                      |        |
| 11559-11564.                                                                                                        |        |
| H. Zhang, X. Li, A. Hähnel, V. Naumann, C. Lin, S. Azimi, S. L. Schweizer, A. W.                                    | 4      |
| Maijenburg and R. B. Wehrspohn, Adv. Funct. Mater., 2018, 28, 1706847.                                              |        |
| S. Cao, Y. Chen, H. Wang, J. Chen, X. Shi, H. Li, P. Cheng, X. Liu, M. Liu and L.                                   | 2      |
| Piao, Joule, 2018, 2, 549-557.                                                                                      |        |
| D. Kılınç, Ö. Şahin and C. Saka, Int. J. Hydrog. Energy, 2018, 43, 251-261.                                         |        |
| L. Zhou, J. Meng, P. Li, Z. Tao, L. Mai and J. Chen, Mater. Horizons, 2017, 4, 268-                                 |        |
| 273.                                                                                                                |        |
| U. B. Demirci and P. Miele, C. R. Chim., 2014, 17, 707-716.                                                         | Ĕ      |
|                                                                                                                     | -      |
|                                                                                                                     | U      |
|                                                                                                                     | S      |
|                                                                                                                     |        |
|                                                                                                                     | . Č    |
|                                                                                                                     |        |
|                                                                                                                     | Ţ      |
|                                                                                                                     | ŋ      |
|                                                                                                                     | $\geq$ |
|                                                                                                                     |        |
|                                                                                                                     | 5      |
|                                                                                                                     |        |
|                                                                                                                     | D      |
|                                                                                                                     | Č      |
|                                                                                                                     |        |
|                                                                                                                     |        |
|                                                                                                                     | 0      |
|                                                                                                                     |        |

Published on 15 January 2019. Downloaded by Stockholms Universitet on 1/22/2019 12:07:16 PM.